Skip to main content
Erschienen in: Inflammation Research 1/2024

23.12.2023 | Original Research Paper

Salmonella spvC gene suppresses macrophage/neutrophil antibacterial defense mediated by gasdermin D

verfasst von: Liting Zhou, Yuanyuan Li, Jiayi You, Chaoyi Wu, Lingli Zuo, Yilin Chen, Li Kang, Zhengyu Zhou, Rui Huang, Shuyan Wu

Erschienen in: Inflammation Research | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Objective

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a representative model organism for investigating host–pathogen interactions. It was reported that S. Typhimurium spvC gene alleviated intestinal inflammation to aggravate systemic infection, while the precise mechanisms remain unclear. In this study, the influence of spvC on the antibacterial defense of macrophage/neutrophil mediated by gasdermin D (GSDMD) was investigated.

Methods

Mouse macrophage-like cell lines J774A.1 and RAW264.7, neutrophil-like cells derived from HL-60 cells (human promyletic leukemia cell lines) were infected with S. Typhimurium wild type, spvC deletion and complemented strains. Cell death was evaluated by LDH release and Annexin V-FITC/PI staining. Macrophage pyroptosis and neutrophil NETosis were detected by western blotting, live cell imaging and ELISA. Flow cytometry was used to assess the impact of spvC on macrophage-neutrophil cooperation in macrophage (dTHP-1)-neutrophil (dHL-60) co-culture model pretreated with GSDMD inhibitor disulfiram. Wild-type and Gsdmd−/− C57BL/6J mice were utilized for in vivo assay. The degree of phagocytes infiltration and inflammation were analyzed by immunofluorescence and transmission electron microscopy.

Results

Here we find that spvC inhibits pyroptosis in macrophages via Caspase-1/Caspase-11 dependent canonical and non-canonical pathways, and restrains neutrophil extracellular traps extrusion in GSDMD-dependent manner. Moreover, spvC could ameliorate macrophages/neutrophils infiltration and cooperation in the inflammatory response mediated by GSDMD to combat Salmonella infection.

