Skip to main content
Erschienen in: Lasers in Medical Science 6/2018

02.04.2018 | Original Article

ROS-induced autophagy reduces B16F10 melanoma cell proliferative activity

verfasst von: Gustavo Miranda Pires Santos, Susana C. P. S. Oliveira, Juliana C. S. Monteiro, Sandra R. Fagnani, Fernando Pires Sampaio, Neandder Andrade Correia, Pedro J. L. Crugeira, Antonio L. B. Pinheiro

Erschienen in: Lasers in Medical Science | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Cancer is a pathology characterized by increased cell progression and/or reduced programmed cell death. Melanoma shows a rapid increase in cell progression and its resistance to chemotherapy is associated with uncontrolled apoptosis and to mechanisms that increase the flow of the drug out of the cell. The objective of this study was to evaluate the effects of photodynamic therapy (PDT) on the cell proliferation and cellular alterations in B16F10 murine melanoma. For that, four experimental groups were evaluated: the control group; laser group (ʎ = 660 ηm, 40 mW, 2.4 J/cm2); photosensitizer group (solution containing methylene blue and toluidine blue 1:1–12.5 μg/mL); PDT group. The incubation time was 30 min. Fluorescence microscopy assays were performed without fixation with the DAPI, monodansylcadaverine (MDC), and dihydroethidium (DHE) probes. Cell proliferation was also determined at 24-h time. The tests were performed in triplicate and the statistical test used was ANOVA with Tukey post-test. The results demonstrate that the plasma membrane of the cells of all the experimental groups remained intact, ROS production and autophagy significantly increased (p < 0.0005 and p < 0.0071, respectively) only in the PDT group. The cell proliferation essay showed a reduction of 74.2% on the PDT group in relation to the control group. The present study demonstrated that oxidative stress promoted by photodynamic therapy may induce autophagy and consequently reduce cell proliferation in B16F10 melanoma.
Literatur
1.
Zurück zum Zitat Huang T, Zhuge J, Zhang WW (2013) Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR. Biomarker Res 1(1):1–6CrossRef Huang T, Zhuge J, Zhang WW (2013) Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR. Biomarker Res 1(1):1–6CrossRef
2.
Zurück zum Zitat Liu H, He Z, Simon HU (2013) Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 23:352–360CrossRefPubMed Liu H, He Z, Simon HU (2013) Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 23:352–360CrossRefPubMed
3.
Zurück zum Zitat Li X, Wu D, Shen J, Zhou M, Lu Y (2013) Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett 5:167–172CrossRefPubMed Li X, Wu D, Shen J, Zhou M, Lu Y (2013) Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett 5:167–172CrossRefPubMed
4.
Zurück zum Zitat Ndoye A, Weeraratna AT (2016) Autophagy—an emerging target for melanoma therapy. F1000Res 5:1–9CrossRef Ndoye A, Weeraratna AT (2016) Autophagy—an emerging target for melanoma therapy. F1000Res 5:1–9CrossRef
5.
Zurück zum Zitat Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):1–6CrossRef Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):1–6CrossRef
6.
Zurück zum Zitat Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281CrossRefPubMedPubMedCentral Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Bursch W, Ellinger A, Gerner C, Schulte-Hermann R (2004) Caspase independent and autophagic cell death. In: Lockshin RA, Zakeri Z (eds) When cells die II. Wiley-Liss, New York, p 275–310 Bursch W, Ellinger A, Gerner C, Schulte-Hermann R (2004) Caspase independent and autophagic cell death. In: Lockshin RA, Zakeri Z (eds) When cells die II. Wiley-Liss, New York, p 275–310
8.
Zurück zum Zitat Pires-Santos GM, Oliveira SCPS, Monteiro JSC, Sampaio FJP, Brugnera A, Zanin FAA, Almeida P, Pinheiro ALB (2015) Prospective study of luminous radiation associated technology photosensitive compounds for treatment of diseases. Proc SPIE 9309:1–7 Pires-Santos GM, Oliveira SCPS, Monteiro JSC, Sampaio FJP, Brugnera A, Zanin FAA, Almeida P, Pinheiro ALB (2015) Prospective study of luminous radiation associated technology photosensitive compounds for treatment of diseases. Proc SPIE 9309:1–7
9.
Zurück zum Zitat Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR (2013) Melanoma resistance to photodynamic therapy: new insights. Biol Chem 394(2):239–250CrossRefPubMedPubMedCentral Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR (2013) Melanoma resistance to photodynamic therapy: new insights. Biol Chem 394(2):239–250CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ishai-Michaeli R, Eldort A, Vlodavsky I (1990) Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul 1:833–842CrossRefPubMedPubMedCentral Ishai-Michaeli R, Eldort A, Vlodavsky I (1990) Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul 1:833–842CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10:221–237CrossRefPubMed Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10:221–237CrossRefPubMed
12.
Zurück zum Zitat O’neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95(6):1190–1194CrossRefPubMed O’neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95(6):1190–1194CrossRefPubMed
13.
