Skip to main content
Erschienen in: Inflammation 5/2019

23.06.2019 | Original Article

Salidroside Reduces Inflammation and Brain Injury After Permanent Middle Cerebral Artery Occlusion in Rats by Regulating PI3K/PKB/Nrf2/NFκB Signaling Rather than Complement C3 Activity

verfasst von: X. Zhang, W. Lai, X. Ying, L. Xu, K. Chu, J. Brown, L. Chen, G. Hong

Erschienen in: Inflammation | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Salidroside, an active constituent of Rhodiola rosea, is neuroprotective after transient middle cerebral artery occlusion (tMCAO). However, its effects in other experimental stroke models are less understood. Here, we investigated the effect of daily intraperitoneal injections of salidroside in rats after permanent MCAO (pMCAO). Cerebral infarct volumes at 1 day after pMCAO were significantly reduced by treatment with 100 mg/kg/day salidroside, but not by 25 or 50 mg/kg/day, and this benefit of salidroside increased significantly over at least 7 days of treatment, when it was also accompanied by decreased neurological deficit scores. These observations led us to investigate the underlying mechanism of action of salidroside. 100 mg/kg salidroside for 1 day increased NeuN, Nrf2, and its downstream mediator HO-1, while it reduced nuclear NFκB p50, IL-6, and TNFα. Brusatol, a Nrf2 inhibitor, blocked the actions of salidroside on Nrf2, NFκB p50, IL-6, and TNFα. Salidroside also increased the ratio of p-PKB/PKB at 1 day after pMCAO even in the presence of brusatol. LY294002, a PI3K inhibitor, prevented all these effects of salidroside, including those on NeuN, p-PKB/PKB, Nrf2, HO-1, and pro-inflammatory mediators. In contrast, salidroside had no significant effect on the level of cerebral complement C3 after pMCAO, or on the activity of C3 as measured by the expression of cerebral Egr1. Our findings therefore suggest that salidroside reduces neuroinflammation and neural damage by regulating the PI3K/PKB/Nrf2/NFκB signaling pathway after pMCAO, and that this neuroprotective effect does not involve modulation of complement C3 activity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dimpfel, W., L. Schombert, and A.G. Panossian. 2018. Assessing the quality and potential efficacy of commercial extracts of Rhodiola rosea L. by analyzing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Frontiers in Pharmacology 9: 425.CrossRefPubMedPubMedCentral Dimpfel, W., L. Schombert, and A.G. Panossian. 2018. Assessing the quality and potential efficacy of commercial extracts of Rhodiola rosea L. by analyzing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Frontiers in Pharmacology 9: 425.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21 (4): 358–367.CrossRefPubMed Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21 (4): 358–367.CrossRefPubMed
3.
Zurück zum Zitat Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28 (2): 108–121.CrossRefPubMed Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28 (2): 108–121.CrossRefPubMed
4.
Zurück zum Zitat Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40 (4): 1297–1309.CrossRefPubMed Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40 (4): 1297–1309.CrossRefPubMed
5.
Zurück zum Zitat Han, J., Q. Xiao, Y.H. Lin, Z.Z. Zheng, Z.D. He, J. Hu, and L.D. Chen. 2015. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regeneration Research 10 (12): 1989–1996.CrossRefPubMedPubMedCentral Han, J., Q. Xiao, Y.H. Lin, Z.Z. Zheng, Z.D. He, J. Hu, and L.D. Chen. 2015. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regeneration Research 10 (12): 1989–1996.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Lai, W., H. Hong, X. Zhang, X. Xie, X. Ying, L. Xu, and G. Hong. 2016. Inhibitive effect of salidroside on nerve cell apoptosis in MCAO rat through an activation of PI3K/AKT/NRF2 pathway. China Journal of Tradition Chinese Medicine and Pharmacy 31 (05): 1883–1886. Lai, W., H. Hong, X. Zhang, X. Xie, X. Ying, L. Xu, and G. Hong. 2016. Inhibitive effect of salidroside on nerve cell apoptosis in MCAO rat through an activation of PI3K/AKT/NRF2 pathway. China Journal of Tradition Chinese Medicine and Pharmacy 31 (05): 1883–1886.
7.
Zurück zum Zitat Lai, W., X. Xie, X. Zhang, Y. Wang, K. Chu, J. Brown, L. Chen, and G. Hong. 2018. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 41 (2): 449–463.CrossRefPubMed Lai, W., X. Xie, X. Zhang, Y. Wang, K. Chu, J. Brown, L. Chen, and G. Hong. 2018. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 41 (2): 449–463.CrossRefPubMed
8.
