Skip to main content
Erschienen in: Endocrine 1/2017

07.09.2017 | Review

Role of calcitonin gene-related peptide in energy metabolism

verfasst von: William Gustavo Lima, Gleuber Henrique Marques-Oliveira, Thaís Marques da Silva, Valéria Ernestânia Chaves

Erschienen in: Endocrine | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by alternative tissue-specific splicing of the primary transcript of the CALC genes. CGRP is widely distributed in the central and peripheral nervous system, as well as in several organs and tissues. The presence of CGRP in the liver and brown and white adipose tissue suggests an effect of this neuropeptide on regulation of energy homeostasis.

Methods

In this review, we summarize the current knowledge of the effect of CGRP on the control of energy metabolism, primarily focusing on food intake, thermoregulation and lipid metabolism in adipose tissue, liver and muscle.

Results

CGRP induces anorexia, stimulating anorexigenic neuropeptide and/or inhibiting orexigenic neuropeptide expression, through cAMP/PKA pathway activation. CGRP also induces energy expenditure, increasing the skin temperature and brown adipose tissue thermogenesis. It has been also suggested that information related to peripheral lipid stores may be conveyed to the brain via CGRP-sensory innervation from adipose tissue. More recently, it was demonstrated that mice lacking αCGRP are protected from obesity induced by high-fat diet and that CGRP regulates the content of lipid in liver, muscle and adipose tissue.

Conclusions

It is unclear the receptor responsible by CGRP effects, as well as whether this neuropeptide acts directly or indirectly in liver, muscle and adipose tissue.
Literatur
1.
Zurück zum Zitat J.W. Hoppener, P.H. Steenbergh, J. Zandberg, A.H. Geurts van Kessel, S.B. Baylin, B.D. Nelkin et al., The second human calcitonin/CGRP gene is located on chromosome 11. Hum. Genet. 70, 259–263 (1985)PubMedCrossRef J.W. Hoppener, P.H. Steenbergh, J. Zandberg, A.H. Geurts van Kessel, S.B. Baylin, B.D. Nelkin et al., The second human calcitonin/CGRP gene is located on chromosome 11. Hum. Genet. 70, 259–263 (1985)PubMedCrossRef
2.
Zurück zum Zitat P.H. Steenbergh, C.J.M. Lips, H.S. Jansz, A second human calcitonin / CGRP. FEBS Lett. 183, 2–6 (1985)CrossRef P.H. Steenbergh, C.J.M. Lips, H.S. Jansz, A second human calcitonin / CGRP. FEBS Lett. 183, 2–6 (1985)CrossRef
3.
Zurück zum Zitat M. Alevizaki, A. Shiraishi, F.V. Rassool, G.J. Ferrier, I. MacIntyre, S. Legon, The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 206, 47–52 (1986)PubMedCrossRef M. Alevizaki, A. Shiraishi, F.V. Rassool, G.J. Ferrier, I. MacIntyre, S. Legon, The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 206, 47–52 (1986)PubMedCrossRef
4.
Zurück zum Zitat P. Westermark, C. Wernstedt, E. Wilander, D.W. Hayden, T.D. O’Brien, K.H. Johnson, Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA 84, 3881–3885 (1987)PubMedPubMedCentralCrossRef P. Westermark, C. Wernstedt, E. Wilander, D.W. Hayden, T.D. O’Brien, K.H. Johnson, Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA 84, 3881–3885 (1987)PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat K. Kitamura, K. Kangawa, M. Kawamoto, Y. Ichiki, S. Nakamura, H. Matsuo et al., Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192, 553–560 (1993). https://doi.org/10.1006/bbrc.1993.1451PubMedCrossRef K. Kitamura, K. Kangawa, M. Kawamoto, Y. Ichiki, S. Nakamura, H. Matsuo et al., Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192, 553–560 (1993). https://​doi.​org/​10.​1006/​bbrc.​1993.​1451PubMedCrossRef
6.
Zurück zum Zitat J. Roh, C.L. Chang, A. Bhalla, C. Klein, S.Y.T. Hsu, Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 279, 7264–7274 (2004). https://doi.org/10.1074/jbc.M305332200PubMedCrossRef J. Roh, C.L. Chang, A. Bhalla, C. Klein, S.Y.T. Hsu, Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 279, 7264–7274 (2004). https://​doi.​org/​10.​1074/​jbc.​M305332200PubMedCrossRef
7.
Zurück zum Zitat Y. Takei, S. Hyodo, T. Katafuchi, N. Minamino, Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 25, 1643–1656 (2004). https://doi.org/10.1016/j.peptides.2004.06.026PubMedCrossRef Y. Takei, S. Hyodo, T. Katafuchi, N. Minamino, Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 25, 1643–1656 (2004). https://​doi.​org/​10.​1016/​j.​peptides.​2004.​06.​026PubMedCrossRef
8.
Zurück zum Zitat H.A. Watkins, D.L. Rathbone, J. Barwell, D.L. Hay, D.R. Poyner, Structure-activity relationships for a-calcitonin gene-related peptide. Br. J. Pharmacol. 170, 1308–1322 (2013). https://doi.org/10.1111/bph.12072PubMedPubMedCentralCrossRef H.A. Watkins, D.L. Rathbone, J. Barwell, D.L. Hay, D.R. Poyner, Structure-activity relationships for a-calcitonin gene-related peptide. Br. J. Pharmacol. 170, 1308–1322 (2013). https://​doi.​org/​10.​1111/​bph.​12072PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat H.R. Morris, M. Panico, T. Etienne, J. Tippins, S.I. Girgis, I. MacIntyre, Isolation and characterization of human calcitonin gene-related peptide. Nature 308, 746–748 (1984)PubMedCrossRef H.R. Morris, M. Panico, T. Etienne, J. Tippins, S.I. Girgis, I. MacIntyre, Isolation and characterization of human calcitonin gene-related peptide. Nature 308, 746–748 (1984)PubMedCrossRef
10.
Zurück zum Zitat J.W. Hoppener, P.H. Steenbergh, J. Zandberg, E. Bakker, P.L. Pearson, A.H. Geurts van Kessel et al., Localization of the polymorphic human calcitonin gene on chromosome 11. Hum. Genet. 66, 309–312 (1984)PubMedCrossRef J.W. Hoppener, P.H. Steenbergh, J. Zandberg, E. Bakker, P.L. Pearson, A.H. Geurts van Kessel et al., Localization of the polymorphic human calcitonin gene on chromosome 11. Hum. Genet. 66, 309–312 (1984)PubMedCrossRef
11.
Zurück zum Zitat D. van Rossum, U.K. Hanisch, R. Quirion, Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci. Biobehav. Rev. 21, 649–678 (1997)PubMedCrossRef D. van Rossum, U.K. Hanisch, R. Quirion, Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci. Biobehav. Rev. 21, 649–678 (1997)PubMedCrossRef
12.
Zurück zum Zitat K. Takami, Y. Kawai, S. Uchida, M. Tohyama, Y. Shiotani, H. Yoshida et al., Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Lett. 60, 227–230 (1985)PubMedCrossRef K. Takami, Y. Kawai, S. Uchida, M. Tohyama, Y. Shiotani, H. Yoshida et al., Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Lett. 60, 227–230 (1985)PubMedCrossRef
13.
Zurück zum Zitat W.A. Macdonald, O.B. Nielsen, T. Clausen, Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, 1214–1223 (2008). https://doi.org/10.1152/ajpregu.00893.2007CrossRef W.A. Macdonald, O.B. Nielsen, T. Clausen, Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, 1214–1223 (2008). https://​doi.​org/​10.​1152/​ajpregu.​00893.​2007CrossRef
14.
