Skip to main content
Erschienen in: Inflammation 5/2020

14.05.2020 | Review

Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation

verfasst von: Vivek Singh, Saba Ubaid

Erschienen in: Inflammation | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Silent information regulator 1 (SIRT1) is a ubiquitously expressed protein and has an intricate role in the pathology, progression, and treatment of several diseases. SIRT1 is a NAD+-dependent deacetylase and regulates gene expression by histone deacetylation. Deletion of SIRT1 in the liver, pancreas, and brain significantly increases the reactive oxygen species (ROS) and inflammatory response. Literature survey on SIRT1 shows the evidence for its role in preventing oxidative stress and inflammation. Oxidative stress and inflammation are closely related pathophysiological processes and are involved in the pathogenesis of a number of chronic disorders such as fatty liver diseases, diabetes, and neurodegenerative diseases. Both oxidative stress and inflammation alter the expression of several genes such as nuclear factor E2 related factor (Nrf2), nuclear factor E2 related factor 2 (Nef2), nuclear factor kappa B (NF-kB), pancreatic and duodenal homeobox factor 1 (PDX1), interleukin-1 (IL1), forkhead box class O (FOXO), and tumour necrosis factor alpha (TNF-α). By annotating this knowledge, we can conclude that modulating the expression of SIRT1 might prevent the onset of diseases inexorably linked to the liver, pancreas, and brain.
Literatur
1.
Zurück zum Zitat Gregoretti, I., Y.M. Lee, and H.V. Goodson. 2004 Apr 16. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology 338 (1): 17–31.PubMed Gregoretti, I., Y.M. Lee, and H.V. Goodson. 2004 Apr 16. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology 338 (1): 17–31.PubMed
2.
Zurück zum Zitat Finkel, T., C.X. Deng, and R. Mostoslavsky. 2009 Jul. Recent progress in the biology and physiology of sirtuins. Nature. 460 (7255): 587–591.PubMedPubMedCentral Finkel, T., C.X. Deng, and R. Mostoslavsky. 2009 Jul. Recent progress in the biology and physiology of sirtuins. Nature. 460 (7255): 587–591.PubMedPubMedCentral
3.
Zurück zum Zitat Deng, G.F., X.R. Xu, Y. Zhang, D. Li, R.Y. Gan, and H.B. Li. 2013 Jan 1. Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition 53 (3): 296–306.PubMed Deng, G.F., X.R. Xu, Y. Zhang, D. Li, R.Y. Gan, and H.B. Li. 2013 Jan 1. Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition 53 (3): 296–306.PubMed
4.
Zurück zum Zitat Price, N.L., A.P. Gomes, A.J. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, and B.P. Hubbard. 2012 May 2. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism 15 (5): 675–690.PubMedPubMedCentral Price, N.L., A.P. Gomes, A.J. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, and B.P. Hubbard. 2012 May 2. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism 15 (5): 675–690.PubMedPubMedCentral
5.
Zurück zum Zitat Tanno, M., J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio. 2007 Mar 2. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. The Journal of Biological Chemistry 282 (9): 6823–6832.PubMed Tanno, M., J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio. 2007 Mar 2. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. The Journal of Biological Chemistry 282 (9): 6823–6832.PubMed
6.
Zurück zum Zitat Kang, H., J.Y. Suh, Y.S. Jung, J.W. Jung, M.K. Kim, and J.H. Chung. 2011 Oct 21. Peptide switch is essential for Sirt1 deacetylase activity. Molecular Cell 44 (2): 203–213.PubMedPubMedCentral Kang, H., J.Y. Suh, Y.S. Jung, J.W. Jung, M.K. Kim, and J.H. Chung. 2011 Oct 21. Peptide switch is essential for Sirt1 deacetylase activity. Molecular Cell 44 (2): 203–213.PubMedPubMedCentral
7.
Zurück zum Zitat Davenport, A.M., F.M. Huber, and A. Hoelz. 2014 Feb 6. Structural and functional analysis of human SIRT1. Journal of Molecular Biology 426 (3): 526–541.PubMed Davenport, A.M., F.M. Huber, and A. Hoelz. 2014 Feb 6. Structural and functional analysis of human SIRT1. Journal of Molecular Biology 426 (3): 526–541.PubMed
8.
Zurück zum Zitat Han, C., Y. Gu, H. Shan, W. Mi, J. Sun, M. Shi, X. Zhang, X. Lu, F. Han, Q. Gong, and W. Yu. 2017 Nov 14. O-GlcNAcylation of SIRT1 enhances its deacetylase activity and promotes cytoprotection under stress. Nature Communications 8 (1): 1–2. Han, C., Y. Gu, H. Shan, W. Mi, J. Sun, M. Shi, X. Zhang, X. Lu, F. Han, Q. Gong, and W. Yu. 2017 Nov 14. O-GlcNAcylation of SIRT1 enhances its deacetylase activity and promotes cytoprotection under stress. Nature Communications 8 (1): 1–2.
9.
Zurück zum Zitat Caldwell, S.H., D.H. Oelsner, J.C. Iezzoni, E.E. Hespenheide, E.H. Battle, and C.J. Driscoll. 1999 Mar. Cryptogenic cirrhosis: Clinical characterization and risk factors for underlying disease. Hepatology. 29 (3): 664–669.PubMed Caldwell, S.H., D.H. Oelsner, J.C. Iezzoni, E.E. Hespenheide, E.H. Battle, and C.J. Driscoll. 1999 Mar. Cryptogenic cirrhosis: Clinical characterization and risk factors for underlying disease. Hepatology. 29 (3): 664–669.PubMed
10.
Zurück zum Zitat Shimada, M., E. Hashimoto, M. Taniai, K. Hasegawa, H. Okuda, N. Hayashi, K. Takasaki, and J. Ludwig. 2002 Jul 1. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology 37 (1): 154–160.PubMed Shimada, M., E. Hashimoto, M. Taniai, K. Hasegawa, H. Okuda, N. Hayashi, K. Takasaki, and J. Ludwig. 2002 Jul 1. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology 37 (1): 154–160.PubMed
11.