Zurück zum Zitat Peters, O., T. Back, U. Lindauer, C. Busch, D. Megow, J. Dreier, and U. Dirnagl. 1998. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. Journal Cerebral Blood Flow and Metabolism 18 (2): 196–205.CrossRef Peters, O., T. Back, U. Lindauer, C. Busch, D. Megow, J. Dreier, and U. Dirnagl. 1998. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. Journal Cerebral Blood Flow and Metabolism 18 (2): 196–205.CrossRef
9.
Zurück zum Zitat Zhou, W., A. Liesz, H. Bauer, C. Sommer, B. Lahrmann, N. Valous, N. Grabe, and R. Veltkamp. 2013. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathology 23 (1): 34–44.CrossRefPubMed Zhou, W., A. Liesz, H. Bauer, C. Sommer, B. Lahrmann, N. Valous, N. Grabe, and R. Veltkamp. 2013. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathology 23 (1): 34–44.CrossRefPubMed
10.
Zurück zum Zitat Shirley, R., E.N. Ord, and L.M. Work. 2014. Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel) 3 (3): 472–501.CrossRef Shirley, R., E.N. Ord, and L.M. Work. 2014. Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel) 3 (3): 472–501.CrossRef
11.
Zurück zum Zitat Drieu, A., D. Levard, D. Vivien, and M. Rubio. 2018. Anti-inflammatory treatments for stroke: From bench to bedside. Therapeutic Advances in Neurological Disorders 11: 1756286418789854.CrossRefPubMedPubMedCentral Drieu, A., D. Levard, D. Vivien, and M. Rubio. 2018. Anti-inflammatory treatments for stroke: From bench to bedside. Therapeutic Advances in Neurological Disorders 11: 1756286418789854.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Moi, P., K. Chan, I. Asunis, A. Cao, and Y.W. Kan. 1994. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America 91 (21): 9926–9930.CrossRefPubMedPubMedCentral Moi, P., K. Chan, I. Asunis, A. Cao, and Y.W. Kan. 1994. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America 91 (21): 9926–9930.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications 236 (2): 313–322.CrossRefPubMed Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications 236 (2): 313–322.CrossRefPubMed
14.
Zurück zum Zitat Shah, Z.A., R.C. Li, A.S. Ahmad, T.W. Kensler, M. Yamamoto, S. Biswal, and S. Dore. 2010. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal Cerebral Blood Flow and Metabolism 30 (12): 1951–1961.CrossRef Shah, Z.A., R.C. Li, A.S. Ahmad, T.W. Kensler, M. Yamamoto, S. Biswal, and S. Dore. 2010. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal Cerebral Blood Flow and Metabolism 30 (12): 1951–1961.CrossRef
15.
16.
Zurück zum Zitat Nguyen, T., H.C. Huang, and C.B. Pickett. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. Journal of Biological Chemistry 275 (20): 15466–15473.CrossRefPubMed Nguyen, T., H.C. Huang, and C.B. Pickett. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. Journal of Biological Chemistry 275 (20): 15466–15473.CrossRefPubMed
17.
Zurück zum Zitat Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annual Review of Immunology 18: 621–663.CrossRefPubMed Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annual Review of Immunology 18: 621–663.CrossRefPubMed
18.
Zurück zum Zitat Wardyn, J.D., A.H. Ponsford, and C.M. Sanderson. 2015. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochemical Society Transactions 43 (4): 621–626.CrossRefPubMedPubMedCentral Wardyn, J.D., A.H. Ponsford, and C.M. Sanderson. 2015. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochemical Society Transactions 43 (4): 621–626.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 (1): 84–91.CrossRefPubMed Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 (1): 84–91.CrossRefPubMed
20.
Zurück zum Zitat Zhao, H., T. Shimohata, J.Q. Wang, G. Sun, D.W. Schaal, R.M. Sapolsky, and G.K. Steinberg. 2005. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. Journal of Neuroscience 25 (42): 9794–9806.CrossRefPubMed Zhao, H., T. Shimohata, J.Q. Wang, G. Sun, D.W. Schaal, R.M. Sapolsky, and G.K. Steinberg. 2005. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. Journal of Neuroscience 25 (42): 9794–9806.CrossRefPubMed
21.
Zurück zum Zitat Olayanju, A., I.M. Copple, H.K. Bryan, G.T. Edge, R.L. Sison, M.W. Wong, Z.Q. Lai, Z.X. Lin, K. Dunn, C.M. Sanderson, A.F. Alghanem, M.J. Cross, E.C. Ellis, M. Ingelman-Sundberg, H.Z. Malik, N.R. Kitteringham, C.E. Goldring, and B.K. Park. 2015. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radical Biology & Medicine 78: 202–212.CrossRef Olayanju, A., I.M. Copple, H.K. Bryan, G.T. Edge, R.L. Sison, M.W. Wong, Z.Q. Lai, Z.X. Lin, K. Dunn, C.M. Sanderson, A.F. Alghanem, M.J. Cross, E.C. Ellis, M. Ingelman-Sundberg, H.Z. Malik, N.R. Kitteringham, C.E. Goldring, and B.K. Park. 2015. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radical Biology & Medicine 78: 202–212.CrossRef
22.
