Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 11/2019

03.01.2019 | Focussed Research Review

Schwann cells shape the neuro-immune environs and control cancer progression

verfasst von: German V. Martyn, Galina V. Shurin, Anton A. Keskinov, Yuri L. Bunimovich, Michael R. Shurin

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 11/2019

Einloggen, um Zugang zu erhalten

Abstract

At present, significant experimental and clinical data confirm the active involvement of the peripheral nervous system (PNS) in different phases of cancer development and progression. Most of the research effort focuses on the impact of distinct neuronal types, e.g., adrenergic, cholinergic, dopaminergic, etc. in carcinogenesis, generally ignoring neuroglia. The very fact that these cells far outnumber the other cellular types may also play an important role worthy of study in this context. The most prevalent neuroglia within the PNS consists of Schwann cells (SCs). These cells play a substantial role in maintaining homeostasis within the nervous system. They possess distinct immunomodulatory, inflammatory and regenerative capacities—also, one should consider their broad distribution throughout the body; this makes them a perfect target for malignant cells during the initial stages of cancer development and the very formation of the tumor microenvironment itself. We show that SCs in the tumor milieu attract different subsets of immune regulators and augment their ability to suppress effector T cells. SCs may also up-regulate invasiveness of tumor cells and support metastatic disease. We outline the interactive potential of SCs juxtaposed with cancerous cells, referring to data from various external sources alongside data of our own.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30PubMed Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30PubMed
3.
4.
Zurück zum Zitat Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596PubMed Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596PubMed
5.
Zurück zum Zitat McDonald PG, Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, Stefanek M, Sood AK (2005) A biobehavioral perspective of tumor biology. Discov Med 5(30):520–526PubMedPubMedCentral McDonald PG, Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, Stefanek M, Sood AK (2005) A biobehavioral perspective of tumor biology. Discov Med 5(30):520–526PubMedPubMedCentral
6.
Zurück zum Zitat Bruni JE, Montemurro DG (1971) Effect of hypothalamic lesions on the genesis of spontaneous mammary gland tumors in the mouse. Cancer Res 31(6):854–863PubMed Bruni JE, Montemurro DG (1971) Effect of hypothalamic lesions on the genesis of spontaneous mammary gland tumors in the mouse. Cancer Res 31(6):854–863PubMed
7.
Zurück zum Zitat Thaker PH, Lutgendorf SK, Sood AK (2007) The neuroendocrine impact of chronic stress on cancer. Cell Cycle 6(4):430–433PubMed Thaker PH, Lutgendorf SK, Sood AK (2007) The neuroendocrine impact of chronic stress on cancer. Cell Cycle 6(4):430–433PubMed
8.
Zurück zum Zitat Suhail N, Bilal N, Hasan S, Ahmad A, Ashraf GM, Banu N (2015) Chronic unpredictable stress (CUS) enhances the carcinogenic potential of 7,12-dimethylbenz(a)anthracene (DMBA) and accelerates the onset of tumor development in Swiss albino mice. Cell Stress Chaperones 20(6):1023–1036PubMedPubMedCentral Suhail N, Bilal N, Hasan S, Ahmad A, Ashraf GM, Banu N (2015) Chronic unpredictable stress (CUS) enhances the carcinogenic potential of 7,12-dimethylbenz(a)anthracene (DMBA) and accelerates the onset of tumor development in Swiss albino mice. Cell Stress Chaperones 20(6):1023–1036PubMedPubMedCentral
9.
Zurück zum Zitat Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG, Stefanek M, Sood AK (2006) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–248PubMedPubMedCentral Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG, Stefanek M, Sood AK (2006) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–248PubMedPubMedCentral
10.
Zurück zum Zitat Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251PubMed Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251PubMed
11.
Zurück zum Zitat Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18(5):1201–1206PubMed Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18(5):1201–1206PubMed
12.
Zurück zum Zitat Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477(7364):349–353PubMedPubMedCentral Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477(7364):349–353PubMedPubMedCentral
13.
Zurück zum Zitat Catala M, Kubis N (2013) Gross anatomy and development of the peripheral nervous system. Handb Clin Neurol 115:29–41PubMed Catala M, Kubis N (2013) Gross anatomy and development of the peripheral nervous system. Handb Clin Neurol 115:29–41PubMed
14.
Zurück zum Zitat Krizanova O, Babula P, Pacak K (2016) Stress, catecholaminergic system and cancer. Stress 19(4):419–428PubMed Krizanova O, Babula P, Pacak K (2016) Stress, catecholaminergic system and cancer. Stress 19(4):419–428PubMed
15.
16.