Zurück zum Zitat Propst, A., T. Propst, G. Judmaier, and W. Vogel. 1995 May 1. Prognosis in nonalcoholic steatohepatitis. Gastroenterology. 108 (5): 1607.PubMed Propst, A., T. Propst, G. Judmaier, and W. Vogel. 1995 May 1. Prognosis in nonalcoholic steatohepatitis. Gastroenterology. 108 (5): 1607.PubMed
12.
Zurück zum Zitat Sheth, S.G., F.D. Gordon, and S. Chopra. 1997 Jan 15. Nonalcoholic steatohepatitis. Annals of Internal Medicine 126 (2): 137–145.PubMed Sheth, S.G., F.D. Gordon, and S. Chopra. 1997 Jan 15. Nonalcoholic steatohepatitis. Annals of Internal Medicine 126 (2): 137–145.PubMed
13.
Zurück zum Zitat Ludwig J, Viggiano TR, Mcgill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. In Mayo Clinic Proceedings 1980 Jul (Vol. 55, No. 7, pp. 434–438). Ludwig J, Viggiano TR, Mcgill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. In Mayo Clinic Proceedings 1980 Jul (Vol. 55, No. 7, pp. 434–438).
14.
Zurück zum Zitat Ding, R.B., K. Tian, C.W. He, Y. Jiang, Y.T. Wang, and J.B. Wan. 2012 Dec 18. Herbal medicines for the prevention of alcoholic liver disease: A review. Journal of Ethnopharmacology 144 (3): 457–465.PubMed Ding, R.B., K. Tian, C.W. He, Y. Jiang, Y.T. Wang, and J.B. Wan. 2012 Dec 18. Herbal medicines for the prevention of alcoholic liver disease: A review. Journal of Ethnopharmacology 144 (3): 457–465.PubMed
15.
Zurück zum Zitat Feldstein AE, Bailey SM. Emerging role of redox dysregulation in alcoholic and nonalcoholic fatty liver disease. Feldstein AE, Bailey SM. Emerging role of redox dysregulation in alcoholic and nonalcoholic fatty liver disease.
16.
Zurück zum Zitat Liu, W., R.D. Baker, T. Bhatia, L. Zhu, and S.S. Baker. 2016 May 1. Pathogenesis of nonalcoholic steatohepatitis. Cellular and Molecular Life Sciences 73 (10): 1969–1987.PubMed Liu, W., R.D. Baker, T. Bhatia, L. Zhu, and S.S. Baker. 2016 May 1. Pathogenesis of nonalcoholic steatohepatitis. Cellular and Molecular Life Sciences 73 (10): 1969–1987.PubMed
17.
Zurück zum Zitat Caligiuri, A., A. Gentilini, and F. Marra. 2016 Sep. Molecular pathogenesis of NASH. International Journal of Molecular Sciences 17 (9): 1575.PubMedCentral Caligiuri, A., A. Gentilini, and F. Marra. 2016 Sep. Molecular pathogenesis of NASH. International Journal of Molecular Sciences 17 (9): 1575.PubMedCentral
18.
Zurück zum Zitat Tak, P.P., and G.S. Firestein. 2001 Jan 1. NF-κB: A key role in inflammatory diseases. The Journal of Clinical Investigation 107 (1): 7–11.PubMedPubMedCentral Tak, P.P., and G.S. Firestein. 2001 Jan 1. NF-κB: A key role in inflammatory diseases. The Journal of Clinical Investigation 107 (1): 7–11.PubMedPubMedCentral
19.
Zurück zum Zitat Mulero, M.C., D.B. Huang, H.T. Nguyen, V.Y. Wang, Y. Li, T. Biswas, and G. Ghosh. 2017 Nov 17. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. The Journal of Biological Chemistry 292 (46): 18821–18830.PubMedPubMedCentral Mulero, M.C., D.B. Huang, H.T. Nguyen, V.Y. Wang, Y. Li, T. Biswas, and G. Ghosh. 2017 Nov 17. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. The Journal of Biological Chemistry 292 (46): 18821–18830.PubMedPubMedCentral
20.
Zurück zum Zitat Yeung, F., J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, and M.W. Mayo. 2004 Jun 16. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal 23 (12): 2369–2380.PubMedPubMedCentral Yeung, F., J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, and M.W. Mayo. 2004 Jun 16. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal 23 (12): 2369–2380.PubMedPubMedCentral
21.
Zurück zum Zitat Shen, Z., J.M. Ajmo, C.Q. Rogers, X. Liang, L. Le, M.M. Murr, Y. Peng, and M. You. 2009 May. Role of SIRT1 in regulation of LPS-or two ethanol metabolites-induced TNF-α production in cultured macrophage cell lines. American Journal of Physiology. Gastrointestinal and Liver Physiology 296 (5): G1047–G1053.PubMedPubMedCentral Shen, Z., J.M. Ajmo, C.Q. Rogers, X. Liang, L. Le, M.M. Murr, Y. Peng, and M. You. 2009 May. Role of SIRT1 in regulation of LPS-or two ethanol metabolites-induced TNF-α production in cultured macrophage cell lines. American Journal of Physiology. Gastrointestinal and Liver Physiology 296 (5): G1047–G1053.PubMedPubMedCentral
22.
Zurück zum Zitat Xu, F., Z. Gao, J. Zhang, C.A. Rivera, J. Yin, J. Weng, and J. Ye. 2010 Jun 1. Lack of SIRT1 (mammalian sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: A role of lipid mobilization and inflammation. Endocrinology. 151 (6): 2504–2514.PubMedPubMedCentral Xu, F., Z. Gao, J. Zhang, C.A. Rivera, J. Yin, J. Weng, and J. Ye. 2010 Jun 1. Lack of SIRT1 (mammalian sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: A role of lipid mobilization and inflammation. Endocrinology. 151 (6): 2504–2514.PubMedPubMedCentral
23.