Zurück zum Zitat Ren, D., N.F. Villeneuve, T. Jiang, T. Wu, A. Lau, H.A. Toppin, and D.D. Zhang. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proceedings of the National Academy of Sciences of the United States of America 108 (4): 1433–1438.CrossRefPubMedPubMedCentral Ren, D., N.F. Villeneuve, T. Jiang, T. Wu, A. Lau, H.A. Toppin, and D.D. Zhang. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proceedings of the National Academy of Sciences of the United States of America 108 (4): 1433–1438.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Sironi, L., M. Cimino, U. Guerrini, A.M. Calvio, B. Lodetti, M. Asdente, W. Balduini, R. Paoletti, and E. Tremoli. 2003. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arteriosclerosis, Thrombosis, and Vascular Biology 23 (2): 322–327.CrossRefPubMed Sironi, L., M. Cimino, U. Guerrini, A.M. Calvio, B. Lodetti, M. Asdente, W. Balduini, R. Paoletti, and E. Tremoli. 2003. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arteriosclerosis, Thrombosis, and Vascular Biology 23 (2): 322–327.CrossRefPubMed
24.
Zurück zum Zitat Choi, A.M., and J. Alam. 1996. Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 15 (1): 9–19.CrossRefPubMed Choi, A.M., and J. Alam. 1996. Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 15 (1): 9–19.CrossRefPubMed
25.
Zurück zum Zitat Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J.D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development 13 (1): 76–86.CrossRef Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J.D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development 13 (1): 76–86.CrossRef
26.
Zurück zum Zitat Li, M., T. Xu, F. Zhou, M. Wang, H. Song, X. Xiao, and B. Lu. 2018. Neuroprotective effects of four phenylethanoid glycosides on H(2)O(2)-induced apoptosis on PC12 cells via the Nrf2/ARE pathway. International Journal of Molecular Sciences 19 (4): E1135.CrossRefPubMed Li, M., T. Xu, F. Zhou, M. Wang, H. Song, X. Xiao, and B. Lu. 2018. Neuroprotective effects of four phenylethanoid glycosides on H(2)O(2)-induced apoptosis on PC12 cells via the Nrf2/ARE pathway. International Journal of Molecular Sciences 19 (4): E1135.CrossRefPubMed
27.
Zurück zum Zitat Zheng, K., Z. Sheng, Y. Li, and H. Lu. 2014. Salidroside inhibits oxygen glucose deprivation (OGD)/re-oxygenation-induced H9c2 cell necrosis through activating of Akt-Nrf2 signaling. Biochemical and Biophysical Research Communications 451 (1): 79–85.CrossRefPubMed Zheng, K., Z. Sheng, Y. Li, and H. Lu. 2014. Salidroside inhibits oxygen glucose deprivation (OGD)/re-oxygenation-induced H9c2 cell necrosis through activating of Akt-Nrf2 signaling. Biochemical and Biophysical Research Communications 451 (1): 79–85.CrossRefPubMed
28.
Zurück zum Zitat Cai, L., Y. Li, Q. Zhang, H. Sun, X. Yan, T. Hua, Q. Zhu, H. Xu, and H. Fu. 2017. Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3beta/Nrf2-dependent antioxidant response and mitochondrial permeability transition. European Journal of Pharmacology 806: 32–42.CrossRefPubMed Cai, L., Y. Li, Q. Zhang, H. Sun, X. Yan, T. Hua, Q. Zhu, H. Xu, and H. Fu. 2017. Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3beta/Nrf2-dependent antioxidant response and mitochondrial permeability transition. European Journal of Pharmacology 806: 32–42.CrossRefPubMed
29.
