Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2009

01.12.2009

Role of Animal Models in HCM Research

verfasst von: Rhian Shephard, Christopher Semsarian

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Abstract

Hypertrophic cardiomyopathy (HCM) is a complex cardiovascular genetic disorder characterized by marked clinical and genetic heterogeneity. Major advances have been made in the clinical characterization of patients with HCM and in identifying causative gene mutations. However, many questions remain regarding the underlying disease mechanisms. Furthermore, in a disease where no pharmacological treatments currently exists which can either prevent or cause regression of disease, processes to identify novel therapies are the crucial next steps. Animal models of HCM have already proved to be universally useful in confirming gene causation and dissecting out key molecular pathways involved in the development of HCM and its sequelae, including heart failure and sudden death. These findings have led to studies in animal models investigating novel therapeutic approaches in HCM, specifically targeting the development and progression of cardiac hypertrophy, fibrosis, and heart failure. This review will provide a brief summary of some of the key animal models of HCM and how these models have been utilized to understand disease mechanisms and to investigate new potential therapies. Ongoing studies using animal models of HCM will lead to a greater understanding of disease pathogenesis and will facilitate the translation of these findings to improved clinical outcomes in HCM patients.
Literatur
1.
Zurück zum Zitat Semsarian, C., & Seidman, C. E. (2001). Molecular medicine in the 21st century. Internal Medicine Journal, 31, 53–59.CrossRefPubMed Semsarian, C., & Seidman, C. E. (2001). Molecular medicine in the 21st century. Internal Medicine Journal, 31, 53–59.CrossRefPubMed
2.
Zurück zum Zitat Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell, 104, 557–567.CrossRefPubMed Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell, 104, 557–567.CrossRefPubMed
3.
Zurück zum Zitat Spirito, P., Seidman, C. E., McKenna, W. J., & Maron, B. J. (1997). The management of hypertrophic cardiomyopathy. New England Journal of Medicine, 336, 775–785.CrossRefPubMed Spirito, P., Seidman, C. E., McKenna, W. J., & Maron, B. J. (1997). The management of hypertrophic cardiomyopathy. New England Journal of Medicine, 336, 775–785.CrossRefPubMed
4.
Zurück zum Zitat Maron, B. J. (2002). Hypertrophic cardiomyopathy: A systematic review. JAMA, 287, 1308–1320.CrossRefPubMed Maron, B. J. (2002). Hypertrophic cardiomyopathy: A systematic review. JAMA, 287, 1308–1320.CrossRefPubMed
5.
Zurück zum Zitat Lind, J. M., Chiu, C., & Semsarian, C. (2006). Genetic basis of hypertrophic cardiomyopathy. Expert Review of Cardiovascular Therapy, 4, 929–934.CrossRef Lind, J. M., Chiu, C., & Semsarian, C. (2006). Genetic basis of hypertrophic cardiomyopathy. Expert Review of Cardiovascular Therapy, 4, 929–934.CrossRef
6.
Zurück zum Zitat Maron, B. J., Spirito, P., Shen, W. K., Haas, T. S., Formisano, F., Link, M. S., et al. (2007). Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA, 298(4), 405–412.CrossRefPubMed Maron, B. J., Spirito, P., Shen, W. K., Haas, T. S., Formisano, F., Link, M. S., et al. (2007). Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA, 298(4), 405–412.CrossRefPubMed
7.
Zurück zum Zitat Jayatilleke, I., Doolan, A., Ingles, J., McGuire, M., Booth, V., Richmond, D. R., et al. (2004). Long-term follow-up of implantable cardioverter defibrillator therapy for hypertrophic cardiomyopathy. American Journal of Cardiology, 93(9), 1192–1194.CrossRefPubMed Jayatilleke, I., Doolan, A., Ingles, J., McGuire, M., Booth, V., Richmond, D. R., et al. (2004). Long-term follow-up of implantable cardioverter defibrillator therapy for hypertrophic cardiomyopathy. American Journal of Cardiology, 93(9), 1192–1194.CrossRefPubMed
8.