Zurück zum Zitat Schug, T.T., Q. Xu, H. Gao, A. Peres-da-Silva, D.W. Draper, M.B. Fessler, A. Purushotham, and X. Li. 2010 Oct 1. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Molecular and Cellular Biology 30 (19): 4712–4721.PubMedPubMedCentral Schug, T.T., Q. Xu, H. Gao, A. Peres-da-Silva, D.W. Draper, M.B. Fessler, A. Purushotham, and X. Li. 2010 Oct 1. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Molecular and Cellular Biology 30 (19): 4712–4721.PubMedPubMedCentral
24.
Zurück zum Zitat Pfluger, P.T., D. Herranz, S. Velasco-Miguel, M. Serrano, and M.H. Tschöp. 2008 Jul 15. Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences 105 (28): 9793–9798. Pfluger, P.T., D. Herranz, S. Velasco-Miguel, M. Serrano, and M.H. Tschöp. 2008 Jul 15. Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences 105 (28): 9793–9798.
25.
Zurück zum Zitat Tang, W., Y.F. Jiang, M. Ponnusamy, and M. Diallo. 2014 Sep 28. Role of Nrf2 in chronic liver disease. World journal of gastroenterology: WJG 20 (36): 13079–13087.PubMedPubMedCentral Tang, W., Y.F. Jiang, M. Ponnusamy, and M. Diallo. 2014 Sep 28. Role of Nrf2 in chronic liver disease. World journal of gastroenterology: WJG 20 (36): 13079–13087.PubMedPubMedCentral
26.
Zurück zum Zitat Kansanen, E., A.M. Kivelä, and A.L. Levonen. 2009 Nov 1. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12, 14-prostaglandin J2. Free Radical Biology & Medicine 47 (9): 1310–1317. Kansanen, E., A.M. Kivelä, and A.L. Levonen. 2009 Nov 1. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12, 14-prostaglandin J2. Free Radical Biology & Medicine 47 (9): 1310–1317.
27.
Zurück zum Zitat Zhang, Y.K., K.C. Wu, and C.D. Klaassen. 2013. Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice. PLoS One 8 (3): e59122. Zhang, Y.K., K.C. Wu, and C.D. Klaassen. 2013. Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice. PLoS One 8 (3): e59122.
28.
Zurück zum Zitat Yin, H., M. Hu, X. Liang, J.M. Ajmo, X. Li, R. Bataller, G. Odena, S.M. Stevens Jr., and M. You. 2014 Mar 1. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 146 (3): 801–811.PubMed Yin, H., M. Hu, X. Liang, J.M. Ajmo, X. Li, R. Bataller, G. Odena, S.M. Stevens Jr., and M. You. 2014 Mar 1. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 146 (3): 801–811.PubMed
29.
Zurück zum Zitat Wang, R.H., C. Li, and C.X. Deng. 2010. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. International Journal of Biological Sciences 6 (7): 682–690.PubMedPubMedCentral Wang, R.H., C. Li, and C.X. Deng. 2010. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. International Journal of Biological Sciences 6 (7): 682–690.PubMedPubMedCentral
30.
Zurück zum Zitat Wright, E., Jr., J.L. Scism-Bacon, and L.C. Glass. 2006 Mar. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. International Journal of Clinical Practice 60 (3): 308–314.PubMedPubMedCentral Wright, E., Jr., J.L. Scism-Bacon, and L.C. Glass. 2006 Mar. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. International Journal of Clinical Practice 60 (3): 308–314.PubMedPubMedCentral
31.
Zurück zum Zitat Kawamori, D., Y. Kajimoto, H. Kaneto, Y. Umayahara, Y. Fujitani, T. Miyatsuka, H. Watada, I.B. Leibiger, Y. Yamasaki, and M. Hori. 2003 Dec 1. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH2-terminal kinase. Diabetes. 52 (12): 2896–2904.PubMed Kawamori, D., Y. Kajimoto, H. Kaneto, Y. Umayahara, Y. Fujitani, T. Miyatsuka, H. Watada, I.B. Leibiger, Y. Yamasaki, and M. Hori. 2003 Dec 1. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH2-terminal kinase. Diabetes. 52 (12): 2896–2904.PubMed
32.
Zurück zum Zitat Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. 1994 Oct 13. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 371 (6498): 606–609.PubMed Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. 1994 Oct 13. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 371 (6498): 606–609.PubMed
33.
Zurück zum Zitat Sharma, A., D.H. Zangen, P. Reitz, M. Taneja, M.E. Lissauer, C.P. Miller, G.C. Weir, J.F. Habener, and S. Bonner-Weir. 1999 Mar 1. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes. 48 (3): 507–513.PubMed Sharma, A., D.H. Zangen, P. Reitz, M. Taneja, M.E. Lissauer, C.P. Miller, G.C. Weir, J.F. Habener, and S. Bonner-Weir. 1999 Mar 1. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes. 48 (3): 507–513.PubMed
34.
Zurück zum Zitat Ahlgren, U., J. Jonsson, L. Jonsson, K. Simu, and H. Edlund. 1998 Jun 15. β-Cell-specific inactivation of the mouseIpf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes & Development 12 (12): 1763–1768. Ahlgren, U., J. Jonsson, L. Jonsson, K. Simu, and H. Edlund. 1998 Jun 15. β-Cell-specific inactivation of the mouseIpf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes & Development 12 (12): 1763–1768.
35.
Zurück zum Zitat Staffers, D.A., J. Ferrer, W.L. Clarke, and J.F. Habener. 1997 Oct. Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1. Nature Genetics 17 (2): 138–139. Staffers, D.A., J. Ferrer, W.L. Clarke, and J.F. Habener. 1997 Oct. Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1. Nature Genetics 17 (2): 138–139.