Zurück zum Zitat F.A. Vigliano, L. Munoz, D. Hernandez, P. Cerutti, R. Bermudez, M.I. Quiroga, An immunohistochemical study of the gut neuroendocrine system in juvenile pejerrey Odontesthes bonariensis (Valenciennes). J. Fish Biol. 78, 901–911 (2011). https://doi.org/10.1152/ajpregu.00893.2007PubMedCrossRef F.A. Vigliano, L. Munoz, D. Hernandez, P. Cerutti, R. Bermudez, M.I. Quiroga, An immunohistochemical study of the gut neuroendocrine system in juvenile pejerrey Odontesthes bonariensis (Valenciennes). J. Fish Biol. 78, 901–911 (2011). https://​doi.​org/​10.​1152/​ajpregu.​00893.​2007PubMedCrossRef
15.
Zurück zum Zitat B. Leighton, E.A. Foot, The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin. Biochem. J. 307, 707–712 (1995)PubMedPubMedCentralCrossRef B. Leighton, E.A. Foot, The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin. Biochem. J. 307, 707–712 (1995)PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat L. Kruger, P.W. Mantyh, C. Sternini, N.C. Brecha, C.R. Mantyh, Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res. 463, 223–244 (1988). https://doi.org/10.1016/0006-8993(88)90395-2PubMedCrossRef L. Kruger, P.W. Mantyh, C. Sternini, N.C. Brecha, C.R. Mantyh, Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res. 463, 223–244 (1988). https://​doi.​org/​10.​1016/​0006-8993(88)90395-2PubMedCrossRef
17.
Zurück zum Zitat M. Réthelyi, C.B. Metz, P.K. Lund, Distribution of neurons expressing calcitonin gene-related peptide mRNAS in the brain stem, spinal cord and dorsal root ganglia of rat and guinea-pig. Neuroscience 29, 225–239 (1989). https://doi.org/10.1016/0306-4522(89)90345-XPubMedCrossRef M. Réthelyi, C.B. Metz, P.K. Lund, Distribution of neurons expressing calcitonin gene-related peptide mRNAS in the brain stem, spinal cord and dorsal root ganglia of rat and guinea-pig. Neuroscience 29, 225–239 (1989). https://​doi.​org/​10.​1016/​0306-4522(89)90345-XPubMedCrossRef
18.
Zurück zum Zitat C. Wada, C. Hashimoto, T. Kameya, K. Yamaguchi, M. Ono, Developmentally regulated expression of the calcitonin gene related peptide (CGRP) in rat lung endocrine cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 55, 217–223 (1988)PubMed C. Wada, C. Hashimoto, T. Kameya, K. Yamaguchi, M. Ono, Developmentally regulated expression of the calcitonin gene related peptide (CGRP) in rat lung endocrine cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 55, 217–223 (1988)PubMed
19.
Zurück zum Zitat A. Sleijffers, M. Herreilers, H. van Loveren, J. Garssen, Ultraviolet B radiation induces upregulation of calcitonin gene-related peptide levels in human Finn chamber skin samples. J. Photochem. Photobiol. B Biol. 69, 149–152 (2003). https://doi.org/10.1016/S1011-1344(03)00002-2CrossRef A. Sleijffers, M. Herreilers, H. van Loveren, J. Garssen, Ultraviolet B radiation induces upregulation of calcitonin gene-related peptide levels in human Finn chamber skin samples. J. Photochem. Photobiol. B Biol. 69, 149–152 (2003). https://​doi.​org/​10.​1016/​S1011-1344(03)00002-2CrossRef
20.
Zurück zum Zitat S. Bracq, B. Clement, E. Pidoux, M.S. Moukhtar, A. Jullienne, CGRP is expressed in primary cultures of human hepatocytes and in normal liver. FEBS Lett. 351, 63–66 (1994)PubMedCrossRef S. Bracq, B. Clement, E. Pidoux, M.S. Moukhtar, A. Jullienne, CGRP is expressed in primary cultures of human hepatocytes and in normal liver. FEBS Lett. 351, 63–66 (1994)PubMedCrossRef
21.
Zurück zum Zitat S. Matsui, T. Yamane, K. Kobayashi-Hattori, Y. Oishi, Ultraviolet B irradiation reduces the expression of adiponectin in ovarial adipose tissues through endocrine actions of calcitonin gene-related peptide-induced serum amyloid A. PLoS One 9, e98040 2014). https://doi.org/10.1371/journal.pone.0098040PubMedPubMedCentralCrossRef S. Matsui, T. Yamane, K. Kobayashi-Hattori, Y. Oishi, Ultraviolet B irradiation reduces the expression of adiponectin in ovarial adipose tissues through endocrine actions of calcitonin gene-related peptide-induced serum amyloid A. PLoS One 9, e98040 2014). https://​doi.​org/​10.​1371/​journal.​pone.​0098040PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat P. Linscheid, D. Seboek, H. Zulewski, U. Keller, B. Müller, Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue. Endocrinology 146, 2699–2708 (2005). https://doi.org/10.1210/en.2004-1424PubMedCrossRef P. Linscheid, D. Seboek, H. Zulewski, U. Keller, B. Müller, Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue. Endocrinology 146, 2699–2708 (2005). https://​doi.​org/​10.​1210/​en.​2004-1424PubMedCrossRef
23.
Zurück zum Zitat K. Timper, J. Grisouard, T. Radimerski, K. Dembinski, R. Peterli, A. Häring et al., Glucose-dependent insulinotropic polypeptide (GIP) induces calcitonin gene-related peptide (CGRP)-I and procalcitonin (Pro-CT) production in human adipocytes. J. Clin. Endocrinol. Metab. 96, 297–303 (2011). https://doi.org/10.1210/jc.2010-1324CrossRef K. Timper, J. Grisouard, T. Radimerski, K. Dembinski, R. Peterli, A. Häring et al., Glucose-dependent insulinotropic polypeptide (GIP) induces calcitonin gene-related peptide (CGRP)-I and procalcitonin (Pro-CT) production in human adipocytes. J. Clin. Endocrinol. Metab. 96, 297–303 (2011). https://​doi.​org/​10.​1210/​jc.​2010-1324CrossRef
24.
Zurück zum Zitat O. Pivovarova, Ö. Gögebakan, M.A. Osterhoff, M. Nauck, A.F.H. Pfeiffer, N. Rudovich, In vivo effect of glucose-dependent insulinotropic peptide (GIP) on the gene expression of calcitonin peptides in human subcutaneous adipose tissue. Regul. Pept. 179, 29–32 (2012). https://doi.org/10.1016/j.regpep.2012.08.004PubMedCrossRef O. Pivovarova, Ö. Gögebakan, M.A. Osterhoff, M. Nauck, A.F.H. Pfeiffer, N. Rudovich, In vivo effect of glucose-dependent insulinotropic peptide (GIP) on the gene expression of calcitonin peptides in human subcutaneous adipose tissue. Regul. Pept. 179, 29–32 (2012). https://​doi.​org/​10.​1016/​j.​regpep.​2012.​08.​004PubMedCrossRef
25.
Zurück zum Zitat F. Bendtsen, S. Schifter, J.H. Henriksen, Increased circulating calcitonin gene-related peptide (CGRP) in cirrhosis. J. Hepatol. 12, 118–123 (1991)PubMedCrossRef F. Bendtsen, S. Schifter, J.H. Henriksen, Increased circulating calcitonin gene-related peptide (CGRP) in cirrhosis. J. Hepatol. 12, 118–123 (1991)PubMedCrossRef
26.