Zurück zum Zitat Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., et al. (2003). Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 107, 2227–2232.CrossRefPubMed Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., et al. (2003). Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 107, 2227–2232.CrossRefPubMed
9.
Zurück zum Zitat Watkins, H., Rosenzweig, A., Hwang, D. S., Levi, T., McKenna, W., Seidman, C. E., et al. (1992). Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. New England Journal of Medicine, 326, 1108–1114.PubMedCrossRef Watkins, H., Rosenzweig, A., Hwang, D. S., Levi, T., McKenna, W., Seidman, C. E., et al. (1992). Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. New England Journal of Medicine, 326, 1108–1114.PubMedCrossRef
10.
Zurück zum Zitat Geisterfer-Lowrance, A. A. T., Kass, S., Tanigawa, G., Vosberg, H.-P., McKenna, W., Seidman, C. E., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation. Cell, 62, 999–1006.CrossRefPubMed Geisterfer-Lowrance, A. A. T., Kass, S., Tanigawa, G., Vosberg, H.-P., McKenna, W., Seidman, C. E., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation. Cell, 62, 999–1006.CrossRefPubMed
11.
Zurück zum Zitat Seidman, C., & Seidman, J. G. (1995). Gene mutations that cause familial hypertrophic cardiomyopathy. In E. Haber (Ed.), Molecular cardiovascular medicine (pp. 193–210). New York: Scientific American. Seidman, C., & Seidman, J. G. (1995). Gene mutations that cause familial hypertrophic cardiomyopathy. In E. Haber (Ed.), Molecular cardiovascular medicine (pp. 193–210). New York: Scientific American.
12.
Zurück zum Zitat Geisterfer-Lowrance, A. A. T., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.CrossRefPubMed Geisterfer-Lowrance, A. A. T., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.CrossRefPubMed
13.
Zurück zum Zitat Georgakopoulos, D., Christe, M. E., Giewat, M., Seidman, C. M., Seidman, J., & Kass, D. A. (1999). The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an α-cardiac myosin heavy chain missense mutation. Nature Medicine, 5, 327–330.CrossRefPubMed Georgakopoulos, D., Christe, M. E., Giewat, M., Seidman, C. M., Seidman, J., & Kass, D. A. (1999). The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an α-cardiac myosin heavy chain missense mutation. Nature Medicine, 5, 327–330.CrossRefPubMed
14.
Zurück zum Zitat McConnell, B. K., Fatkin, D., Semsarian, C., Jones, K. A., Georgakopoulos, D., Maguire, C. T., et al. (2001). Comparison of two murine models of familial hypertrophic cardiomyopathy. Circulation Research, 88, 383–389.PubMed McConnell, B. K., Fatkin, D., Semsarian, C., Jones, K. A., Georgakopoulos, D., Maguire, C. T., et al. (2001). Comparison of two murine models of familial hypertrophic cardiomyopathy. Circulation Research, 88, 383–389.PubMed
15.
Zurück zum Zitat Semsarian, C., Ahmad, I., Giewat, M., Georgakopoulos, D., Schmitt, J. P., McConnell, B. K., et al. (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. Journal of Clinical Investigation, 109, 1013–1020.PubMed Semsarian, C., Ahmad, I., Giewat, M., Georgakopoulos, D., Schmitt, J. P., McConnell, B. K., et al. (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. Journal of Clinical Investigation, 109, 1013–1020.PubMed
16.
Zurück zum Zitat Fatkin, D., Christe, M. E., Aristizabal, O., McConnell, B. K., Srinivasan, S., Schoen, F. J., et al. (1999). Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α cardiac myosin heavy chain gene. Journal of Clinical Investigation, 103, 147–153.CrossRefPubMed Fatkin, D., Christe, M. E., Aristizabal, O., McConnell, B. K., Srinivasan, S., Schoen, F. J., et al. (1999). Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α cardiac myosin heavy chain gene. Journal of Clinical Investigation, 103, 147–153.CrossRefPubMed
17.