36.
Zurück zum Zitat Wang, R.H., X. Xu, H.S. Kim, Z. Xiao, and C.X. Deng. 2013. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. International Journal of Biological Sciences 9 (9): 934–946.PubMedPubMedCentral Wang, R.H., X. Xu, H.S. Kim, Z. Xiao, and C.X. Deng. 2013. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. International Journal of Biological Sciences 9 (9): 934–946.PubMedPubMedCentral
37.
Zurück zum Zitat Wu, L., L. Zhou, Y. Lu, J. Zhang, F. Jian, Y. Liu, F. Li, W. Li, X. Wang, and G. Li. 2012 Nov 1. Activation of SIRT1 protects pancreatic β-cells against palmitate-induced dysfunction. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1822 (11): 1815–1825. Wu, L., L. Zhou, Y. Lu, J. Zhang, F. Jian, Y. Liu, F. Li, W. Li, X. Wang, and G. Li. 2012 Nov 1. Activation of SIRT1 protects pancreatic β-cells against palmitate-induced dysfunction. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1822 (11): 1815–1825.
38.
Zurück zum Zitat Kaneto, H., G. Xu, N. Fujii, S. Kim, S. Bonner-Weir, and G.C. Weir. 2002 Aug 16. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. The Journal of Biological Chemistry 277 (33): 30010–30018.PubMed Kaneto, H., G. Xu, N. Fujii, S. Kim, S. Bonner-Weir, and G.C. Weir. 2002 Aug 16. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. The Journal of Biological Chemistry 277 (33): 30010–30018.PubMed
39.
Zurück zum Zitat Jia, Y., Z. Zheng, Y. Wang, Q. Zhou, W. Cai, W. Jia, L. Yang, M. Dong, X. Zhu, L. Su, and D. Hu. 2015. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264. 7 cells. PLoS One 10 (3): e0120849. Jia, Y., Z. Zheng, Y. Wang, Q. Zhou, W. Cai, W. Jia, L. Yang, M. Dong, X. Zhu, L. Su, and D. Hu. 2015. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264. 7 cells. PLoS One 10 (3): e0120849.
40.
Zurück zum Zitat Elmarakby, A.A., and J.C. Sullivan. 2012 Feb. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics 30 (1): 49–59.PubMed Elmarakby, A.A., and J.C. Sullivan. 2012 Feb. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics 30 (1): 49–59.PubMed
41.
Zurück zum Zitat Spranger, J., A. Kroke, M. Möhlig, K. Hoffmann, M.M. Bergmann, M. Ristow, H. Boeing, and A.F. Pfeiffer. 2003 Mar 1. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 52 (3): 812–817.PubMed Spranger, J., A. Kroke, M. Möhlig, K. Hoffmann, M.M. Bergmann, M. Ristow, H. Boeing, and A.F. Pfeiffer. 2003 Mar 1. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 52 (3): 812–817.PubMed
42.
Zurück zum Zitat Herder, C., T. Illig, W. Rathmann, S. Martin, B. Haastert, S. Müller-Scholze, R. Holle, B. Thorand, W. Koenig, H.E. Wichmann, and H. Kolb. 2005 Aug. Inflammation and type 2 diabetes: Results from KORA Augsburg. Das Gesundheitswesen 67 (S 01): 115–121. Herder, C., T. Illig, W. Rathmann, S. Martin, B. Haastert, S. Müller-Scholze, R. Holle, B. Thorand, W. Koenig, H.E. Wichmann, and H. Kolb. 2005 Aug. Inflammation and type 2 diabetes: Results from KORA Augsburg. Das Gesundheitswesen 67 (S 01): 115–121.
43.
Zurück zum Zitat Herder, C., E.J. Brunner, W. Rathmann, K. Strassburger, A.G. Tabak, N.C. Schloot, and D.R. Witte. 2009. Elevated levels of the anti- inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: The Whitehall II study. Diabetes Care 32: 421–423.PubMedPubMedCentral Herder, C., E.J. Brunner, W. Rathmann, K. Strassburger, A.G. Tabak, N.C. Schloot, and D.R. Witte. 2009. Elevated levels of the anti- inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: The Whitehall II study. Diabetes Care 32: 421–423.PubMedPubMedCentral
44.
Zurück zum Zitat Pradhan, A.D., J.E. Manson, N. Rifai, J.E. Buring, and P.M. Ridker. 2001 Jul 18. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 286 (3): 327–334.PubMed Pradhan, A.D., J.E. Manson, N. Rifai, J.E. Buring, and P.M. Ridker. 2001 Jul 18. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 286 (3): 327–334.PubMed
45.
Zurück zum Zitat Ehses, J.A., A. Perren, E. Eppler, P. Ribaux, J.A. Pospisilik, R. Maor-Cahn, X. Gueripel, H. Ellingsgaard, M.K. Schneider, G. Biollaz, and A. Fontana. 2007 Sep 1. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 56 (9): 2356–2370.PubMed Ehses, J.A., A. Perren, E. Eppler, P. Ribaux, J.A. Pospisilik, R. Maor-Cahn, X. Gueripel, H. Ellingsgaard, M.K. Schneider, G. Biollaz, and A. Fontana. 2007 Sep 1. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 56 (9): 2356–2370.PubMed
46.
Zurück zum Zitat Westwell-Roper, C.Y., J.A. Ehses, and C.B. Verchere. 2014 May 1. Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes. 63 (5): 1698–1711.PubMed Westwell-Roper, C.Y., J.A. Ehses, and C.B. Verchere. 2014 May 1. Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes. 63 (5): 1698–1711.PubMed
47.
Zurück zum Zitat Yoshizaki, T., J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, and J.M. Olefsky. 2009 Mar 1. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Molecular and Cellular Biology 29 (5): 1363–1374.PubMed Yoshizaki, T., J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, and J.M. Olefsky. 2009 Mar 1. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Molecular and Cellular Biology 29 (5): 1363–1374.PubMed
48.