Conclusions

Our findings highlight the antibacterial activity of GSDMD in phagocytes and reveal a novel pathogenic mechanism employed by spvC to counteract this host defense, which may shed new light on designing effective therapeutics to control S. Typhimurium infection.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fierer J. Invasive non-typhoidal Salmonella (iNTS) infections. Clin Infect Dis. 2022;75(4):732–8.CrossRefPubMed Fierer J. Invasive non-typhoidal Salmonella (iNTS) infections. Clin Infect Dis. 2022;75(4):732–8.CrossRefPubMed
2.
Zurück zum Zitat Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbe B, de Block T, et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun. 2019;10(1):4280.PubMedCentralCrossRefPubMed Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbe B, de Block T, et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun. 2019;10(1):4280.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Keestra-Gounder AM, Tsolis RM, Baumler AJ. Now you see me, now you don’t: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol. 2015;13(4):206–16.CrossRefPubMed Keestra-Gounder AM, Tsolis RM, Baumler AJ. Now you see me, now you don’t: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol. 2015;13(4):206–16.CrossRefPubMed
4.
Zurück zum Zitat Geiser P, Di Martino ML, Samperio Ventayol P, Eriksson J, Sima E, Al-Saffar AK, et al. Salmonella enterica serovar Typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids. MBio. 2021;12(1):e02684.PubMedCentralCrossRefPubMed Geiser P, Di Martino ML, Samperio Ventayol P, Eriksson J, Sima E, Al-Saffar AK, et al. Salmonella enterica serovar Typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids. MBio. 2021;12(1):e02684.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Dong X, Hu X, Bao Y, Li G, Yang XD, Slauch JM, et al. Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips. J Cell Biol. 2021;220(3):e202005148.PubMedCentralCrossRefPubMed Dong X, Hu X, Bao Y, Li G, Yang XD, Slauch JM, et al. Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips. J Cell Biol. 2021;220(3):e202005148.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Ma C, Yang D, Wang B, Wu C, Wu Y, Li S, et al. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Sci Adv. 2020;6(21):eaaz6717.PubMedCentralCrossRefPubMed Ma C, Yang D, Wang B, Wu C, Wu Y, Li S, et al. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Sci Adv. 2020;6(21):eaaz6717.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Banerjee I, Behl B, Mendonca M, Shrivastava G, Russo AJ, Menoret A, et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity. 2018;49(3):413–26.PubMedCentralCrossRefPubMed Banerjee I, Behl B, Mendonca M, Shrivastava G, Russo AJ, Menoret A, et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity. 2018;49(3):413–26.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Chen H, Li Y, Wu J, Li G, Tao X, Lai K, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 2020;27(9):2568–85.PubMedCentralCrossRefPubMed Chen H, Li Y, Wu J, Li G, Tao X, Lai K, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 2020;27(9):2568–85.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24(1):97–108.PubMedCentralCrossRefPubMed Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24(1):97–108.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Tan C, Reilly B, Jha A, Murao A, Lee Y, Brenner M, et al. Active release of eCIRP via gasdermin D channels to induce inflammation in sepsis. J Immunol. 2022;208(9):2184–95.CrossRefPubMed Tan C, Reilly B, Jha A, Murao A, Lee Y, Brenner M, et al. Active release of eCIRP via gasdermin D channels to induce inflammation in sepsis. J Immunol. 2022;208(9):2184–95.CrossRefPubMed
12.
13.
Zurück zum Zitat Lu Y, Sun P, Shao W, Yang C, Chen L, Zhu A, et al. Detection and molecular identification of Salmonella pathogenic islands and virulence plasmid genes of Salmonella in Xuzhou raw meat products. J Food Prot. 2022;85(12):1790–6.CrossRefPubMed Lu Y, Sun P, Shao W, Yang C, Chen L, Zhu A, et al. Detection and molecular identification of Salmonella pathogenic islands and virulence plasmid genes of Salmonella in Xuzhou raw meat products. J Food Prot. 2022;85(12):1790–6.CrossRefPubMed
14.
Zurück zum Zitat Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N, Danbara H, et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol. 2012;14(4):485–99.CrossRefPubMed Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N, Danbara H, et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol. 2012;14(4):485–99.CrossRefPubMed
15.