Zurück zum Zitat Marian, A. J., Wu, Y., Lim, D.-S., McCluggage, M., Youker, K., Yu, Q.-T., et al. (1999). A transgenic rabbit model for human hypertrophic cardiomyopathy. Journal of Clinical Investigation, 104, 1683–1692.CrossRefPubMed Marian, A. J., Wu, Y., Lim, D.-S., McCluggage, M., Youker, K., Yu, Q.-T., et al. (1999). A transgenic rabbit model for human hypertrophic cardiomyopathy. Journal of Clinical Investigation, 104, 1683–1692.CrossRefPubMed
18.
Zurück zum Zitat Nagueh, S. F., Chen, S., Patel, R., Tsybouleva, N., Lutucuta, S., Kopelen, H. A., et al. (2004). Evolution of expression of cardiac phenotypes over a 4-year period in the β-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 36, 663–673.CrossRefPubMed Nagueh, S. F., Chen, S., Patel, R., Tsybouleva, N., Lutucuta, S., Kopelen, H. A., et al. (2004). Evolution of expression of cardiac phenotypes over a 4-year period in the β-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 36, 663–673.CrossRefPubMed
19.
Zurück zum Zitat Lombardi, R., Rodriguez, G., Chen, S. N., Ripplinger, C. M., Li, W., Chen, J., et al. (2009). Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation, 119, 1398–1407.CrossRefPubMed Lombardi, R., Rodriguez, G., Chen, S. N., Ripplinger, C. M., Li, W., Chen, J., et al. (2009). Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation, 119, 1398–1407.CrossRefPubMed
20.
Zurück zum Zitat Jones, W. K., Grupp, I. L., Doetschman, T., Grupp, G., Osinska, H., Hewett, T. E., et al. (1996). Ablation of the murine α myosin heavy chain gene leads to dosage effects and functional deficits in the heart. Journal of Clinical Investigation, 98, 1906–1917.CrossRefPubMed Jones, W. K., Grupp, I. L., Doetschman, T., Grupp, G., Osinska, H., Hewett, T. E., et al. (1996). Ablation of the murine α myosin heavy chain gene leads to dosage effects and functional deficits in the heart. Journal of Clinical Investigation, 98, 1906–1917.CrossRefPubMed
21.
Zurück zum Zitat Koshida, S., Kurasawa, M., Yasuda, M., Sato, N., & Obinata, T. (1995). Assembly of cardiac C-protein during myofibrillogenesis in myogenic cells in culture. Cell Structure and Function, 20, 253–261.CrossRefPubMed Koshida, S., Kurasawa, M., Yasuda, M., Sato, N., & Obinata, T. (1995). Assembly of cardiac C-protein during myofibrillogenesis in myogenic cells in culture. Cell Structure and Function, 20, 253–261.CrossRefPubMed
22.
Zurück zum Zitat Gilbert, R., Kelly, M. G., Mikawa, T., & Fischman, D. A. (1996). The carboxyl terminus of myosin binding protein C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle. Journal of Cell Science, 109, 101–111.PubMed Gilbert, R., Kelly, M. G., Mikawa, T., & Fischman, D. A. (1996). The carboxyl terminus of myosin binding protein C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle. Journal of Cell Science, 109, 101–111.PubMed
23.
Zurück zum Zitat Niimura, H., Bachinski, L. L., Sangwatanaroj, S., Watkins, H., Chudley, A. E., McKenna, W., et al. (1998). Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. New England Journal of Medicine, 338, 1248–1257.CrossRefPubMed Niimura, H., Bachinski, L. L., Sangwatanaroj, S., Watkins, H., Chudley, A. E., McKenna, W., et al. (1998). Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. New England Journal of Medicine, 338, 1248–1257.CrossRefPubMed
24.
Zurück zum Zitat Bonne, G., Carrier, L., Richard, P., Hainque, B., & Schwartz, K. (1998). Familial hypertrophic cardiomyopathy: From mutations to functional defects. Circulation Research, 83, 580–593.PubMed Bonne, G., Carrier, L., Richard, P., Hainque, B., & Schwartz, K. (1998). Familial hypertrophic cardiomyopathy: From mutations to functional defects. Circulation Research, 83, 580–593.PubMed
25.