Zurück zum Zitat S.P. Alexander, A.P. Davenport, E. Kelly, N. Marrion, J.A. Peters, H.E. Benson et al., The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 172, 5744–5869 (2015)PubMedPubMedCentralCrossRef S.P. Alexander, A.P. Davenport, E. Kelly, N. Marrion, J.A. Peters, H.E. Benson et al., The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 172, 5744–5869 (2015)PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat D.R. Poyner, P.M. Sexton, I. Marshall, D.M. Smith, R. Quirion, W. Born et al., International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 54, 233–246 (2002). https://doi.org/10.1124/pr.54.2.233PubMedCrossRef D.R. Poyner, P.M. Sexton, I. Marshall, D.M. Smith, R. Quirion, W. Born et al., International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 54, 233–246 (2002). https://​doi.​org/​10.​1124/​pr.​54.​2.​233PubMedCrossRef
28.
Zurück zum Zitat D.L. Hay, C.S. Walker, CGRP and its receptors. Headache 57, 625–636 (2017). https://doi.org/10.1111/head.13064PubMedCrossRef D.L. Hay, C.S. Walker, CGRP and its receptors. Headache 57, 625–636 (2017). https://​doi.​org/​10.​1111/​head.​13064PubMedCrossRef
29.
Zurück zum Zitat C. Juaneda, Y. Dumont, R. Quirion, The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol. Sci. 21, 432–438 (2000). https://doi.org/10.1016/S0165-6147(00)01555-8PubMedCrossRef C. Juaneda, Y. Dumont, R. Quirion, The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol. Sci. 21, 432–438 (2000). https://​doi.​org/​10.​1016/​S0165-6147(00)01555-8PubMedCrossRef
30.
Zurück zum Zitat D. Van Rossum, D.P. Menard, A. Fournier, S. St-Pierre, R. Quirion, Binding profile of a selective calcitonin gene-related peptide (CGRP) receptor antagonist ligand, [125I-Tyr]hCGRP8-37, in rat brain and peripheral tissues. J. Pharmacol. Exp. Ther. 269, 846–853 (1994)PubMed D. Van Rossum, D.P. Menard, A. Fournier, S. St-Pierre, R. Quirion, Binding profile of a selective calcitonin gene-related peptide (CGRP) receptor antagonist ligand, [125I-Tyr]hCGRP8-37, in rat brain and peripheral tissues. J. Pharmacol. Exp. Ther. 269, 846–853 (1994)PubMed
31.
Zurück zum Zitat J.P. McGillis, S. Humphreys, V. Rangnekar, J. Ciallella, Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). I. Characterization of high-affinity CGRP receptors on murine 70Z/3 cells. Cell Immunol. 150, 391–404 (1993)PubMedCrossRef J.P. McGillis, S. Humphreys, V. Rangnekar, J. Ciallella, Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). I. Characterization of high-affinity CGRP receptors on murine 70Z/3 cells. Cell Immunol. 150, 391–404 (1993)PubMedCrossRef
32.
Zurück zum Zitat T. Dennis, A. Fournier, A. Cadieux, F. Pomerleau, F.B. Jolicoeur, S. St Pierre et al., hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J. Pharmacol. Exp. Ther. 254, 123–128 (1990)PubMed T. Dennis, A. Fournier, A. Cadieux, F. Pomerleau, F.B. Jolicoeur, S. St Pierre et al., hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J. Pharmacol. Exp. Ther. 254, 123–128 (1990)PubMed
33.
Zurück zum Zitat H. Yoshizaki, M. Takamiya, T. Okada, Characterization of picomolar affinity binding sites for [125I]-human calcitonin gene-related peptide in rat brain and heart. Biochem. Biophys. Res. Commun. 146, 443–451 (1987)PubMedCrossRef H. Yoshizaki, M. Takamiya, T. Okada, Characterization of picomolar affinity binding sites for [125I]-human calcitonin gene-related peptide in rat brain and heart. Biochem. Biophys. Res. Commun. 146, 443–451 (1987)PubMedCrossRef
34.
Zurück zum Zitat S. Inagaki, S. Kito, Y. Kubota, S. Girgis, C.J. Hillyard, I. MacIntyre, Autoradiographic localization of calcitonin gene-related peptide binding sites in human and rat brains. Brain Res. 374, 287–298 (1986)PubMedCrossRef S. Inagaki, S. Kito, Y. Kubota, S. Girgis, C.J. Hillyard, I. MacIntyre, Autoradiographic localization of calcitonin gene-related peptide binding sites in human and rat brains. Brain Res. 374, 287–298 (1986)PubMedCrossRef
35.
Zurück zum Zitat H. Nakamuta, Y. Fukuda, M. Koida, N. Fujii, A. Otaka, S. Funakoshi et al., Binding sites of calcitonin gene-related peptide (CGRP): abundant occurrence in visceral organs. Jpn. J. Pharmacol. 42, 175–180 (1986)PubMedCrossRef H. Nakamuta, Y. Fukuda, M. Koida, N. Fujii, A. Otaka, S. Funakoshi et al., Binding sites of calcitonin gene-related peptide (CGRP): abundant occurrence in visceral organs. Jpn. J. Pharmacol. 42, 175–180 (1986)PubMedCrossRef
36.
Zurück zum Zitat J.C. Mak, P.J. Barnes, Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung. Peptides 9, 957–963 (1988)PubMedCrossRef J.C. Mak, P.J. Barnes, Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung. Peptides 9, 957–963 (1988)PubMedCrossRef
37.
Zurück zum Zitat C.G. Jennings, A.W. Mudge, Chick myotubes in culture express high-affinity receptors for calcitonin gene-related peptide. Brain Res. 504, 199–205 (1989)PubMedCrossRef C.G. Jennings, A.W. Mudge, Chick myotubes in culture express high-affinity receptors for calcitonin gene-related peptide. Brain Res. 504, 199–205 (1989)PubMedCrossRef
38.
Zurück zum Zitat M. Roa, J.P. Changeux, Characterization and developmental evolution of a high-affinity binding site for calcitonin gene-related peptide on chick skeletal muscle membrane. Neuroscience 41, 563–570 (1991). https://doi.org/10.1016/0306-4522(91)90349-SPubMedCrossRef M. Roa, J.P. Changeux, Characterization and developmental evolution of a high-affinity binding site for calcitonin gene-related peptide on chick skeletal muscle membrane. Neuroscience 41, 563–570 (1991). https://​doi.​org/​10.​1016/​0306-4522(91)90349-SPubMedCrossRef
39.
Zurück zum Zitat C.S. Walker, D.L. Hay, S.M. Fitzpatrick, G.J.S. Cooper, K.M. Loomes, alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides 58, 14–19 (2014). https://doi.org/10.1016/j.peptides.2014.05.011PubMedCrossRef C.S. Walker, D.L. Hay, S.M. Fitzpatrick, G.J.S. Cooper, K.M. Loomes, alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides 58, 14–19 (2014). https://​doi.​org/​10.​1016/​j.​peptides.​2014.​05.​011PubMedCrossRef
40.
Zurück zum Zitat S. Uchida, H. Yamamoto, S. Iio, N. Matsumoto, X.B. Wang, N. Yonehara et al., Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54, 1000–1003 (1990)PubMedCrossRef S. Uchida, H. Yamamoto, S. Iio, N. Matsumoto, X.B. Wang, N. Yonehara et al., Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54, 1000–1003 (1990)PubMedCrossRef
41.
Zurück zum Zitat C. Gennari, J.A. Fischer, Cardiovascular action of calcitonin gene-related peptide in humans. Calcif. Tissue Int. 37, 581–584 (1985)PubMedCrossRef C. Gennari, J.A. Fischer, Cardiovascular action of calcitonin gene-related peptide in humans. Calcif. Tissue Int. 37, 581–584 (1985)PubMedCrossRef
42.