Zurück zum Zitat Zuo L, Zhou L, Wu C, Wang Y, Li Y, Huang R, et al. Salmonella spvC gene inhibits pyroptosis and intestinal inflammation to aggravate systemic infection in mice. Front Microbiol. 2020;11:562491.PubMedCentralCrossRefPubMed Zuo L, Zhou L, Wu C, Wang Y, Li Y, Huang R, et al. Salmonella spvC gene inhibits pyroptosis and intestinal inflammation to aggravate systemic infection in mice. Front Microbiol. 2020;11:562491.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, et al. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog. 2019;15(7):e1007959.PubMedCentralCrossRefPubMed Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, et al. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog. 2019;15(7):e1007959.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(6):366–87.PubMedCentralCrossRefPubMed Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(6):366–87.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71.CrossRefPubMed Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71.CrossRefPubMed
20.
Zurück zum Zitat Zhou L, Li Y, Gao S, Yuan H, Zuo L, Wu C, et al. Salmonella spvC gene inhibits autophagy of host cells and suppresses NLRP3 as well as NLRC4. Front Immunol. 2021;12:639019.PubMedCentralCrossRefPubMed Zhou L, Li Y, Gao S, Yuan H, Zuo L, Wu C, et al. Salmonella spvC gene inhibits autophagy of host cells and suppresses NLRP3 as well as NLRC4. Front Immunol. 2021;12:639019.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.CrossRefPubMed Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.CrossRefPubMed
22.
Zurück zum Zitat Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118(13):2737–53.CrossRef Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118(13):2737–53.CrossRef
23.
Zurück zum Zitat Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X, et al. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis. 2021;12(11):984.PubMedCentralCrossRefPubMed Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X, et al. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis. 2021;12(11):984.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6689.CrossRefPubMed Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6689.CrossRefPubMed
26.
Zurück zum Zitat Chauhan D, Demon D, Vande Walle L, Paerewijck O, Zecchin A, Bosseler L, et al. GSDMD drives canonical inflammasome-induced neutrophil pyroptosis and is dispensable for NETosis. EMBO Rep. 2022;23(10):e54277.PubMedCentralCrossRefPubMed Chauhan D, Demon D, Vande Walle L, Paerewijck O, Zecchin A, Bosseler L, et al. GSDMD drives canonical inflammasome-induced neutrophil pyroptosis and is dispensable for NETosis. EMBO Rep. 2022;23(10):e54277.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676.CrossRefPubMed Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676.CrossRefPubMed
28.
Zurück zum Zitat Hiyoshi H, English BC, Diaz-Ochoa VE, Wangdi T, Zhang LF, Sakaguchi M, et al. Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host Microbe. 2022;30(2):163–70.CrossRefPubMed Hiyoshi H, English BC, Diaz-Ochoa VE, Wangdi T, Zhang LF, Sakaguchi M, et al. Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host Microbe. 2022;30(2):163–70.CrossRefPubMed
29.
Zurück zum Zitat Jorgensen I, Lopez JP, Laufer SA, Miao EA. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur J Immunol. 2016;46(12):2761–6.PubMedCentralCrossRefPubMed Jorgensen I, Lopez JP, Laufer SA, Miao EA. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur J Immunol. 2016;46(12):2761–6.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Chiang N, Sakuma M, Rodriguez AR, Spur BW, Irimia D, Serhan CN. Resolvin T-series reduce neutrophil extracellular traps. Blood. 2022;139(8):1222–33.CrossRefPubMed Chiang N, Sakuma M, Rodriguez AR, Spur BW, Irimia D, Serhan CN. Resolvin T-series reduce neutrophil extracellular traps. Blood. 2022;139(8):1222–33.CrossRefPubMed
31.
Zurück zum Zitat Wang W, Prokopec JS, Zhang Y, Sukhoplyasova M, Shinglot H, Wang MT, et al. Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis. Dev Cell. 2022;57(2):228–45.PubMedCentralCrossRefPubMed Wang W, Prokopec JS, Zhang Y, Sukhoplyasova M, Shinglot H, Wang MT, et al. Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis. Dev Cell. 2022;57(2):228–45.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Wang L, Li Y, Liu Y, Zuo L, Li Y, Wu S, et al. Salmonella spv locus affects type I interferon response and the chemotaxis of neutrophils via suppressing autophagy. Fish Shellfish Immunol. 2019;87:721–9.CrossRefPubMed Wang L, Li Y, Liu Y, Zuo L, Li Y, Wu S, et al. Salmonella spv locus affects type I interferon response and the chemotaxis of neutrophils via suppressing autophagy. Fish Shellfish Immunol. 2019;87:721–9.CrossRefPubMed
33.