Zurück zum Zitat Watkins, H., Conner, D., Thierfelder, L., Jarcho, J. A., MacRae, C., McKenna, W. J., et al. (1995). Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genetics, 11, 434–437.CrossRefPubMed Watkins, H., Conner, D., Thierfelder, L., Jarcho, J. A., MacRae, C., McKenna, W. J., et al. (1995). Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genetics, 11, 434–437.CrossRefPubMed
26.
Zurück zum Zitat McConnell, B. K., Jones, K. A., Fatkin, D., Arroyo, L. H., Lee, R. T., Aristizabal, O., et al. (1999). Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. Journal of Clinical Investigation, 104, 1235–1244.CrossRefPubMed McConnell, B. K., Jones, K. A., Fatkin, D., Arroyo, L. H., Lee, R. T., Aristizabal, O., et al. (1999). Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. Journal of Clinical Investigation, 104, 1235–1244.CrossRefPubMed
27.
Zurück zum Zitat Kelly, M., & Semsarian, C. (2009). Multiple mutations in genetic cardiovascular disease: A marker of disease severity? Circulation: Cardiovascular Genetics, 2, 182–190.CrossRef Kelly, M., & Semsarian, C. (2009). Multiple mutations in genetic cardiovascular disease: A marker of disease severity? Circulation: Cardiovascular Genetics, 2, 182–190.CrossRef
28.
Zurück zum Zitat Harris, S. P., Bartley, C. R., Hacker, T. A., McDonald, K. S., Douglas, P. S., Greaser, M. L., et al. (2002). Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circulation Research, 90, 594–601.CrossRefPubMed Harris, S. P., Bartley, C. R., Hacker, T. A., McDonald, K. S., Douglas, P. S., Greaser, M. L., et al. (2002). Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circulation Research, 90, 594–601.CrossRefPubMed
29.
Zurück zum Zitat Carrier, L., Knöll, R., Vignier, N., Keller, D. I., Bausero, P., Prudhon, B., et al. (2004). Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovascular Research, 63, 293–304.CrossRefPubMed Carrier, L., Knöll, R., Vignier, N., Keller, D. I., Bausero, P., Prudhon, B., et al. (2004). Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovascular Research, 63, 293–304.CrossRefPubMed
30.
Zurück zum Zitat Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H.-P., et al. (1994). α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell, 77, 701–712.CrossRefPubMed Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H.-P., et al. (1994). α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell, 77, 701–712.CrossRefPubMed
31.
Zurück zum Zitat Watkins, H., McKenna, W. J., Thierfelder, L., Suk, H. J., Anan, R., O'Donoghue, A., et al. (1995). Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. New England Journal of Medicine, 332, 1058–1064.CrossRefPubMed Watkins, H., McKenna, W. J., Thierfelder, L., Suk, H. J., Anan, R., O'Donoghue, A., et al. (1995). Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. New England Journal of Medicine, 332, 1058–1064.CrossRefPubMed
32.
Zurück zum Zitat Moolman, J. C., Corfield, V. A., Posen, B., Ngumbela, K., Seidman, C., Brink, P. A., et al. (1997). Sudden death due to troponin T mutations. Journal of the American College of Cardiology, 29, 549–555.CrossRefPubMed Moolman, J. C., Corfield, V. A., Posen, B., Ngumbela, K., Seidman, C., Brink, P. A., et al. (1997). Sudden death due to troponin T mutations. Journal of the American College of Cardiology, 29, 549–555.CrossRefPubMed
33.
Zurück zum Zitat Tardiff, J. C., Factor, S. M., Tompkins, B. D., Hewett, T. E., Palmer, B. M., Moore, R. L., et al. (1998). A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 101, 2800–2811.CrossRefPubMed Tardiff, J. C., Factor, S. M., Tompkins, B. D., Hewett, T. E., Palmer, B. M., Moore, R. L., et al. (1998). A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 101, 2800–2811.CrossRefPubMed
34.