Zurück zum Zitat T. Kezeli, T. Rukhadze, N. Gongadze, G. Sukoyan, N. Dolidze, M. Chipashvili et al., Effect of calcitonin gene-related peptide antagonist on the cardiovascular events, mortality, and prostaglandin E2 production by nitrate-induced tolerant rats with acute myocardial infarction. EPMA J. 7, 6 2016). https://doi.org/10.1186/s13167-016-0055-5PubMedPubMedCentralCrossRef T. Kezeli, T. Rukhadze, N. Gongadze, G. Sukoyan, N. Dolidze, M. Chipashvili et al., Effect of calcitonin gene-related peptide antagonist on the cardiovascular events, mortality, and prostaglandin E2 production by nitrate-induced tolerant rats with acute myocardial infarction. EPMA J. 7, 6 2016). https://​doi.​org/​10.​1186/​s13167-016-0055-5PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat A.M. Salmon, M.I. Damaj, L.M. Marubio, M.P. Epping-Jordan, E. Merlo-Pich, J.P. Changeux, Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in alpha CGRP-deficient mice. Nat. Neurosci. 4, 357–358 (2001). https://doi.org/10.1038/86001PubMedCrossRef A.M. Salmon, M.I. Damaj, L.M. Marubio, M.P. Epping-Jordan, E. Merlo-Pich, J.P. Changeux, Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in alpha CGRP-deficient mice. Nat. Neurosci. 4, 357–358 (2001). https://​doi.​org/​10.​1038/​86001PubMedCrossRef
44.
Zurück zum Zitat M.D. Harzenetter, A.R. Novotny, P. Gais, C.A. Molina, F. Altmayr, B. Holzmann, Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol. 179, 607–615 (2007). https://doi.org/10.4049/jimmunol.179.1.607PubMedCrossRef M.D. Harzenetter, A.R. Novotny, P. Gais, C.A. Molina, F. Altmayr, B. Holzmann, Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol. 179, 607–615 (2007). https://​doi.​org/​10.​4049/​jimmunol.​179.​1.​607PubMedCrossRef
45.
Zurück zum Zitat S.D. Brain, T.J. Williams, J.R. Tippins, H.R. Morris, I. MacIntyre, Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56 (1985)PubMedCrossRef S.D. Brain, T.J. Williams, J.R. Tippins, H.R. Morris, I. MacIntyre, Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56 (1985)PubMedCrossRef
46.
Zurück zum Zitat R. Uddman, L. Edvinsson, E. Ekblad, R. Hakanson, F. Sundler, Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. Pept. 15, 1–23 (1986)PubMedCrossRef R. Uddman, L. Edvinsson, E. Ekblad, R. Hakanson, F. Sundler, Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. Pept. 15, 1–23 (1986)PubMedCrossRef
47.
Zurück zum Zitat S.D. Brain, Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev. 84, 903–934 (2004). https://doi.org/10.1152/physrev.00037.2003PubMedCrossRef S.D. Brain, Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev. 84, 903–934 (2004). https://​doi.​org/​10.​1152/​physrev.​00037.​2003PubMedCrossRef
48.
Zurück zum Zitat L.A. Fisher, D.O. Kikkawa, J.E. Rivier, S.G. Amara, R.M. Evans, M.G. Rosenfeld et al., Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature 305, 534–536 (1983)PubMedCrossRef L.A. Fisher, D.O. Kikkawa, J.E. Rivier, S.G. Amara, R.M. Evans, M.G. Rosenfeld et al., Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature 305, 534–536 (1983)PubMedCrossRef
49.
Zurück zum Zitat Y. Oh-hashi, T. Shindo, Y. Kurihara, T. Imai, Y. Wang, H. Morita et al., Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ. Res. 89, 983–990 (2001). https://doi.org/10.1161/hh2301.100812PubMedCrossRef Y. Oh-hashi, T. Shindo, Y. Kurihara, T. Imai, Y. Wang, H. Morita et al., Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ. Res. 89, 983–990 (2001). https://​doi.​org/​10.​1161/​hh2301.​100812PubMedCrossRef
50.
Zurück zum Zitat T. Schinke, S. Liese, M. Priemel, M. Haberland, A.F. Schilling, P. Catala-Lehnen et al., Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J. Bone Miner. Res. 19, 2049–2056 (2004). https://doi.org/10.1359/JBMR.040915PubMedCrossRef T. Schinke, S. Liese, M. Priemel, M. Haberland, A.F. Schilling, P. Catala-Lehnen et al., Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J. Bone Miner. Res. 19, 2049–2056 (2004). https://​doi.​org/​10.​1359/​JBMR.​040915PubMedCrossRef
51.
Zurück zum Zitat N. Takahashi, Y. Matsuda, K. Sato, P.R. de Jong, S. Bertin, K. Tabeta et al., Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci. Rep. 6, 29294 2016). https://doi.org/10.1038/srep29294PubMedPubMedCentralCrossRef N. Takahashi, Y. Matsuda, K. Sato, P.R. de Jong, S. Bertin, K. Tabeta et al., Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci. Rep. 6, 29294 2016). https://​doi.​org/​10.​1038/​srep29294PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat T. Osaka, A. Kobayashi, Y. Namba, O. Ezaki, S. Inoue, S. Kimura et al., Temperature- and capsaicin-sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch. Eur. J. Physiol. 437, 36–42 (1998). https://doi.org/10.1007/s004240050743CrossRef T. Osaka, A. Kobayashi, Y. Namba, O. Ezaki, S. Inoue, S. Kimura et al., Temperature- and capsaicin-sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch. Eur. J. Physiol. 437, 36–42 (1998). https://​doi.​org/​10.​1007/​s004240050743CrossRef
53.
Zurück zum Zitat T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer, Evidence for a physiological role of central calcitonin gene-related peptide (CGRP) receptors in the control of food intake in rats. Neurosci. Lett. 230, 159–162 (1997)PubMedCrossRef T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer, Evidence for a physiological role of central calcitonin gene-related peptide (CGRP) receptors in the control of food intake in rats. Neurosci. Lett. 230, 159–162 (1997)PubMedCrossRef
54.
Zurück zum Zitat B. Leighton, G.J. Cooper, Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335, 632–635 (1988). https://doi.org/10.1038/335632a0PubMedCrossRef B. Leighton, G.J. Cooper, Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335, 632–635 (1988). https://​doi.​org/​10.​1038/​335632a0PubMedCrossRef
55.
Zurück zum Zitat D.X. Gram, A.J. Hansen, M. Wilken, T. Elm, O. Svendsen, R.D. Carr et al., Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur. J. Endocrinol. 153, 963–969 (2005). https://doi.org/10.1530/eje.1.02046PubMedCrossRef D.X. Gram, A.J. Hansen, M. Wilken, T. Elm, O. Svendsen, R.D. Carr et al., Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur. J. Endocrinol. 153, 963–969 (2005). https://​doi.​org/​10.​1530/​eje.​1.​02046PubMedCrossRef
56.
Zurück zum Zitat P.M. Zelissen, H.P. Koppeschaar, C.J. Lips, W.H. Hackeng, Calcitonin gene-related peptide in human obesity. Peptides. 12, 861–863 (1991)PubMedCrossRef P.M. Zelissen, H.P. Koppeschaar, C.J. Lips, W.H. Hackeng, Calcitonin gene-related peptide in human obesity. Peptides. 12, 861–863 (1991)PubMedCrossRef
57.