Zurück zum Zitat Wu L, Chen F, Chang X, Li L, Yin X, Li C, et al. Combined cellular thermometry reveals that Salmonella Typhimurium warms macrophages by inducing a pyroptosis-like phenotype. J Am Chem Soc. 2022;144(42):19396–409.CrossRefPubMed Wu L, Chen F, Chang X, Li L, Yin X, Li C, et al. Combined cellular thermometry reveals that Salmonella Typhimurium warms macrophages by inducing a pyroptosis-like phenotype. J Am Chem Soc. 2022;144(42):19396–409.CrossRefPubMed
34.
Zurück zum Zitat Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, et al. Human GBP1 binds LPS to initiate assembly of a Caspase-4 activating platform on cytosolic bacteria. Nat Commun. 2020;11(1):3276.PubMedCentralCrossRefPubMed Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, et al. Human GBP1 binds LPS to initiate assembly of a Caspase-4 activating platform on cytosolic bacteria. Nat Commun. 2020;11(1):3276.PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Broz P, Pelegrin P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57.CrossRefPubMed Broz P, Pelegrin P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57.CrossRefPubMed
36.
Zurück zum Zitat Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.CrossRefPubMed Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.CrossRefPubMed
37.
Zurück zum Zitat Prather ER, Gavrilin MA, Wewers MD. The central inflammasome adaptor protein ASC activates the inflammasome after transition from a soluble to an insoluble state. J Biol Chem. 2022;298(6): 102024.PubMedCentralCrossRefPubMed Prather ER, Gavrilin MA, Wewers MD. The central inflammasome adaptor protein ASC activates the inflammasome after transition from a soluble to an insoluble state. J Biol Chem. 2022;298(6): 102024.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Beilharz M, De Nardo D, Latz E, Franklin BS. Measuring NLR oligomerization II: detection of ASC speck formation by confocal microscopy and immunofluorescence. Methods Mol Biol. 2016;1417:145–58.CrossRefPubMed Beilharz M, De Nardo D, Latz E, Franklin BS. Measuring NLR oligomerization II: detection of ASC speck formation by confocal microscopy and immunofluorescence. Methods Mol Biol. 2016;1417:145–58.CrossRefPubMed
39.
Zurück zum Zitat Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 2014;8(2):570–82.CrossRefPubMed Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 2014;8(2):570–82.CrossRefPubMed
40.
Zurück zum Zitat Bouchery T, Harris N. Neutrophil-macrophage cooperation and its impact on tissue repair. Immunol Cell Biol. 2019;97(3):289–98.CrossRefPubMed Bouchery T, Harris N. Neutrophil-macrophage cooperation and its impact on tissue repair. Immunol Cell Biol. 2019;97(3):289–98.CrossRefPubMed
41.
Zurück zum Zitat Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21(7):736–45.PubMedCentralCrossRefPubMed Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21(7):736–45.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol. 2008;67(6):1371–83.PubMedCentralCrossRefPubMed Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol. 2008;67(6):1371–83.PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Kamanova J, Sun H, Lara-Tejero M, Galan JE. The Salmonella effector protein SopA modulates innate immune responses by targeting TRIM E3 ligase family members. PLoS Pathog. 2016;12(4):e1005552.PubMedCentralCrossRefPubMed Kamanova J, Sun H, Lara-Tejero M, Galan JE. The Salmonella effector protein SopA modulates innate immune responses by targeting TRIM E3 ligase family members. PLoS Pathog. 2016;12(4):e1005552.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Gibbs KD, Washington EJ, Jaslow SL, Bourgeois JS, Foster MW, Guo R, et al. The Salmonella secreted effector SarA/SteE mimics cytokine receptor signaling to activate STAT3. Cell Host Microbe. 2020;27(1):129–39.CrossRefPubMed Gibbs KD, Washington EJ, Jaslow SL, Bourgeois JS, Foster MW, Guo R, et al. The Salmonella secreted effector SarA/SteE mimics cytokine receptor signaling to activate STAT3. Cell Host Microbe. 2020;27(1):129–39.CrossRefPubMed
45.
Zurück zum Zitat Panagi I, Jennings E, Zeng J, Günster RA, Stones CD, Mak H, et al. Salmonella effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization. Cell Host Microbe. 2020;27(1):41–53.PubMedCentralCrossRefPubMed Panagi I, Jennings E, Zeng J, Günster RA, Stones CD, Mak H, et al. Salmonella effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization. Cell Host Microbe. 2020;27(1):41–53.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Kay C, Wang R, Kirkby M, Man SM. Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol Rev. 2020;297(1):67–82.CrossRefPubMed Kay C, Wang R, Kirkby M, Man SM. Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol Rev. 2020;297(1):67–82.CrossRefPubMed