Zurück zum Zitat Frey, N., Franz, W. M., Gloeckner, K., Degenhardt, M., Müller, M., Müller, O., et al. (2000). Transgenic rat hearts expressing a human cardiac troponin T deletion reveal diastolic dysfunction and ventricular arrhythmias. Cardiovascular Research, 47, 254–264.CrossRefPubMed Frey, N., Franz, W. M., Gloeckner, K., Degenhardt, M., Müller, M., Müller, O., et al. (2000). Transgenic rat hearts expressing a human cardiac troponin T deletion reveal diastolic dysfunction and ventricular arrhythmias. Cardiovascular Research, 47, 254–264.CrossRefPubMed
35.
Zurück zum Zitat Luedde, M., Flögel, U., Knorr, M., Grundt, C., Hippe, H.-J., Brors, B., et al. (2009). Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. Journal of Molecular Medicine, 87, 411–422.CrossRefPubMed Luedde, M., Flögel, U., Knorr, M., Grundt, C., Hippe, H.-J., Brors, B., et al. (2009). Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. Journal of Molecular Medicine, 87, 411–422.CrossRefPubMed
36.
Zurück zum Zitat Luedde, M., Flogel, U., Knorr, M., Grundt, C., Hippe, H. J., Brors, B., et al. (2009). Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. Journal of Molecular Medicine, 87(4), 411–422.CrossRefPubMed Luedde, M., Flogel, U., Knorr, M., Grundt, C., Hippe, H. J., Brors, B., et al. (2009). Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. Journal of Molecular Medicine, 87(4), 411–422.CrossRefPubMed
37.
Zurück zum Zitat Javadpour, M. M., Tardiff, J. C., Pinz, I., & Ingwall, J. S. (2003). Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. Journal of Clinical Investigation, 112, 768–775.PubMed Javadpour, M. M., Tardiff, J. C., Pinz, I., & Ingwall, J. S. (2003). Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. Journal of Clinical Investigation, 112, 768–775.PubMed
38.
Zurück zum Zitat Kimura, A., Haruhito, P. J.-E., Nishi, H., Satoh, M., Takahashi, M., et al. (1997). Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genetics, 16, 379–382.CrossRefPubMed Kimura, A., Haruhito, P. J.-E., Nishi, H., Satoh, M., Takahashi, M., et al. (1997). Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genetics, 16, 379–382.CrossRefPubMed
39.
Zurück zum Zitat Doolan, A., Tebo, M., Ingles, J., Nguyen, L., Tsoutsman, T., Lam, L., et al. (2005). Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: Clinical, genetic and functional consequences. Journal of Molecular and Cellular Cardiology, 38(2), 387–393.CrossRefPubMed Doolan, A., Tebo, M., Ingles, J., Nguyen, L., Tsoutsman, T., Lam, L., et al. (2005). Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: Clinical, genetic and functional consequences. Journal of Molecular and Cellular Cardiology, 38(2), 387–393.CrossRefPubMed
40.
Zurück zum Zitat James, J., Zhang, Y., Osinska, H., Sanbe, A., Klevitsky, R., Hewett, T. E., et al. (2000). Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circulation Research, 87, 805–811.PubMed James, J., Zhang, Y., Osinska, H., Sanbe, A., Klevitsky, R., Hewett, T. E., et al. (2000). Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circulation Research, 87, 805–811.PubMed
41.
Zurück zum Zitat Sanbe, A., James, J., Tuzcu, V., Nas, S., Martin, L., Gulick, J., et al. (2005). Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation, 111, 2330–2338.CrossRefPubMed Sanbe, A., James, J., Tuzcu, V., Nas, S., Martin, L., Gulick, J., et al. (2005). Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation, 111, 2330–2338.CrossRefPubMed
42.
Zurück zum Zitat Tsoutsman, T., Chung, J., Doolan, A., Nguyen, L., Williams, I. A., Tu, E., et al. (2006). Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 41, 623–632.CrossRefPubMed Tsoutsman, T., Chung, J., Doolan, A., Nguyen, L., Williams, I. A., Tu, E., et al. (2006). Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 41, 623–632.CrossRefPubMed
43.