Zurück zum Zitat T. Liu, A. Kamiyoshi, T. Sakurai, Y. Ichikawa-Shindo, H. Kawate, L. Yang, et al., Endogenous calcitonin gene-related peptide regulates lipid metabolism and energy homeostasis in male mice. Endocrinology (in press, 2017). https://doi.org/10.1210/en.2016-1510 T. Liu, A. Kamiyoshi, T. Sakurai, Y. Ichikawa-Shindo, H. Kawate, L. Yang, et al., Endogenous calcitonin gene-related peptide regulates lipid metabolism and energy homeostasis in male mice. Endocrinology (in press, 2017). https://​doi.​org/​10.​1210/​en.​2016-1510
58.
Zurück zum Zitat C.S. Walker, X. Li, L. Whiting, S. Glyn-Jones, S. Zhang, A.J. Hickey et al., Mice lacking the neuropeptide alpha-calcitonin gene-related peptide are protected against diet-induced obesity. Endocrinology 151, 4257–4269 (2010). https://doi.org/10.1210/en.2010-0284PubMedCrossRef C.S. Walker, X. Li, L. Whiting, S. Glyn-Jones, S. Zhang, A.J. Hickey et al., Mice lacking the neuropeptide alpha-calcitonin gene-related peptide are protected against diet-induced obesity. Endocrinology 151, 4257–4269 (2010). https://​doi.​org/​10.​1210/​en.​2010-0284PubMedCrossRef
59.
Zurück zum Zitat D.D. Krahn, B.A. Gosnell, A.S. Levine, J.E. Morley, Effects of calcitonin gene-related peptide on food intake. Peptides 5, 861–864 (1984)PubMedCrossRef D.D. Krahn, B.A. Gosnell, A.S. Levine, J.E. Morley, Effects of calcitonin gene-related peptide on food intake. Peptides 5, 861–864 (1984)PubMedCrossRef
60.
Zurück zum Zitat T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer, Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ventricle in rats. Peptides 19, 1533–1540 (1998). https://doi.org/10.1016/S0196-9781(98)00114-4PubMedCrossRef T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer, Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ventricle in rats. Peptides 19, 1533–1540 (1998). https://​doi.​org/​10.​1016/​S0196-9781(98)00114-4PubMedCrossRef
61.
Zurück zum Zitat W.S. Dhillo, C.J. Small, P.H. Jethwa, S.H. Russell, J.V. Gardiner, G.A. Bewick et al., Paraventricular nucleus administration of calcitonin gene-related peptide inhibits food intake and stimulates the hypothalamo-pituitary-adrenal axis. Endocrinology 144, 1420–1425 (2003). https://doi.org/10.1210/en.2002-220902PubMedCrossRef W.S. Dhillo, C.J. Small, P.H. Jethwa, S.H. Russell, J.V. Gardiner, G.A. Bewick et al., Paraventricular nucleus administration of calcitonin gene-related peptide inhibits food intake and stimulates the hypothalamo-pituitary-adrenal axis. Endocrinology 144, 1420–1425 (2003). https://​doi.​org/​10.​1210/​en.​2002-220902PubMedCrossRef
62.
Zurück zum Zitat J.E. Morley, S.A. Farr, J.F. Flood, Peripherally administered calcitonin gene-related peptide decreases food intake in mice. Peptides 17, 511–516 (1996). https://doi.org/10.1016/0196-9781(96)00015-0PubMedCrossRef J.E. Morley, S.A. Farr, J.F. Flood, Peripherally administered calcitonin gene-related peptide decreases food intake in mice. Peptides 17, 511–516 (1996). https://​doi.​org/​10.​1016/​0196-9781(96)00015-0PubMedCrossRef
63.
Zurück zum Zitat J.Y. Sun, M.Y. Jing, J.F. Wang, X.Y. Weng, The approach to the mechanism of calcitonin gene-related peptide-inducing inhibition of food intake. J. Anim. Physiol. Anim. Nutr. (Berl). 94, 552–560 (2010). https://doi.org/10.1111/j.1439-0396.2009.00937.xPubMedCrossRef J.Y. Sun, M.Y. Jing, J.F. Wang, X.Y. Weng, The approach to the mechanism of calcitonin gene-related peptide-inducing inhibition of food intake. J. Anim. Physiol. Anim. Nutr. (Berl). 94, 552–560 (2010). https://​doi.​org/​10.​1111/​j.​1439-0396.​2009.​00937.​xPubMedCrossRef
64.
Zurück zum Zitat C. Nilsson, T.K. Hansen, C. Rosenquist, B. Hartmann, J.T. Kodra, J.F. Lau et al., Long acting analogue of the calcitonin gene-related peptide induces positive metabolic effects and secretion of the glucagon-like peptide-1. Eur. J. Pharmacol. 773, 24–31 (2016). https://doi.org/10.1016/j.ejphar.2016.01.003PubMedCrossRef C. Nilsson, T.K. Hansen, C. Rosenquist, B. Hartmann, J.T. Kodra, J.F. Lau et al., Long acting analogue of the calcitonin gene-related peptide induces positive metabolic effects and secretion of the glucagon-like peptide-1. Eur. J. Pharmacol. 773, 24–31 (2016). https://​doi.​org/​10.​1016/​j.​ejphar.​2016.​01.​003PubMedCrossRef
65.
Zurück zum Zitat T.A. Lutz, M. Senn, J. Althaus, E.D.E.L. Prete, F. Ehrensperger, E. Scharrer, Lesion of the Area Postrema / Nucleus of the Solitary Tract (AP / NTS) Attenuates the Anorectic Effects of Amylin and Calcitonin Gene-Related Peptide (CGRP) in Rats. Peptides 19, 309–317 (1998)PubMedCrossRef T.A. Lutz, M. Senn, J. Althaus, E.D.E.L. Prete, F. Ehrensperger, E. Scharrer, Lesion of the Area Postrema / Nucleus of the Solitary Tract (AP / NTS) Attenuates the Anorectic Effects of Amylin and Calcitonin Gene-Related Peptide (CGRP) in Rats. Peptides 19, 309–317 (1998)PubMedCrossRef
66.
Zurück zum Zitat M.E. Carter, M.E. Soden, L.S. Zweifel, R.D. Palmiter, Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013). https://doi.org/10.1038/nature12596PubMedPubMedCentralCrossRef M.E. Carter, M.E. Soden, L.S. Zweifel, R.D. Palmiter, Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013). https://​doi.​org/​10.​1038/​nature12596PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat C.A. Campos, A.J. Bowen, S. Han, B.E. Wisse, R.D. Palmiter, M.W. Schwartz, Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017). https://doi.org/10.1038/nn.4574PubMedCrossRef C.A. Campos, A.J. Bowen, S. Han, B.E. Wisse, R.D. Palmiter, M.W. Schwartz, Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017). https://​doi.​org/​10.​1038/​nn.​4574PubMedCrossRef
68.
Zurück zum Zitat G. Missig, C.W. Roman, M.A. Vizzard, K.M. Braas, S.E. Hammack, V. May, Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86, 38–48 (2014). https://doi.org/10.1016/j.neuropharm.2014.06.022PubMedPubMedCentralCrossRef G. Missig, C.W. Roman, M.A. Vizzard, K.M. Braas, S.E. Hammack, V. May, Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86, 38–48 (2014). https://​doi.​org/​10.​1016/​j.​neuropharm.​2014.​06.​022PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat A.C. Spetz, B. Pettersson, E. Varenhorst, E. Theodorsson, L.H. Thorell, M. Hammar, Momentary increase in plasma calcitonin gene-related peptide is involved in hot flashes in men treated with castration for carcinoma of the prostate. J. Urol. 166, 1720–1723 (2001)PubMedCrossRef A.C. Spetz, B. Pettersson, E. Varenhorst, E. Theodorsson, L.H. Thorell, M. Hammar, Momentary increase in plasma calcitonin gene-related peptide is involved in hot flashes in men treated with castration for carcinoma of the prostate. J. Urol. 166, 1720–1723 (2001)PubMedCrossRef
70.