Zurück zum Zitat Yoshizaki, T., S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D.Y. Oh, M. Lu, J.C. Milne, C. Westphal, and G. Bandyopadhyay. 2010 Mar. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. American Journal of Physiology. Endocrinology and Metabolism 298 (3): E419–E428.PubMed Yoshizaki, T., S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D.Y. Oh, M. Lu, J.C. Milne, C. Westphal, and G. Bandyopadhyay. 2010 Mar. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. American Journal of Physiology. Endocrinology and Metabolism 298 (3): E419–E428.PubMed
49.
Zurück zum Zitat Pelvig, D.P., H. Pakkenberg, A.K. Stark, and B. Pakkenberg. 2008 Nov 1. Neocortical glial cell numbers in human brains. Neurobiology of Aging 29 (11): 1754–1762.PubMed Pelvig, D.P., H. Pakkenberg, A.K. Stark, and B. Pakkenberg. 2008 Nov 1. Neocortical glial cell numbers in human brains. Neurobiology of Aging 29 (11): 1754–1762.PubMed
50.
Zurück zum Zitat Konitsiotis, S., S. Bostantjopoulou, M. Chondrogiorgi, Z. Katsarou, G. Tagaris, I. Mavromatis, E.E. Ntzani, G. Mentenopoulos, and Greek Parkinson Study Group. 2014 Aug 15. Clinical characteristics of Parkinson’s disease patients in Greece: A multicenter, nation-wide, cross-sectional study. Journal of the Neurological Sciences 343 (1–2): 36–40.PubMed Konitsiotis, S., S. Bostantjopoulou, M. Chondrogiorgi, Z. Katsarou, G. Tagaris, I. Mavromatis, E.E. Ntzani, G. Mentenopoulos, and Greek Parkinson Study Group. 2014 Aug 15. Clinical characteristics of Parkinson’s disease patients in Greece: A multicenter, nation-wide, cross-sectional study. Journal of the Neurological Sciences 343 (1–2): 36–40.PubMed
51.
Zurück zum Zitat Thomas, B., and M.F. Beal. 2011. Molecular insights into Parkinson’s disease. F1000 Medicine Reports 3: 7. Thomas, B., and M.F. Beal. 2011. Molecular insights into Parkinson’s disease. F1000 Medicine Reports 3: 7.
52.
Zurück zum Zitat Aarsland, D., J. Zaccai, and C. Brayne. 2005. A systematic review of prevalence studies of dementia in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 20 (10): 1255–1263. Aarsland, D., J. Zaccai, and C. Brayne. 2005. A systematic review of prevalence studies of dementia in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 20 (10): 1255–1263.
53.
Zurück zum Zitat Reijnders, J.S., U. Ehrt, W.E. Weber, D. Aarsland, and A.F. Leentjens. 2008 Jan 30. A systematic review of prevalence studies of depression in Parkinson’s disease. Movement Disorders 23 (2): 183–189.PubMed Reijnders, J.S., U. Ehrt, W.E. Weber, D. Aarsland, and A.F. Leentjens. 2008 Jan 30. A systematic review of prevalence studies of depression in Parkinson’s disease. Movement Disorders 23 (2): 183–189.PubMed
54.
Zurück zum Zitat Gautier, C.A., O. Corti, and A. Brice. 2014 May 1. Mitochondrial dysfunctions in Parkinson’s disease. Revista de Neurologia 170 (5): 339–343. Gautier, C.A., O. Corti, and A. Brice. 2014 May 1. Mitochondrial dysfunctions in Parkinson’s disease. Revista de Neurologia 170 (5): 339–343.
55.
Zurück zum Zitat Renault, V.M., P.U. Thekkat, K.L. Hoang, J.L. White, C.A. Brady, D.K. Broz, O.S. Venturelli, T.M. Johnson, P.R. Oskoui, Z. Xuan, and E.E. Santo. 2011 Jul. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene. 30 (29): 3207–3221.PubMedPubMedCentral Renault, V.M., P.U. Thekkat, K.L. Hoang, J.L. White, C.A. Brady, D.K. Broz, O.S. Venturelli, T.M. Johnson, P.R. Oskoui, Z. Xuan, and E.E. Santo. 2011 Jul. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene. 30 (29): 3207–3221.PubMedPubMedCentral
56.
Zurück zum Zitat Langley, E., M. Pearson, M. Faretta, U.M. Bauer, R.A. Frye, S. Minucci, P.G. Pelicci, and T. Kouzarides. 2002 May 15. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO Journal 21 (10): 2383–2396.PubMedPubMedCentral Langley, E., M. Pearson, M. Faretta, U.M. Bauer, R.A. Frye, S. Minucci, P.G. Pelicci, and T. Kouzarides. 2002 May 15. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO Journal 21 (10): 2383–2396.PubMedPubMedCentral
57.
Zurück zum Zitat Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, et al. 1999 Mar 19. cell 96 (6): 857–868.PubMed Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, et al. 1999 Mar 19. cell 96 (6): 857–868.PubMed
58.
Zurück zum Zitat Cho, S.H., J.A. Chen, F. Sayed, M.E. Ward, F. Gao, T.A. Nguyen, G. Krabbe, P.D. Sohn, I. Lo, S. Minami, and N. Devidze. 2015 Jan 14. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. The Journal of Neuroscience 35 (2): 807–818.PubMedPubMedCentral Cho, S.H., J.A. Chen, F. Sayed, M.E. Ward, F. Gao, T.A. Nguyen, G. Krabbe, P.D. Sohn, I. Lo, S. Minami, and N. Devidze. 2015 Jan 14. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. The Journal of Neuroscience 35 (2): 807–818.PubMedPubMedCentral
59.