Zurück zum Zitat Marian, A. J., & Roberts, R. (1998). Molecular genetic basis of hypertrophic cardiomyopathy: Genetic markers for sudden cardiac death. Journal of Cardiovascular Electrophysiology, 9, 88–99.CrossRefPubMed Marian, A. J., & Roberts, R. (1998). Molecular genetic basis of hypertrophic cardiomyopathy: Genetic markers for sudden cardiac death. Journal of Cardiovascular Electrophysiology, 9, 88–99.CrossRefPubMed
44.
Zurück zum Zitat Coviello, D. A., Maron, B. J., Spirito, P., Watkins, H., Vosberg, H.-P., Thierfelder, L., et al. (1997). Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the alpha-tropomyosin gene. Journal of the American College of Cardiology, 29, 635–640.CrossRefPubMed Coviello, D. A., Maron, B. J., Spirito, P., Watkins, H., Vosberg, H.-P., Thierfelder, L., et al. (1997). Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the alpha-tropomyosin gene. Journal of the American College of Cardiology, 29, 635–640.CrossRefPubMed
45.
Zurück zum Zitat Muthuchamy, M., Pieples, K., Rethinasamy, P., Hoit, B., Grupp, I. L., Boivin, G. P., et al. (1999). Mouse model of a familial hypertrophic cardiomyopathy mutation in α-tropomyosin manifests cardiac dysfunction. Circulation Research, 85, 47–56.PubMed Muthuchamy, M., Pieples, K., Rethinasamy, P., Hoit, B., Grupp, I. L., Boivin, G. P., et al. (1999). Mouse model of a familial hypertrophic cardiomyopathy mutation in α-tropomyosin manifests cardiac dysfunction. Circulation Research, 85, 47–56.PubMed
46.
Zurück zum Zitat Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., et al. (2001). A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. Journal of Molecular and Cellular Cardiology, 33, 1815–1828.CrossRefPubMed Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., et al. (2001). A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. Journal of Molecular and Cellular Cardiology, 33, 1815–1828.CrossRefPubMed
47.
Zurück zum Zitat Prabhakar, R., Petrashevskaya, N., Schwartz, A., Aronow, B., Boivin, G. P., Molkentin, J. D., et al. (2003). A mouse model of familial hypertrophic cardiomyopathy caused by a α-tropomyosin mutation. Molecular and Cellular Biochemistry, 251, 33–42.CrossRefPubMed Prabhakar, R., Petrashevskaya, N., Schwartz, A., Aronow, B., Boivin, G. P., Molkentin, J. D., et al. (2003). A mouse model of familial hypertrophic cardiomyopathy caused by a α-tropomyosin mutation. Molecular and Cellular Biochemistry, 251, 33–42.CrossRefPubMed
48.
Zurück zum Zitat Kremneva, E., Boussouf, S., Nikolaeva, O., Maytum, R., Geeves, M. A., & Levitsky, D. I. (2004). Effects of two familial hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Biophysical Journal, 87, 3922–3933.CrossRefPubMed Kremneva, E., Boussouf, S., Nikolaeva, O., Maytum, R., Geeves, M. A., & Levitsky, D. I. (2004). Effects of two familial hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Biophysical Journal, 87, 3922–3933.CrossRefPubMed
49.
Zurück zum Zitat Fries, R., Heaney, A. M., & Meurs, K. M. (2008). Prevalence of the myosin-binding protein C mutation in Maine Coon cats. Journal of Veterinary Internal Medicine, 22, 893–896.CrossRefPubMed Fries, R., Heaney, A. M., & Meurs, K. M. (2008). Prevalence of the myosin-binding protein C mutation in Maine Coon cats. Journal of Veterinary Internal Medicine, 22, 893–896.CrossRefPubMed
50.
Zurück zum Zitat Kittleson, M. D., Meurs, K. M., Munro, M. J., Kittleson, J. A., Liu, S.-K., Pion, P. D., et al. (1999). Familial hypertrophic cardiomyopathy in Maine Coon cats: An animal model of human disease. Circulation, 99, 3172–3180.PubMed Kittleson, M. D., Meurs, K. M., Munro, M. J., Kittleson, J. A., Liu, S.-K., Pion, P. D., et al. (1999). Familial hypertrophic cardiomyopathy in Maine Coon cats: An animal model of human disease. Circulation, 99, 3172–3180.PubMed
51.