Zurück zum Zitat Bakr EM (2005) A new soflware for measuring leaf area, and area damaged by Tetranychus uritcae Koch. JEN 129(3):173–175 Bakr EM (2005) A new soflware for measuring leaf area, and area damaged by Tetranychus uritcae Koch. JEN 129(3):173–175
14.
Zurück zum Zitat Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec 296:378–381CrossRef Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec 296:378–381CrossRef
15.
Zurück zum Zitat Davids LM, Kleemann B (2011) Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev 37:465–475PubMed Davids LM, Kleemann B (2011) Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev 37:465–475PubMed
17.
Zurück zum Zitat Luo Y, Zou P, Jing Z, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Exp Gerontol 46(11):860–867CrossRefPubMedPubMedCentral Luo Y, Zou P, Jing Z, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Exp Gerontol 46(11):860–867CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Gil-Ad I, Shtaif B, Levkovitz Y, Nordenberg J, Taler M, Korov I, Weizman A (2006) Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Oncol Rep 15:107–112PubMed Gil-Ad I, Shtaif B, Levkovitz Y, Nordenberg J, Taler M, Korov I, Weizman A (2006) Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Oncol Rep 15:107–112PubMed
19.
Zurück zum Zitat Latocha M, Ba AZ, Polaniak R, Kuamierz D, Nowosad A, Jurzak M, Romuk E, Kokocińska M, Sliupkas-Dyrda E (2015) Molecular Effects of Amine Derivatives Of Phenothiazine On Cancer Cells C-32 And Snb-19 In Vitro. Acta Pol Pharma Drug Res 72(5):909–915 Latocha M, Ba AZ, Polaniak R, Kuamierz D, Nowosad A, Jurzak M, Romuk E, Kokocińska M, Sliupkas-Dyrda E (2015) Molecular Effects of Amine Derivatives Of Phenothiazine On Cancer Cells C-32 And Snb-19 In Vitro. Acta Pol Pharma Drug Res 72(5):909–915
20.
Zurück zum Zitat Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):422–427CrossRefPubMed Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):422–427CrossRefPubMed
21.
Zurück zum Zitat Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109CrossRefPubMed Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109CrossRefPubMed
22.
Zurück zum Zitat Boya P, González-Polo R, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 1:1025–1040CrossRef Boya P, González-Polo R, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 1:1025–1040CrossRef
23.
Zurück zum Zitat Murat O, Lorke DE, Hasan M, Petroianu GA (2011) Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 31:93–117CrossRef Murat O, Lorke DE, Hasan M, Petroianu GA (2011) Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 31:93–117CrossRef
24.
Zurück zum Zitat Nogueira JJ, González L (2014) Molecular dynamics simulations of binding modes between methylene blue and DNA with alternating GC and AT sequences. Biochemist 53:2391–2412CrossRef Nogueira JJ, González L (2014) Molecular dynamics simulations of binding modes between methylene blue and DNA with alternating GC and AT sequences. Biochemist 53:2391–2412CrossRef
25.
Zurück zum Zitat Oliveira SCPS, Monteiro JSC, Santos GMP, Sampaio FJP, Soares AP, Soares LGP, Pinheiro ALB (2017) LED antimicrobial photodynamic therapy with phenothiazinium dye against Staphylococcus aureus: an in vitro study. J Photochem Photobiol B Biol 175:46–50CrossRef Oliveira SCPS, Monteiro JSC, Santos GMP, Sampaio FJP, Soares AP, Soares LGP, Pinheiro ALB (2017) LED antimicrobial photodynamic therapy with phenothiazinium dye against Staphylococcus aureus: an in vitro study. J Photochem Photobiol B Biol 175:46–50CrossRef
26.
Zurück zum Zitat Pandey RK, Joshi P (2014) Synthesis and biological significance of porphyrin-based photosensitisers in photodynamic therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook, 2nd edn. CRC Press, Boca Raton, p 31–65 Pandey RK, Joshi P (2014) Synthesis and biological significance of porphyrin-based photosensitisers in photodynamic therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook, 2nd edn. CRC Press, Boca Raton, p 31–65
27.
Zurück zum Zitat Issa MCA, Fassini A, Boechat M, Ferolla ACJ (2016) Photodynamic therapy in photoaging: literature review. Surg Cosmet Dermatol 8(4 Supl. 1):S10–S16 Issa MCA, Fassini A, Boechat M, Ferolla ACJ (2016) Photodynamic therapy in photoaging: literature review. Surg Cosmet Dermatol 8(4 Supl. 1):S10–S16
28.
Zurück zum Zitat Wainwright M (2009) Photossensitisers in biomedicine. Wiley-Blackwell Wainwright M (2009) Photossensitisers in biomedicine. Wiley-Blackwell
29.
Zurück zum Zitat Zelickson BD (2005) Mechanisms of action of topical aminolevulinic acid. In: Goldman MP (ed) Photodynamic therapy, 1st edn. Elsevier Saunders, Philadelphia, p 1–12 Zelickson BD (2005) Mechanisms of action of topical aminolevulinic acid. In: Goldman MP (ed) Photodynamic therapy, 1st edn. Elsevier Saunders, Philadelphia, p 1–12
Metadaten
Titel
ROS-induced autophagy reduces B16F10 melanoma cell proliferative activity
verfasst von
Gustavo Miranda Pires Santos
Susana C. P. S. Oliveira
Juliana C. S. Monteiro
Sandra R. Fagnani
Fernando Pires Sampaio
Neandder Andrade Correia
Pedro J. L. Crugeira
Antonio L. B. Pinheiro
Publikationsdatum
02.04.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 6/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2489-6

Weitere Artikel der Ausgabe 6/2018

Lasers in Medical Science 6/2018 Zur Ausgabe