Zurück zum Zitat Saijo, K., B. Winner, C.T. Carson, J.G. Collier, L. Boyer, M.G. Rosenfeld, F.H. Gage, and C.K. Glass. 2009 Apr 3. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137 (1): 47–59.PubMedPubMedCentral Saijo, K., B. Winner, C.T. Carson, J.G. Collier, L. Boyer, M.G. Rosenfeld, F.H. Gage, and C.K. Glass. 2009 Apr 3. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137 (1): 47–59.PubMedPubMedCentral
60.
Zurück zum Zitat Leal, M.C., J.C. Casabona, M. Puntel, and F. PITOSSI. 2013 Apr 29. Interleukin-1β and tumor necrosis factor-α: Reliable targets for protective therapies in Parkinson’s disease? Frontiers in Cellular Neuroscience 7: 53.PubMedPubMedCentral Leal, M.C., J.C. Casabona, M. Puntel, and F. PITOSSI. 2013 Apr 29. Interleukin-1β and tumor necrosis factor-α: Reliable targets for protective therapies in Parkinson’s disease? Frontiers in Cellular Neuroscience 7: 53.PubMedPubMedCentral
61.
Zurück zum Zitat Benner, E.J., R. Banerjee, A.D. Reynolds, S. Sherman, V.M. Pisarev, V. Tsiperson, C. Nemachek, P. Ciborowski, S. Przedborski, R.L. Mosley, and H.E. Gendelman. 2008. Nitrated α–synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3 (1): e1376. Benner, E.J., R. Banerjee, A.D. Reynolds, S. Sherman, V.M. Pisarev, V. Tsiperson, C. Nemachek, P. Ciborowski, S. Przedborski, R.L. Mosley, and H.E. Gendelman. 2008. Nitrated α–synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3 (1): e1376.
62.
Zurück zum Zitat Tansey, M.G., M.K. McCoy, and T.C. Frank-Cannon. 2007 Nov 1. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology 208 (1): 1–25.PubMedPubMedCentral Tansey, M.G., M.K. McCoy, and T.C. Frank-Cannon. 2007 Nov 1. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology 208 (1): 1–25.PubMedPubMedCentral
63.
Zurück zum Zitat Ferrari, C.C., M.C. Godoy, R. Tarelli, M. Chertoff, A.M. Depino, and F.J. Pitossi. 2006 Oct 1. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiology of Disease 24 (1): 183–193.PubMed Ferrari, C.C., M.C. Godoy, R. Tarelli, M. Chertoff, A.M. Depino, and F.J. Pitossi. 2006 Oct 1. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiology of Disease 24 (1): 183–193.PubMed
64.
Zurück zum Zitat Ye, J., Z. Liu, J. Wei, L. Lu, Y. Huang, L. Luo, and H. Xie. 2013 Oct 11. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neuroscience Letters 553: 72–77.PubMed Ye, J., Z. Liu, J. Wei, L. Lu, Y. Huang, L. Luo, and H. Xie. 2013 Oct 11. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neuroscience Letters 553: 72–77.PubMed
65.
Zurück zum Zitat Tennen, R.I., E. Michishita-Kioi, and K.F. Chua. 2012 Feb 3. Finding a target for resveratrol. Cell. 148 (3): 387–389.PubMed Tennen, R.I., E. Michishita-Kioi, and K.F. Chua. 2012 Feb 3. Finding a target for resveratrol. Cell. 148 (3): 387–389.PubMed
66.
Zurück zum Zitat Cao, D., M. Wang, X. Qiu, D. Liu, H. Jiang, N. Yang, and R.M. Xu. 2015 Jun 15. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes & Development 29 (12): 1316–1325. Cao, D., M. Wang, X. Qiu, D. Liu, H. Jiang, N. Yang, and R.M. Xu. 2015 Jun 15. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes & Development 29 (12): 1316–1325.
67.
Zurück zum Zitat Hubbard, B.P., A.P. Gomes, H. Dai, J. Li, A.W. Case, T. Considine, T.V. Riera, J.E. Lee, D.W. Lamming, B.L. Pentelute, and E.R. Schuman. 2013 Mar 8. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 339 (6124): 1216–1219.PubMedPubMedCentral Hubbard, B.P., A.P. Gomes, H. Dai, J. Li, A.W. Case, T. Considine, T.V. Riera, J.E. Lee, D.W. Lamming, B.L. Pentelute, and E.R. Schuman. 2013 Mar 8. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 339 (6124): 1216–1219.PubMedPubMedCentral
68.
Zurück zum Zitat Hou, X., D. Rooklin, H. Fang, and Y. Zhang. 2016 Nov 30. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Scientific Reports 6: 38186.PubMedPubMedCentral Hou, X., D. Rooklin, H. Fang, and Y. Zhang. 2016 Nov 30. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Scientific Reports 6: 38186.PubMedPubMedCentral
69.
Zurück zum Zitat Modi, S., N. Yaluri, T. Kokkola, and M. Laakso. 2017 Dec 14. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Scientific Reports 7 (1): 1–1. Modi, S., N. Yaluri, T. Kokkola, and M. Laakso. 2017 Dec 14. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Scientific Reports 7 (1): 1–1.
70.
Zurück zum Zitat Zeng, W., W. Shan, L. Gao, D. Gao, Y. Hu, G. Wang, N. Zhang, Z. Li, X. Tian, W. Xu, and J. Peng. 2015 Nov 3. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Scientific Reports 5: 16013.PubMedPubMedCentral Zeng, W., W. Shan, L. Gao, D. Gao, Y. Hu, G. Wang, N. Zhang, Z. Li, X. Tian, W. Xu, and J. Peng. 2015 Nov 3. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Scientific Reports 5: 16013.PubMedPubMedCentral
71.
Zurück zum Zitat Bai, X., L. Yao, X. Ma, and X. Xu. 2018 Aug 1. Small molecules as SIRT modulators. Mini Reviews in Medicinal Chemistry 18 (13): 1151–1157.PubMed Bai, X., L. Yao, X. Ma, and X. Xu. 2018 Aug 1. Small molecules as SIRT modulators. Mini Reviews in Medicinal Chemistry 18 (13): 1151–1157.PubMed
72.