Zurück zum Zitat Sakamoto, A., Ono, K., Abe, M., Jasmin, G., Eki, T., Murakami, Y., et al. (1997). Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 94, 13873–13878.CrossRefPubMed Sakamoto, A., Ono, K., Abe, M., Jasmin, G., Eki, T., Murakami, Y., et al. (1997). Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 94, 13873–13878.CrossRefPubMed
52.
Zurück zum Zitat Lowey, S., Lesko, L. M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an α- or β-myosin heavy chain backbone. Journal of Biological Chemistry, 283, 20579–20589.CrossRefPubMed Lowey, S., Lesko, L. M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an α- or β-myosin heavy chain backbone. Journal of Biological Chemistry, 283, 20579–20589.CrossRefPubMed
53.
Zurück zum Zitat Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and α-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circulation Research, 101, 1266–1273.CrossRefPubMed Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and α-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circulation Research, 101, 1266–1273.CrossRefPubMed
54.
Zurück zum Zitat Tyska, M., Hayes, E., Giewat, M., Seidman, C., Seidman, J., & Warshaw, D. (2000). Single-molecular mechanisms of R403Q cardiac isolated from the mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 86, 737–744.PubMed Tyska, M., Hayes, E., Giewat, M., Seidman, C., Seidman, J., & Warshaw, D. (2000). Single-molecular mechanisms of R403Q cardiac isolated from the mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 86, 737–744.PubMed
55.
Zurück zum Zitat Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca2+ response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 106, 1351–1359.CrossRefPubMed Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca2+ response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 106, 1351–1359.CrossRefPubMed
56.
Zurück zum Zitat Senthil, V., Chen, S. N., Tsybouleva, N., Halder, T., Nagueh, S. F., Willerson, J. T., et al. (2005). Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation Research, 97, 285–292.CrossRefPubMed Senthil, V., Chen, S. N., Tsybouleva, N., Halder, T., Nagueh, S. F., Willerson, J. T., et al. (2005). Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation Research, 97, 285–292.CrossRefPubMed
57.
Zurück zum Zitat Konhilas, J. P., & Leinwand, L. A. (2007). The effects of biological sex and diet on the development of heart failure. Circulation, 116(23), 2747–2759.CrossRefPubMed Konhilas, J. P., & Leinwand, L. A. (2007). The effects of biological sex and diet on the development of heart failure. Circulation, 116(23), 2747–2759.CrossRefPubMed
58.
Zurück zum Zitat Luckey, S. W., Mansoori, J., Fair, K., Antos, C. L., Olson, E. N., & Leinwand, L. A. (2007). Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H838–H845.CrossRefPubMed Luckey, S. W., Mansoori, J., Fair, K., Antos, C. L., Olson, E. N., & Leinwand, L. A. (2007). Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H838–H845.CrossRefPubMed
59.
Zurück zum Zitat Stauffer, B. L., Konhilas, J. P., Luczak, E. D., & Leinwand, L. A. (2006). Soy diet worsens heart disease in mice. Journal of Clinical Investigation, 116(1), 209–216.CrossRefPubMed Stauffer, B. L., Konhilas, J. P., Luczak, E. D., & Leinwand, L. A. (2006). Soy diet worsens heart disease in mice. Journal of Clinical Investigation, 116(1), 209–216.CrossRefPubMed
60.
Zurück zum Zitat Leinwand, L. A. (2003). Sex is a potent modifier of the cardiovascular system. Journal of Clinical Investigation, 112(3), 302–307.PubMed Leinwand, L. A. (2003). Sex is a potent modifier of the cardiovascular system. Journal of Clinical Investigation, 112(3), 302–307.PubMed
61.
Zurück zum Zitat Semsarian, C., Healey, M. J., Fatkin, D., Giewat, M., Duffy, C., Seidman, C. E., et al. (2001). A polymorphic modifier gene alters the hypertrophic response in a murine model of familial hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 33, 2055–2060.CrossRefPubMed Semsarian, C., Healey, M. J., Fatkin, D., Giewat, M., Duffy, C., Seidman, C. E., et al. (2001). A polymorphic modifier gene alters the hypertrophic response in a murine model of familial hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 33, 2055–2060.CrossRefPubMed
62.