Zurück zum Zitat Nie H, Cao Q, Zhu L, Gong Y, Gu J, He Z (2013) Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PLoS One 8(4):e61678PubMedPubMedCentral Nie H, Cao Q, Zhu L, Gong Y, Gu J, He Z (2013) Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PLoS One 8(4):e61678PubMedPubMedCentral
17.
Zurück zum Zitat Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341(6142):1236361PubMed Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341(6142):1236361PubMed
18.
Zurück zum Zitat Seifert P, Spitznas M (2002) Axons in human choroidal melanoma suggest the participation of nerves in the control of these tumors. Am J Ophthalmol 133(5):711–713PubMed Seifert P, Spitznas M (2002) Axons in human choroidal melanoma suggest the participation of nerves in the control of these tumors. Am J Ophthalmol 133(5):711–713PubMed
19.
Zurück zum Zitat Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, Shine D, Kadmon D, Thompson T, Miles BJ, Ittmann MM, Rowley D (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14(23):7593–7603PubMed Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, Shine D, Kadmon D, Thompson T, Miles BJ, Ittmann MM, Rowley D (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14(23):7593–7603PubMed
20.
Zurück zum Zitat Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G, Liu H, Agarwal N, Berger DH, Ayala GE (2011) Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117(21):4834–4845PubMed Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G, Liu H, Agarwal N, Berger DH, Ayala GE (2011) Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117(21):4834–4845PubMed
21.
Zurück zum Zitat Tomita T (2012) Localization of nerve fibers in colonic polyps, adenomas, and adenocarcinomas by immunocytochemical staining for PGP 9.5. Dig Dis Sci 57(2):364–370PubMed Tomita T (2012) Localization of nerve fibers in colonic polyps, adenomas, and adenocarcinomas by immunocytochemical staining for PGP 9.5. Dig Dis Sci 57(2):364–370PubMed
22.
Zurück zum Zitat Terada T, Matsunaga Y (2001) S-100-positive nerve fibers in hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an immunohistochemical study. Pathol Int 51(2):89–93PubMed Terada T, Matsunaga Y (2001) S-100-positive nerve fibers in hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an immunohistochemical study. Pathol Int 51(2):89–93PubMed
23.
Zurück zum Zitat Zhou M, Patel A, Rubin MA (2001) Prevalence and location of peripheral nerve found on prostate needle biopsy. Am J Clin Pathol 115(1):39–43PubMed Zhou M, Patel A, Rubin MA (2001) Prevalence and location of peripheral nerve found on prostate needle biopsy. Am J Clin Pathol 115(1):39–43PubMed
24.
Zurück zum Zitat Campbell LK, Thomas JR, Lamps LW, Smoller BR, Folpe AL (2003) Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors: an immunohistochemical study of 95 mesenchymal neoplasms. Mod Pathol 16(10):963–969PubMed Campbell LK, Thomas JR, Lamps LW, Smoller BR, Folpe AL (2003) Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors: an immunohistochemical study of 95 mesenchymal neoplasms. Mod Pathol 16(10):963–969PubMed
25.
Zurück zum Zitat Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682PubMed Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682PubMed
26.
Zurück zum Zitat Kidd GJ, Ohno N, Trapp BD (2013) Biology of Schwann cells. Handb Clin Neurol 11555–11579 Kidd GJ, Ohno N, Trapp BD (2013) Biology of Schwann cells. Handb Clin Neurol 11555–11579
27.
Zurück zum Zitat Armati PJ, Mathey EK (2013) An update on Schwann cell biology–immunomodulation, neural regulation and other surprises. J Neurol Sci 333(1–2):68–72PubMed Armati PJ, Mathey EK (2013) An update on Schwann cell biology–immunomodulation, neural regulation and other surprises. J Neurol Sci 333(1–2):68–72PubMed
28.
Zurück zum Zitat Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179PubMed Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179PubMed
29.
Zurück zum Zitat Jang SY, Shin YK, Park SY, Park JY, Lee HJ, Yoo YH, Kim JK, Park HT (2016) Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia 64(5):730–742PubMed Jang SY, Shin YK, Park SY, Park JY, Lee HJ, Yoo YH, Kim JK, Park HT (2016) Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia 64(5):730–742PubMed
30.
Zurück zum Zitat Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130(5):605–618PubMed Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130(5):605–618PubMed
31.
Zurück zum Zitat Xiao Y, Faucherre A, Pola-Morell L, Heddleston JM, Liu TL, Chew TL, Sato F, Sehara-Fujisawa A, Kawakami K, Lopez-Schier H (2015) High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish. Dis Model Mech 8(6):553–564PubMedPubMedCentral Xiao Y, Faucherre A, Pola-Morell L, Heddleston JM, Liu TL, Chew TL, Sato F, Sehara-Fujisawa A, Kawakami K, Lopez-Schier H (2015) High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish. Dis Model Mech 8(6):553–564PubMedPubMedCentral
32.
Zurück zum Zitat Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. GLIA 56(14):1552–1565PubMed Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. GLIA 56(14):1552–1565PubMed
33.
Zurück zum Zitat Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531PubMedPubMedCentral Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531PubMedPubMedCentral