Zurück zum Zitat Qiu, L., Y. Luo, and X. Chen. 2018 Jul 1. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomedicine & Pharmacotherapy 103: 1585–1591. Qiu, L., Y. Luo, and X. Chen. 2018 Jul 1. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomedicine & Pharmacotherapy 103: 1585–1591.
73.
Zurück zum Zitat Hung, C.H., S.H. Chan, P.M. Chu, and K.L. Tsai. 2015 Oct. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Molecular Nutrition & Food Research 59 (10): 1905–1917. Hung, C.H., S.H. Chan, P.M. Chu, and K.L. Tsai. 2015 Oct. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Molecular Nutrition & Food Research 59 (10): 1905–1917.
74.
Zurück zum Zitat Kim, S.C., Y.H. Kim, S.W. Son, E.Y. Moon, S. Pyo, and S.H. Um. 2015 Nov 27. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells. Biochemical and Biophysical Research Communications 467 (4): 638–644.PubMed Kim, S.C., Y.H. Kim, S.W. Son, E.Y. Moon, S. Pyo, and S.H. Um. 2015 Nov 27. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells. Biochemical and Biophysical Research Communications 467 (4): 638–644.PubMed
75.
Zurück zum Zitat Zhang, C., C. Li, S. Chen, Z. Li, L. Ma, X. Jia, K. Wang, J. Bao, Y. Liang, M. Chen, and P. Li. 2017 Jan 23. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Scientific Reports 7 (1): 1–2. Zhang, C., C. Li, S. Chen, Z. Li, L. Ma, X. Jia, K. Wang, J. Bao, Y. Liang, M. Chen, and P. Li. 2017 Jan 23. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Scientific Reports 7 (1): 1–2.
76.
Zurück zum Zitat Wang, Y., X. Liang, Y. Chen, and X. Zhao. 2016. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxidative Medicine and Cellular Longevity 2016: 1–9. Wang, Y., X. Liang, Y. Chen, and X. Zhao. 2016. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxidative Medicine and Cellular Longevity 2016: 1–9.
77.
78.
Zurück zum Zitat Alcaín, F.J., and J.M. Villalba. 2009 Apr 1. Sirtuin activators. Expert Opinion on Therapeutic Patents 19 (4): 403–414.PubMed Alcaín, F.J., and J.M. Villalba. 2009 Apr 1. Sirtuin activators. Expert Opinion on Therapeutic Patents 19 (4): 403–414.PubMed
79.
Zurück zum Zitat Ishisaka, A., S. Ichikawa, H. Sakakibara, M.K. Piskula, T. Nakamura, Y. Kato, M. Ito, K.I. Miyamoto, A. Tsuji, Y. Kawai, and J. Terao. 2011 Oct 1. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology & Medicine 51 (7): 1329–1336. Ishisaka, A., S. Ichikawa, H. Sakakibara, M.K. Piskula, T. Nakamura, Y. Kato, M. Ito, K.I. Miyamoto, A. Tsuji, Y. Kawai, and J. Terao. 2011 Oct 1. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology & Medicine 51 (7): 1329–1336.
80.
Zurück zum Zitat Youdim, K.A., M.Z. Qaiser, D.J. Begley, C.A. Rice-Evans, and N.J. Abbott. 2004 Mar 1. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radical Biology & Medicine 36 (5): 592–604. Youdim, K.A., M.Z. Qaiser, D.J. Begley, C.A. Rice-Evans, and N.J. Abbott. 2004 Mar 1. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radical Biology & Medicine 36 (5): 592–604.
81.
Zurück zum Zitat Zhou, Y., S. Wang, Y. Li, S. Yu, and Y. Zhao. 2018 Jan 9. SIRT1/PGC-1α signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Frontiers in Molecular Neuroscience 10: 443.PubMedPubMedCentral Zhou, Y., S. Wang, Y. Li, S. Yu, and Y. Zhao. 2018 Jan 9. SIRT1/PGC-1α signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Frontiers in Molecular Neuroscience 10: 443.PubMedPubMedCentral
82.
Zurück zum Zitat Bhullar, K.S., and B.P. Hubbard. 2015 Jun 1. Lifespan and healthspan extension by resveratrol. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1852 (6): 1209–1218. Bhullar, K.S., and B.P. Hubbard. 2015 Jun 1. Lifespan and healthspan extension by resveratrol. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1852 (6): 1209–1218.
83.
Zurück zum Zitat Zhang, N., Y. Hu, C. Ding, W. Zeng, W. Shan, H. Fan, Y. Zhao, X. Shi, L. Gao, T. Xu, and R. Wang. 2017 Feb 5. Salvianolic acid B protects against chronic alcoholic liver injury via SIRT1-mediated inhibition of CRP and ChREBP in rats. Toxicology Letters 267: 1–10.PubMed Zhang, N., Y. Hu, C. Ding, W. Zeng, W. Shan, H. Fan, Y. Zhao, X. Shi, L. Gao, T. Xu, and R. Wang. 2017 Feb 5. Salvianolic acid B protects against chronic alcoholic liver injury via SIRT1-mediated inhibition of CRP and ChREBP in rats. Toxicology Letters 267: 1–10.PubMed
84.
Zurück zum Zitat Yang, Q.Y., X.D. Lai, J. Ouyang, and J.D. Yang. 2018 Nov 1. Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology. 409: 144–151.PubMed Yang, Q.Y., X.D. Lai, J. Ouyang, and J.D. Yang. 2018 Nov 1. Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology. 409: 144–151.PubMed
85.