Zurück zum Zitat Lu, H., Y. Li, T. Zhang, M. Liu, Y. Chi, S. Liu, and Y. Shi. 2017. Salidroside reduces high-glucose-induced podocyte apoptosis and oxidative stress via upregulating heme oxygenase-1 (HO-1) expression. Medical Science Monitor 23: 4067–4076.CrossRefPubMedPubMedCentral Lu, H., Y. Li, T. Zhang, M. Liu, Y. Chi, S. Liu, and Y. Shi. 2017. Salidroside reduces high-glucose-induced podocyte apoptosis and oxidative stress via upregulating heme oxygenase-1 (HO-1) expression. Medical Science Monitor 23: 4067–4076.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Shih, A.Y., P. Li, and T.H. Murphy. 2005. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. The Journal of Neuroscience 25 (44): 10321–10335.CrossRefPubMedPubMedCentral Shih, A.Y., P. Li, and T.H. Murphy. 2005. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. The Journal of Neuroscience 25 (44): 10321–10335.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Chen, L., L. Wang, X. Zhang, L. Cui, Y. Xing, L. Dong, Z. Liu, Y. Li, X. Zhang, C. Wang, X. Bai, J. Zhang, L. Zhang, and X. Zhao. 2012. The protection by octreotide against experimental ischemic stroke: Up-regulated transcription factor Nrf2, HO-1 and down-regulated NF-kappaB expression. Brain Research 1475: 80–87.CrossRefPubMed Chen, L., L. Wang, X. Zhang, L. Cui, Y. Xing, L. Dong, Z. Liu, Y. Li, X. Zhang, C. Wang, X. Bai, J. Zhang, L. Zhang, and X. Zhao. 2012. The protection by octreotide against experimental ischemic stroke: Up-regulated transcription factor Nrf2, HO-1 and down-regulated NF-kappaB expression. Brain Research 1475: 80–87.CrossRefPubMed
32.
Zurück zum Zitat Clausen, B.H., L. Lundberg, M. Yli-Karjanmaa, N.A. Martin, M. Svensson, M.Z. Alfsen, S.B. Flaeng, K. Lyngso, A. Boza-Serrano, H.H. Nielsen, P.B. Hansen, B. Finsen, T. Deierborg, Z. Illes, and K.L. Lambertsen. 2017. Fumarate decreases edema volume and improves functional outcome after experimental stroke. Experimental Neurology 295: 144–154.CrossRefPubMed Clausen, B.H., L. Lundberg, M. Yli-Karjanmaa, N.A. Martin, M. Svensson, M.Z. Alfsen, S.B. Flaeng, K. Lyngso, A. Boza-Serrano, H.H. Nielsen, P.B. Hansen, B. Finsen, T. Deierborg, Z. Illes, and K.L. Lambertsen. 2017. Fumarate decreases edema volume and improves functional outcome after experimental stroke. Experimental Neurology 295: 144–154.CrossRefPubMed
33.
Zurück zum Zitat Wang, Q., M. van Hoecke, X.N. Tang, H. Lee, Z. Zheng, R.A. Swanson, and M.A. Yenari. 2009. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiology of Disease 36 (1): 223–231.CrossRefPubMedPubMedCentral Wang, Q., M. van Hoecke, X.N. Tang, H. Lee, Z. Zheng, R.A. Swanson, and M.A. Yenari. 2009. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiology of Disease 36 (1): 223–231.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Pan, H., H. Wang, X. Wang, L. Zhu, and L. Mao. 2012. The absence of Nrf2 enhances NF-kappaB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators of Inflammation 2012: 217580.CrossRefPubMedPubMedCentral Pan, H., H. Wang, X. Wang, L. Zhu, and L. Mao. 2012. The absence of Nrf2 enhances NF-kappaB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators of Inflammation 2012: 217580.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Malec, V., O.R. Gottschald, S. Li, F. Rose, W. Seeger, and J. Hanze. 2010. HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radical Biology & Medicine 48 (12): 1626–1635.CrossRef Malec, V., O.R. Gottschald, S. Li, F. Rose, W. Seeger, and J. Hanze. 2010. HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radical Biology & Medicine 48 (12): 1626–1635.CrossRef
36.
Zurück zum Zitat Kim, T.H., E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y.M. Lee, S.K. Ku, Y. Jung, and M.K. Kwak. 2011. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research 71 (6): 2260–2275.CrossRefPubMed Kim, T.H., E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y.M. Lee, S.K. Ku, Y. Jung, and M.K. Kwak. 2011. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research 71 (6): 2260–2275.CrossRefPubMed
37.
Zurück zum Zitat Zhao, R., J. Feng, and G. He. 2016. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Frontiers in Bioscience (Landmark edition) 21: 385–396.CrossRef Zhao, R., J. Feng, and G. He. 2016. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Frontiers in Bioscience (Landmark edition) 21: 385–396.CrossRef
Metadaten
Titel
Salidroside Reduces Inflammation and Brain Injury After Permanent Middle Cerebral Artery Occlusion in Rats by Regulating PI3K/PKB/Nrf2/NFκB Signaling Rather than Complement C3 Activity
verfasst von
X. Zhang
W. Lai
X. Ying
L. Xu
K. Chu
J. Brown
L. Chen
G. Hong
Publikationsdatum
23.06.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01045-7

Weitere Artikel der Ausgabe 5/2019

Inflammation 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.