Zurück zum Zitat Doolan, A., Nguyen, L., & Semsarian, C. (2004). Hypertrophic cardiomyopathy: from “heart tumour” to a complex molecular genetic disorder. Heart, Lung and Circulation, 13, 15–25.CrossRefPubMed Doolan, A., Nguyen, L., & Semsarian, C. (2004). Hypertrophic cardiomyopathy: from “heart tumour” to a complex molecular genetic disorder. Heart, Lung and Circulation, 13, 15–25.CrossRefPubMed
63.
Zurück zum Zitat Westermann, D., Knollmann, B. C., Steendijk, P., Rutschow, S., Riad, A., Pauschinger, M., et al. (2006). Diltiazem treatment prevents diastolic heart failure in mice with familial hypertrophic cardiomyopathy. European Journal of Heart Failure, 8, 115–121.CrossRefPubMed Westermann, D., Knollmann, B. C., Steendijk, P., Rutschow, S., Riad, A., Pauschinger, M., et al. (2006). Diltiazem treatment prevents diastolic heart failure in mice with familial hypertrophic cardiomyopathy. European Journal of Heart Failure, 8, 115–121.CrossRefPubMed
64.
Zurück zum Zitat Patel, R., Nagueh, S. F., Tsybouleva, N., Abdellatif, M., Lutucuta, S., Kopelen, H. A., et al. (2001). Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 104, 317–324.CrossRefPubMed Patel, R., Nagueh, S. F., Tsybouleva, N., Abdellatif, M., Lutucuta, S., Kopelen, H. A., et al. (2001). Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 104, 317–324.CrossRefPubMed
65.
Zurück zum Zitat Bauersachs, J., Störk, S., Kung, M., Waller, C., Fidler, F., Hoyer, C., et al. (2007). HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: A randomized placebo-controlled pilot study. European Journal of Clinical Investigation, 37, 852–859.CrossRefPubMed Bauersachs, J., Störk, S., Kung, M., Waller, C., Fidler, F., Hoyer, C., et al. (2007). HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: A randomized placebo-controlled pilot study. European Journal of Clinical Investigation, 37, 852–859.CrossRefPubMed
66.
Zurück zum Zitat Ingles, J., Doolan, A., Chiu, C., Seidman, J., Seidman, C., & Semsarian, C. (2005). Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. Journal of Medical Genetics, 42(10), 59.CrossRef Ingles, J., Doolan, A., Chiu, C., Seidman, J., Seidman, C., & Semsarian, C. (2005). Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. Journal of Medical Genetics, 42(10), 59.CrossRef
67.
Zurück zum Zitat Van Driest, S. L., Ommen, S. R., Tajik, A. J., Gersh, B. J., & Ackerman, M. J. (2005). Sarcomeric genotyping in hypertrophic cardiomyopathy. Mayo Clinic Proceedings, 80(4), 463–469.CrossRefPubMed Van Driest, S. L., Ommen, S. R., Tajik, A. J., Gersh, B. J., & Ackerman, M. J. (2005). Sarcomeric genotyping in hypertrophic cardiomyopathy. Mayo Clinic Proceedings, 80(4), 463–469.CrossRefPubMed
68.
Zurück zum Zitat Tsoutsman, T., Kelly, M., Ng, D., Tan, J.-E., Tu, E., Lam, L., et al. (2008). Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. Circulation, 117, 1820–1831.CrossRefPubMed Tsoutsman, T., Kelly, M., Ng, D., Tan, J.-E., Tu, E., Lam, L., et al. (2008). Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. Circulation, 117, 1820–1831.CrossRefPubMed
Metadaten
Titel
Role of Animal Models in HCM Research
verfasst von
Rhian Shephard
Christopher Semsarian
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2009
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-009-9120-y

Weitere Artikel der Ausgabe 4/2009

Journal of Cardiovascular Translational Research 4/2009 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.