Zurück zum Zitat J.T. Chen, Y. Hirai, Y. Seimiya, K. Hasumi, M. Shiraki, Menopausal flushes and calcitonin-gene-related peptide. Lancet 342, 49 (1993)PubMedCrossRef J.T. Chen, Y. Hirai, Y. Seimiya, K. Hasumi, M. Shiraki, Menopausal flushes and calcitonin-gene-related peptide. Lancet 342, 49 (1993)PubMedCrossRef
71.
Zurück zum Zitat A. Valentini, F. Petraglia, D. De Vita, C. Nappi, A. Margutti, E.C. degli Uberti et al., Changes of plasma calcitonin gene-related peptide levels in postmenopausal women. Am. J. Obstet. Gynecol. 175, 638–642 (1996)PubMedCrossRef A. Valentini, F. Petraglia, D. De Vita, C. Nappi, A. Margutti, E.C. degli Uberti et al., Changes of plasma calcitonin gene-related peptide levels in postmenopausal women. Am. J. Obstet. Gynecol. 175, 638–642 (1996)PubMedCrossRef
72.
Zurück zum Zitat Y.A. Wyon, A.C. Spetz, G.E. Theodorsson, M.L. Hammar, Concentrations of calcitonin gene-related peptide and neuropeptide Y in plasma increase during flushes in postmenopausal women. Menopause 7, 25–30 (2000)PubMedCrossRef Y.A. Wyon, A.C. Spetz, G.E. Theodorsson, M.L. Hammar, Concentrations of calcitonin gene-related peptide and neuropeptide Y in plasma increase during flushes in postmenopausal women. Menopause 7, 25–30 (2000)PubMedCrossRef
73.
Zurück zum Zitat T. Kobayashi, O. Ushijima, J.T. Chen, M. Shiraki, T. Ohta, M. Kiyoki, Basal tail skin temperature elevation and augmented response to calcitonin gene-related peptide in ovariectomized rats. J. Endocrinol. 146, 431–437 (1995). https://doi.org/10.1677/joe.0.1460431PubMedCrossRef T. Kobayashi, O. Ushijima, J.T. Chen, M. Shiraki, T. Ohta, M. Kiyoki, Basal tail skin temperature elevation and augmented response to calcitonin gene-related peptide in ovariectomized rats. J. Endocrinol. 146, 431–437 (1995). https://​doi.​org/​10.​1677/​joe.​0.​1460431PubMedCrossRef
74.
Zurück zum Zitat M. Yuzurihara, Y. Ikarashi, M. Noguchi, Y. Kase, S. Takeda, M. Aburada, Involvement of calcitonin gene-related peptide in elevation of skin temperature in castrated male rats. Urology 62, 947–951 (2003). https://doi.org/10.1016/S0090-4295(03)00587-9PubMedCrossRef M. Yuzurihara, Y. Ikarashi, M. Noguchi, Y. Kase, S. Takeda, M. Aburada, Involvement of calcitonin gene-related peptide in elevation of skin temperature in castrated male rats. Urology 62, 947–951 (2003). https://​doi.​org/​10.​1016/​S0090-4295(03)00587-9PubMedCrossRef
75.
Zurück zum Zitat A.E. Herbison, Sexually dimorphic expression of androgen receptor immunoreactivity by somatostatin neurones in rat hypothalamic periventricular nucleus and bed nucleus of the stria terminalis. J. Neuroendocrinol. 7, 543–553 (1995)PubMedCrossRef A.E. Herbison, Sexually dimorphic expression of androgen receptor immunoreactivity by somatostatin neurones in rat hypothalamic periventricular nucleus and bed nucleus of the stria terminalis. J. Neuroendocrinol. 7, 543–553 (1995)PubMedCrossRef
76.
Zurück zum Zitat D.C. Braasch, E.M. Deegan, E.R. Grimm, J.D. Griffin, Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons. BMC Neurosci. 9, 64 2008). https://doi.org/10.1186/1471-2202-9-64PubMedPubMedCentralCrossRef D.C. Braasch, E.M. Deegan, E.R. Grimm, J.D. Griffin, Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons. BMC Neurosci. 9, 64 2008). https://​doi.​org/​10.​1186/​1471-2202-9-64PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production. Brain Res. 827, 176–184 (1999). https://doi.org/10.1016/S0006-8993(99)01333-5PubMedCrossRef A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production. Brain Res. 827, 176–184 (1999). https://​doi.​org/​10.​1016/​S0006-8993(99)01333-5PubMedCrossRef
78.
Zurück zum Zitat J.D. Lever, S. Mukherjee, D. Norman, D. Symons, R.T. Jung, Neuropeptide and noradrenaline distributions in rat interscapular brown fat and in its intact and obstructed nerves of supply. J. Auton. Nerv. Syst. 25, 15–25 (1988)PubMedCrossRef J.D. Lever, S. Mukherjee, D. Norman, D. Symons, R.T. Jung, Neuropeptide and noradrenaline distributions in rat interscapular brown fat and in its intact and obstructed nerves of supply. J. Auton. Nerv. Syst. 25, 15–25 (1988)PubMedCrossRef
79.
Zurück zum Zitat R. De Matteis, D. Ricquier, S. Cinti, TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J. Neurocytol. 27, 877–886 (1998)PubMedCrossRef R. De Matteis, D. Ricquier, S. Cinti, TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J. Neurocytol. 27, 877–886 (1998)PubMedCrossRef
80.
Zurück zum Zitat C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012). https://doi.org/10.1152/ajpregu.00640.2011PubMedPubMedCentralCrossRef C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012). https://​doi.​org/​10.​1152/​ajpregu.​00640.​2011PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat J. Cui, G. Zaror-Behrens, J. Himms-Hagen, Capsaicin desensitization induces atrophy of brown adipose tissue in rats. Am. J. Physiol. 259, R324–R332 (1990)PubMed J. Cui, G. Zaror-Behrens, J. Himms-Hagen, Capsaicin desensitization induces atrophy of brown adipose tissue in rats. Am. J. Physiol. 259, R324–R332 (1990)PubMed
82.
Zurück zum Zitat J. Cui, J. Himms-Hagen, Rapid but transient atrophy of brown adipose tissue in capsaicin-desensitized rats. Am. J. Physiol. 262, R562–R567 (1992)PubMed J. Cui, J. Himms-Hagen, Rapid but transient atrophy of brown adipose tissue in capsaicin-desensitized rats. Am. J. Physiol. 262, R562–R567 (1992)PubMed
83.
Zurück zum Zitat J. Himms-Hagen, J. Cui, S.L. Sigurdson, Sympathetic and sensory nerves in control of growth of brown adipose tissue: Effects of denervation and of capsaicin. Neurochem Int. 17, 271–279 (1990) J. Himms-Hagen, J. Cui, S.L. Sigurdson, Sympathetic and sensory nerves in control of growth of brown adipose tissue: Effects of denervation and of capsaicin. Neurochem Int. 17, 271–279 (1990)
84.
Zurück zum Zitat A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, Involvement of sympathetic activation and brown adipose tissue in calcitonin gene-related peptide-induced heat production in the rat. Brain Res. 849, 196–202 (1999)PubMedCrossRef A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, Involvement of sympathetic activation and brown adipose tissue in calcitonin gene-related peptide-induced heat production in the rat. Brain Res. 849, 196–202 (1999)PubMedCrossRef
85.