Zurück zum Zitat Huang, Y., K.K. Kwan, K.W. Leung, P. Yao, H. Wang, T.T. Dong, and K.W. Tsim. 2019 Oct 1. Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: A functional comparison of different extraction solvents. Journal of Ginseng Research 43 (4): 517–526.PubMed Huang, Y., K.K. Kwan, K.W. Leung, P. Yao, H. Wang, T.T. Dong, and K.W. Tsim. 2019 Oct 1. Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: A functional comparison of different extraction solvents. Journal of Ginseng Research 43 (4): 517–526.PubMed
86.
Zurück zum Zitat Kim, D.H., C.H. Park, D. Park, Y.J. Choi, M.H. Park, K.W. Chung, S.R. Kim, J.S. Lee, and H.Y. Chung. 2014 Jun 1. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Archives of Pharmacal Research 37 (6): 813–820.PubMed Kim, D.H., C.H. Park, D. Park, Y.J. Choi, M.H. Park, K.W. Chung, S.R. Kim, J.S. Lee, and H.Y. Chung. 2014 Jun 1. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Archives of Pharmacal Research 37 (6): 813–820.PubMed
87.
Zurück zum Zitat Minor, R.K., J.A. Baur, A.P. Gomes, T.M. Ward, A. Csiszar, E.M. Mercken, K. Abdelmohsen, Y.K. Shin, C. Canto, M. Scheibye-Knudsen, and M. Krawczyk. 2011 Aug 18. SRT1720 improves survival and healthspan of obese mice. Scientific Reports 1: 70.PubMedPubMedCentral Minor, R.K., J.A. Baur, A.P. Gomes, T.M. Ward, A. Csiszar, E.M. Mercken, K. Abdelmohsen, Y.K. Shin, C. Canto, M. Scheibye-Knudsen, and M. Krawczyk. 2011 Aug 18. SRT1720 improves survival and healthspan of obese mice. Scientific Reports 1: 70.PubMedPubMedCentral
88.
Zurück zum Zitat Milne, J.C., P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, and J.E. Bemis. 2007 Nov. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450 (7170): 712–716.PubMedPubMedCentral Milne, J.C., P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, and J.E. Bemis. 2007 Nov. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450 (7170): 712–716.PubMedPubMedCentral
89.
Zurück zum Zitat Gurt, I., H. Artsi, E. Cohen-Kfir, G. Hamdani, G. Ben-Shalom, B. Feinstein, M. El-Haj, and R. Dresner-Pollak. 2015. The Sirt1 activators SRT2183 and SRT3025 inhibit RANKL-induced osteoclastogenesis in bone marrow-derived macrophages and down-regulate Sirt3 in Sirt1 null cells. PLoS One 10 (7): e0134391. Gurt, I., H. Artsi, E. Cohen-Kfir, G. Hamdani, G. Ben-Shalom, B. Feinstein, M. El-Haj, and R. Dresner-Pollak. 2015. The Sirt1 activators SRT2183 and SRT3025 inhibit RANKL-induced osteoclastogenesis in bone marrow-derived macrophages and down-regulate Sirt3 in Sirt1 null cells. PLoS One 10 (7): e0134391.
90.
Zurück zum Zitat Campagna, J., P. Spilman, B. Jagodzinska, D. Bai, A. Hatami, C. Zhu, T. Bilousova, M. Jun, C.J. Elias, J. Pham, and G. Cole. 2018 Dec 4. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer’s disease mouse model. Scientific Reports 8 (1): 1–5. Campagna, J., P. Spilman, B. Jagodzinska, D. Bai, A. Hatami, C. Zhu, T. Bilousova, M. Jun, C.J. Elias, J. Pham, and G. Cole. 2018 Dec 4. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer’s disease mouse model. Scientific Reports 8 (1): 1–5.
91.
Zurück zum Zitat Ögren, S.O., A.C. Holm, H. Hall, and U.H. Lindberg. 1984 Dec 1. Alaproclate, a new selective 5-HT uptake inhibitor with therapeutic potential in depression and senile dementia. Journal of Neural Transmission 59 (4): 265–288.PubMed Ögren, S.O., A.C. Holm, H. Hall, and U.H. Lindberg. 1984 Dec 1. Alaproclate, a new selective 5-HT uptake inhibitor with therapeutic potential in depression and senile dementia. Journal of Neural Transmission 59 (4): 265–288.PubMed
92.
Zurück zum Zitat Kim, M.J., H.J. An, D.H. Kim, B. Lee, H.J. Lee, S. Ullah, S.J. Kim, H.O. Jeong, K.M. Moon, E.K. Lee, and J. Yang. 2018 Feb 15. Novel SIRT1 activator MHY2233 improves glucose tolerance and reduces hepatic lipid accumulation in db/db mice. Bioorganic & Medicinal Chemistry Letters 28 (4): 684–688. Kim, M.J., H.J. An, D.H. Kim, B. Lee, H.J. Lee, S. Ullah, S.J. Kim, H.O. Jeong, K.M. Moon, E.K. Lee, and J. Yang. 2018 Feb 15. Novel SIRT1 activator MHY2233 improves glucose tolerance and reduces hepatic lipid accumulation in db/db mice. Bioorganic & Medicinal Chemistry Letters 28 (4): 684–688.
93.
Zurück zum Zitat Yao, Z.Q., X. Zhang, Y. Zhen, X.Y. He, S. Zhao, X.F. Li, B. Yang, F. Gao, F.Y. Guo, L. Fu, and X.Z. Liu. 2018 Jul 10. A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death & Disease 9 (7): 1–4. Yao, Z.Q., X. Zhang, Y. Zhen, X.Y. He, S. Zhao, X.F. Li, B. Yang, F. Gao, F.Y. Guo, L. Fu, and X.Z. Liu. 2018 Jul 10. A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death & Disease 9 (7): 1–4.
Metadaten
Titel
Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation
verfasst von
Vivek Singh
Saba Ubaid
Publikationsdatum
14.05.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01242-9

Weitere Artikel der Ausgabe 5/2020

Inflammation 5/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.