47.
Zurück zum Zitat Zhang L, Ko CJ, Li Y, Jie Z, Zhu L, Zhou X, et al. Peli1 facilitates NLRP3 inflammasome activation by mediating ASC ubiquitination. Cell Rep. 2021;37(4):109904.CrossRefPubMed Zhang L, Ko CJ, Li Y, Jie Z, Zhu L, Zhou X, et al. Peli1 facilitates NLRP3 inflammasome activation by mediating ASC ubiquitination. Cell Rep. 2021;37(4):109904.CrossRefPubMed
48.
Zurück zum Zitat Chai Q, Yu S, Zhong Y, Lu Z, Qiu C, Yu Y, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science. 2022;378(6616):eabq0132.CrossRefPubMed Chai Q, Yu S, Zhong Y, Lu Z, Qiu C, Yu Y, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science. 2022;378(6616):eabq0132.CrossRefPubMed
49.
Zurück zum Zitat Li Z, Liu W, Fu J, Cheng S, Xu Y, Wang Z, et al. Shigella evades pyroptosis by arginine ADP-riboxanation of Caspase-11. Nature. 2021;599(7884):290–5.CrossRefPubMed Li Z, Liu W, Fu J, Cheng S, Xu Y, Wang Z, et al. Shigella evades pyroptosis by arginine ADP-riboxanation of Caspase-11. Nature. 2021;599(7884):290–5.CrossRefPubMed
50.
Zurück zum Zitat Napier BA, Brubaker SW, Sweeney TE, Monette P, Rothmeier GH, Gertsvolf NA, et al. Complement pathway amplifies Caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med. 2016;213(11):2365–82.PubMedCentralCrossRefPubMed Napier BA, Brubaker SW, Sweeney TE, Monette P, Rothmeier GH, Gertsvolf NA, et al. Complement pathway amplifies Caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med. 2016;213(11):2365–82.PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Kambara H, Liu F, Zhang X, Liu P, Bajrami B, Teng Y, et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 2018;22(11):2924–36.PubMedCentralCrossRefPubMed Kambara H, Liu F, Zhang X, Liu P, Bajrami B, Teng Y, et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 2018;22(11):2924–36.PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Cerqueira DM, Gomes MTR, Silva ALN, Rungue M, Assis NRG, Guimaraes ES, et al. Guanylate-binding protein 5 licenses Caspase-11 for gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog. 2018;14(12):e1007519.PubMedCentralCrossRefPubMed Cerqueira DM, Gomes MTR, Silva ALN, Rungue M, Assis NRG, Guimaraes ES, et al. Guanylate-binding protein 5 licenses Caspase-11 for gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog. 2018;14(12):e1007519.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, et al. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev. 2015;39(5):750–63.CrossRefPubMed Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, et al. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev. 2015;39(5):750–63.CrossRefPubMed
54.
Zurück zum Zitat Wang Y, Li Y, Chen Z, Yuan Y, Su Q, Ye K, et al. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy. Cell Death Dis. 2022;13(8):693.PubMedCentralCrossRefPubMed Wang Y, Li Y, Chen Z, Yuan Y, Su Q, Ye K, et al. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy. Cell Death Dis. 2022;13(8):693.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V, et al. The IL-1β/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun. 2014;82(11):4508–17.PubMedCentralCrossRefPubMed Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V, et al. The IL-1β/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun. 2014;82(11):4508–17.PubMedCentralCrossRefPubMed
56.
Zurück zum Zitat Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.PubMedCentralCrossRefPubMed Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Bulek K, Zhao J, Liao Y, Rana N, Corridoni D, Antanaviciute A, et al. Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis. J Clin Invest. 2020;130(8):4218–34.PubMedCentralPubMed Bulek K, Zhao J, Liao Y, Rana N, Corridoni D, Antanaviciute A, et al. Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis. J Clin Invest. 2020;130(8):4218–34.PubMedCentralPubMed
58.
Zurück zum Zitat Zhang J, Yu Q, Jiang D, Yu K, Yu W, Chi Z, et al. Epithelial gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci Immunol. 2022;7(68):eabk2092.CrossRefPubMed Zhang J, Yu Q, Jiang D, Yu K, Yu W, Chi Z, et al. Epithelial gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci Immunol. 2022;7(68):eabk2092.CrossRefPubMed
Metadaten
Titel
Salmonella spvC gene suppresses macrophage/neutrophil antibacterial defense mediated by gasdermin D
verfasst von
Liting Zhou
Yuanyuan Li
Jiayi You
Chaoyi Wu
Lingli Zuo
Yilin Chen
Li Kang
Zhengyu Zhou
Rui Huang
Shuyan Wu
Publikationsdatum
23.12.2023
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 1/2024
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-023-01818-9

Weitere Artikel der Ausgabe 1/2024

Inflammation Research 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.