Zurück zum Zitat T. Hasegawa, K. Yokotani, Y. Okuma, M. Manabe, M. Hirakawa, Y. Osumi, Microinjection of alpha-calcitonin gene-related peptide into the hypothalamus activates sympathetic outflow in rats. Jpn. J. Pharmacol. 61, 325–332 (1993)PubMedCrossRef T. Hasegawa, K. Yokotani, Y. Okuma, M. Manabe, M. Hirakawa, Y. Osumi, Microinjection of alpha-calcitonin gene-related peptide into the hypothalamus activates sympathetic outflow in rats. Jpn. J. Pharmacol. 61, 325–332 (1993)PubMedCrossRef
86.
Zurück zum Zitat Z. Zhang, X. Liu, D.A. Morgan, A. Kuburas, D.R. Thedens, A.F. Russo et al., Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes 60, 1063–1071 (2011). https://doi.org/10.2337/db10-0692PubMedPubMedCentralCrossRef Z. Zhang, X. Liu, D.A. Morgan, A. Kuburas, D.R. Thedens, A.F. Russo et al., Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes 60, 1063–1071 (2011). https://​doi.​org/​10.​2337/​db10-0692PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat A.L. Motter, G.P. Ahern, TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582, 2257–2262 (2008). https://doi.org/10.1016/j.febslet.2008.05.021PubMedPubMedCentralCrossRef A.L. Motter, G.P. Ahern, TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582, 2257–2262 (2008). https://​doi.​org/​10.​1016/​j.​febslet.​2008.​05.​021PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat M. Nakanishi, K. Hata, T. Nagayama, T. Sakurai, T. Nishisho, H. Wakabayashi et al., Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain. Mol. Biol. Cell 21, 2568–2577 (2010). https://doi.org/10.1091/mbc.E10-01-0049PubMedPubMedCentralCrossRef M. Nakanishi, K. Hata, T. Nagayama, T. Sakurai, T. Nishisho, H. Wakabayashi et al., Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain. Mol. Biol. Cell 21, 2568–2577 (2010). https://​doi.​org/​10.​1091/​mbc.​E10-01-0049PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat V.S. Mackintosh, C.T. Phan, B.C. Mortimer, T.G. Redgrave, Vasoactive mediators affect the clearance of lipids from emulsion models of plasma lipoproteins in rats. J. Cardiovasc. Pharmacol. 27, 447–454 (1996). https://doi.org/10.1097/00005344-199603000-00019PubMedCrossRef V.S. Mackintosh, C.T. Phan, B.C. Mortimer, T.G. Redgrave, Vasoactive mediators affect the clearance of lipids from emulsion models of plasma lipoproteins in rats. J. Cardiovasc. Pharmacol. 27, 447–454 (1996). https://​doi.​org/​10.​1097/​00005344-199603000-00019PubMedCrossRef
90.
Zurück zum Zitat M.C. Moore, D.W. Lin, C.A. Colburn, R.E. Goldstein, D.W. Neal, A.D. Cherrington, Insulin- and glucagon-independent effects of calcitonin gene-related peptide in the conscious dog. Metabolism 48, 603–610 (1999)PubMedCrossRef M.C. Moore, D.W. Lin, C.A. Colburn, R.E. Goldstein, D.W. Neal, A.D. Cherrington, Insulin- and glucagon-independent effects of calcitonin gene-related peptide in the conscious dog. Metabolism 48, 603–610 (1999)PubMedCrossRef
91.
Zurück zum Zitat R.N. Danaher, K.M. Loomes, B.L. Leonard, L. Whiting, D.L. Hay, L.Y. Xu et al., Evidence that alpha-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization. Endocrinology 149, 154–160 (2008). https://doi.org/10.1210/en.2007-0583PubMedCrossRef R.N. Danaher, K.M. Loomes, B.L. Leonard, L. Whiting, D.L. Hay, L.Y. Xu et al., Evidence that alpha-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization. Endocrinology 149, 154–160 (2008). https://​doi.​org/​10.​1210/​en.​2007-0583PubMedCrossRef
92.
Zurück zum Zitat D. Carling, AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31–37 (2017). https://doi.org/10.1016/j.ceb.2017.01.005PubMedCrossRef D. Carling, AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31–37 (2017). https://​doi.​org/​10.​1016/​j.​ceb.​2017.​01.​005PubMedCrossRef
93.
Zurück zum Zitat B. Fontaine, A. Klarsfeld, T. Hökfelt, J.P. Changeux, Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett. 71, 59–65 (1986). https://doi.org/10.1016/0304-3940(86)90257-0PubMedCrossRef B. Fontaine, A. Klarsfeld, T. Hökfelt, J.P. Changeux, Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett. 71, 59–65 (1986). https://​doi.​org/​10.​1016/​0304-3940(86)90257-0PubMedCrossRef
94.
Zurück zum Zitat M. Buffelli, E. Pasino, A. Cangiano, In vivo acetylcholine receptor expression induced by calcitonin gene-related peptide in rat soleus muscle. Neuroscience 104, 561–567 (2001)PubMedCrossRef M. Buffelli, E. Pasino, A. Cangiano, In vivo acetylcholine receptor expression induced by calcitonin gene-related peptide in rat soleus muscle. Neuroscience 104, 561–567 (2001)PubMedCrossRef
95.
Zurück zum Zitat C.A. Hodges-Savola, H.L. Fernandez, A role for calcitonin gene-related peptide in the regulation of rat skeletal muscle G4 acetylcholinesterase. Neurosci. Lett. 190, 117–120 (1995)PubMedCrossRef C.A. Hodges-Savola, H.L. Fernandez, A role for calcitonin gene-related peptide in the regulation of rat skeletal muscle G4 acetylcholinesterase. Neurosci. Lett. 190, 117–120 (1995)PubMedCrossRef
96.
Zurück zum Zitat H.V. New, A.W. Mudge, Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323, 809–811 (1986). https://doi.org/10.1038/323809a0PubMedCrossRef H.V. New, A.W. Mudge, Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323, 809–811 (1986). https://​doi.​org/​10.​1038/​323809a0PubMedCrossRef
97.
Zurück zum Zitat K. Miles, P. Greengard, R.L. Huganir, Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Neuron 2, 1517–1524 (1989)PubMedCrossRef K. Miles, P. Greengard, R.L. Huganir, Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Neuron 2, 1517–1524 (1989)PubMedCrossRef
98.
Zurück zum Zitat K. Chatzipanteli, R.B. Goldbergt, G.A. Howard, B.A. Roos, Calcitonin gene-related peptide is an adipose-tissue neuropeptide with lipolytic actions. Endocrinol. Metabol. 3, 235–242 (1996) K. Chatzipanteli, R.B. Goldbergt, G.A. Howard, B.A. Roos, Calcitonin gene-related peptide is an adipose-tissue neuropeptide with lipolytic actions. Endocrinol. Metabol. 3, 235–242 (1996)
99.
Zurück zum Zitat H. Shi, C.K. Song, A. Giordano, S. Cinti, T.J. Bartness. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol Regul Integr Comp Physiol. 288, R1028–37 (2005) H. Shi, C.K. Song, A. Giordano, S. Cinti, T.J. Bartness. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol Regul Integr Comp Physiol. 288, R1028–37 (2005)
100.
Zurück zum Zitat H. Shi, T.J. Bartness, White adipose tissue sensory nerve denervation mimics lipectomy-induced compensatory increases in adiposity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R514–R520 (2005). https://doi.org/10.1152/ajpregu.00036.2005PubMedCrossRef H. Shi, T.J. Bartness, White adipose tissue sensory nerve denervation mimics lipectomy-induced compensatory increases in adiposity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R514–R520 (2005). https://​doi.​org/​10.​1152/​ajpregu.​00036.​2005PubMedCrossRef
101.
Zurück zum Zitat C.S. Walker, S. Eftekhari, R.L. Bower, A. Wilderman, P.A. Insel, L. Edvinsson et al., A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann. Clin. Transl. Neurol. 2, 595–608 (2015). https://doi.org/10.1002/acn3.197PubMedPubMedCentralCrossRef C.S. Walker, S. Eftekhari, R.L. Bower, A. Wilderman, P.A. Insel, L. Edvinsson et al., A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann. Clin. Transl. Neurol. 2, 595–608 (2015). https://​doi.​org/​10.​1002/​acn3.​197PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat G. Christopoulos, K.J. Perry, M. Morfis, N. Tilakaratne, Y. Gao, N.J. Fraser et al., Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999)PubMed G. Christopoulos, K.J. Perry, M. Morfis, N. Tilakaratne, Y. Gao, N.J. Fraser et al., Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999)PubMed
103.
Zurück zum Zitat R.D. Reidelberger, A.C. Haver, U. Arnelo, D.D. Smith, C.S. Schaffert, J. Permert, Amylin receptor blockade stimulates food intake in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R568–R574 (2004). https://doi.org/10.1152/ajpregu.00213.2004PubMedCrossRef R.D. Reidelberger, A.C. Haver, U. Arnelo, D.D. Smith, C.S. Schaffert, J. Permert, Amylin receptor blockade stimulates food intake in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R568–R574 (2004). https://​doi.​org/​10.​1152/​ajpregu.​00213.​2004PubMedCrossRef
104.
Zurück zum Zitat T.A. Lutz, Control of energy homeostasis by amylin. Cell. Mol. Life Sci. 69, 1947–1965 (2012). https://doi.org/10.1007/s00018-011-0905-1PubMedCrossRef T.A. Lutz, Control of energy homeostasis by amylin. Cell. Mol. Life Sci. 69, 1947–1965 (2012). https://​doi.​org/​10.​1007/​s00018-011-0905-1PubMedCrossRef
105.
Zurück zum Zitat Y. Dong, A. Betancourt, M. Belfort, C. Yallampalli, Targeting adrenomedullin to improve lipid homeostasis in diabetic pregnancies. J. Clin. Endocrinol. Metab. (2017). https://doi.org/10.1210/jc.2017-00920 Y. Dong, A. Betancourt, M. Belfort, C. Yallampalli, Targeting adrenomedullin to improve lipid homeostasis in diabetic pregnancies. J. Clin. Endocrinol. Metab. (2017). https://​doi.​org/​10.​1210/​jc.​2017-00920
106.
Zurück zum Zitat T. Kuo, Y. Ouchi, S. Kim, K. Toba, H. Orimo, The role of activation of the sympathetic nervous system in the central pressor action of calcitonin gene-related peptide in conscious rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 349, 394–400 (1994)PubMedCrossRef T. Kuo, Y. Ouchi, S. Kim, K. Toba, H. Orimo, The role of activation of the sympathetic nervous system in the central pressor action of calcitonin gene-related peptide in conscious rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 349, 394–400 (1994)PubMedCrossRef
107.
Zurück zum Zitat V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93, 1631–1640 (2011). https://doi.org/10.1016/j.biochi.2011.05.018PubMedCrossRef V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93, 1631–1640 (2011). https://​doi.​org/​10.​1016/​j.​biochi.​2011.​05.​018PubMedCrossRef
108.
Zurück zum Zitat A.E. Boyd 3rd, S.R. Giamber, M. Mager, H.E. Lebovitz, Lactate inhibition of lipolysis in exercising man. Metabolism 23, 531–542 (1974)PubMedCrossRef A.E. Boyd 3rd, S.R. Giamber, M. Mager, H.E. Lebovitz, Lactate inhibition of lipolysis in exercising man. Metabolism 23, 531–542 (1974)PubMedCrossRef
109.
Zurück zum Zitat C. Liu, J. Wu, J. Zhu, C. Kuei, J. Yu, J. Shelton et al., Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009). https://doi.org/10.1074/jbc.M806409200PubMedCrossRef C. Liu, J. Wu, J. Zhu, C. Kuei, J. Yu, J. Shelton et al., Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009). https://​doi.​org/​10.​1074/​jbc.​M806409200PubMedCrossRef
110.
Zurück zum Zitat K. Rooney, P. Trayhurn, Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br. J. Nutr. 106, 1310–1316 (2011). https://doi.org/10.1017/S0007114511004673PubMedCrossRef K. Rooney, P. Trayhurn, Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br. J. Nutr. 106, 1310–1316 (2011). https://​doi.​org/​10.​1017/​S000711451100467​3PubMedCrossRef
111.
Zurück zum Zitat A. Bouloumie, V. Planat, J.C. Devedjian, P. Valet, J.S. Saulnier-Blache, M. Record et al., Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases. J. Biol. Chem. 269, 30254–30259 (1994)PubMed A. Bouloumie, V. Planat, J.C. Devedjian, P. Valet, J.S. Saulnier-Blache, M. Record et al., Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases. J. Biol. Chem. 269, 30254–30259 (1994)PubMed
112.
Zurück zum Zitat P. Valet, C. Pages, O. Jeanneton, D. Daviaud, P. Barbe, M. Record et al., Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J. Clin. Invest. 101, 1431–1438 (1998). https://doi.org/10.1172/JCI806PubMedPubMedCentralCrossRef P. Valet, C. Pages, O. Jeanneton, D. Daviaud, P. Barbe, M. Record et al., Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J. Clin. Invest. 101, 1431–1438 (1998). https://​doi.​org/​10.​1172/​JCI806PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat M.T. Foster, T.J. Bartness, Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1630–R1637 (2006). https://doi.org/10.1152/ajpregu.00197.2006PubMedCrossRef M.T. Foster, T.J. Bartness, Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1630–R1637 (2006). https://​doi.​org/​10.​1152/​ajpregu.​00197.​2006PubMedCrossRef
114.
Zurück zum Zitat I.H.A. Heinonen, R. Boushel, K.K. Kalliokoski, The circulatory and metabolic responses to hypoxia in humans - with special reference to adipose tissue physiology and obesity. Front. Endocrinol. (Lausanne) 7, 116 (2016) https://doi.org/10.3389/fendo.2016.00116. I.H.A. Heinonen, R. Boushel, K.K. Kalliokoski, The circulatory and metabolic responses to hypoxia in humans - with special reference to adipose tissue physiology and obesity. Front. Endocrinol. (Lausanne) 7, 116 (2016) https://​doi.​org/​10.​3389/​fendo.​2016.​00116.​
115.
Zurück zum Zitat N. Hosogai, A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa et al., Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007). https://doi.org/10.2337/db06-0911PubMedCrossRef N. Hosogai, A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa et al., Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007). https://​doi.​org/​10.​2337/​db06-0911PubMedCrossRef
116.
Zurück zum Zitat W.G. Lima, M.E.S. Martins-Santos, V.E. Chaves, Uric acid as a modulator of glucose and lipid metabolism. Biochimie 116, 17–23 (2015). https://doi.org/10.1016/j.biochi.2015.06.025PubMedCrossRef W.G. Lima, M.E.S. Martins-Santos, V.E. Chaves, Uric acid as a modulator of glucose and lipid metabolism. Biochimie 116, 17–23 (2015). https://​doi.​org/​10.​1016/​j.​biochi.​2015.​06.​025PubMedCrossRef
Metadaten
Titel
Role of calcitonin gene-related peptide in energy metabolism
verfasst von
William Gustavo Lima
Gleuber Henrique Marques-Oliveira
Thaís Marques da Silva
Valéria Ernestânia Chaves
Publikationsdatum
07.09.2017
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2017
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-017-1404-4

Weitere Artikel der Ausgabe 1/2017

Endocrine 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.