34.
Zurück zum Zitat Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β. J Neurosci 22(8):3052–3060PubMedPubMedCentral Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β. J Neurosci 22(8):3052–3060PubMedPubMedCentral
35.
Zurück zum Zitat Perrin FE, Lacroix S, Avilés-Trieueros M, David S (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β Wallerian degeneration. Brain 128(4):854–866PubMed Perrin FE, Lacroix S, Avilés-Trieueros M, David S (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β Wallerian degeneration. Brain 128(4):854–866PubMed
36.
Zurück zum Zitat Conti G, De Pol A, Scarpini E, Vaccina F, De Riz M, Baron P, Tiriticco M, Scarlato G (2002) Interleukin-1beta and interferon-gamma induce proliferation and apoptosis in cultured Schwann cells. J Neuroimmunol 124(1–2):29–35PubMed Conti G, De Pol A, Scarpini E, Vaccina F, De Riz M, Baron P, Tiriticco M, Scarlato G (2002) Interleukin-1beta and interferon-gamma induce proliferation and apoptosis in cultured Schwann cells. J Neuroimmunol 124(1–2):29–35PubMed
37.
Zurück zum Zitat Napoli I, Noon L, Ribeiro S, Kerai A, Parrinello S, Rosenberg L, Collins M, Harrisingh M, White I, Woodhoo A, Lloyd A (2012) A central role for the ERK-signaling pathway in controlling schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73(4):729–742PubMed Napoli I, Noon L, Ribeiro S, Kerai A, Parrinello S, Rosenberg L, Collins M, Harrisingh M, White I, Woodhoo A, Lloyd A (2012) A central role for the ERK-signaling pathway in controlling schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73(4):729–742PubMed
38.
Zurück zum Zitat Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25(2):101–121PubMed Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25(2):101–121PubMed
39.
Zurück zum Zitat DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302:174–203PubMed DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302:174–203PubMed
40.
Zurück zum Zitat Reichert F, Levitzky R, Rotshenker S (1996) Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8(3):530–535PubMed Reichert F, Levitzky R, Rotshenker S (1996) Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8(3):530–535PubMed
41.
Zurück zum Zitat Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R (2014) Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports 3(4):539–547PubMedPubMedCentral Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R (2014) Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports 3(4):539–547PubMedPubMedCentral
42.
Zurück zum Zitat Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, Evangelista A, Yang Q, Salwen HR, Farrer R, Bray J, Cohn SL (2002) SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res 62(24):7357–7363PubMed Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, Evangelista A, Yang Q, Salwen HR, Farrer R, Bray J, Cohn SL (2002) SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res 62(24):7357–7363PubMed
43.
Zurück zum Zitat Crawford SE, Stellmach V, Ranalli M, Huang X, Huang L, Volpert O, De Vries GH, Abramson LP, Bouck N (2001) Pigment epithelium-derived factor (PEDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci 114(Pt 24):4421–4428PubMed Crawford SE, Stellmach V, Ranalli M, Huang X, Huang L, Volpert O, De Vries GH, Abramson LP, Bouck N (2001) Pigment epithelium-derived factor (PEDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci 114(Pt 24):4421–4428PubMed
44.
Zurück zum Zitat Reynolds ML, Woolf CJ (1993) Reciprocal Schwann cell-axon interactions. Curr Opin Neurobiol 3(5):683–693PubMed Reynolds ML, Woolf CJ (1993) Reciprocal Schwann cell-axon interactions. Curr Opin Neurobiol 3(5):683–693PubMed
45.
Zurück zum Zitat Ambros IM, Ambros PF (1995) Schwann cells in neuroblastoma. Eur J Cancer 31(4):429–434 Ambros IM, Ambros PF (1995) Schwann cells in neuroblastoma. Eur J Cancer 31(4):429–434
46.
Zurück zum Zitat Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, Suter U, Riekstina U, Werner S, Sommer L (2018) Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun 9(1):236PubMedPubMedCentral Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, Suter U, Riekstina U, Werner S, Sommer L (2018) Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun 9(1):236PubMedPubMedCentral
47.
Zurück zum Zitat Clements MP, Byrne E, Guerrero LF, Cattin AL, Zakka L, Ashraf A, Burden JJ, Khadayate S, Lloyd AC, Marguerat S, Parrinello S (2017) The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96(1):98–114 e117PubMedPubMedCentral Clements MP, Byrne E, Guerrero LF, Cattin AL, Zakka L, Ashraf A, Burden JJ, Khadayate S, Lloyd AC, Marguerat S, Parrinello S (2017) The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96(1):98–114 e117PubMedPubMedCentral
48.
Zurück zum Zitat Massoll C, Mando W, Chintala SK (2013) Excitotoxicity upregulates SARM1 protein expression and promotes Wallerian-like degeneration of retinal ganglion cells and their axons. Invest Ophthalmol Vis Sci 54(4):2771–2780PubMedPubMedCentral Massoll C, Mando W, Chintala SK (2013) Excitotoxicity upregulates SARM1 protein expression and promotes Wallerian-like degeneration of retinal ganglion cells and their axons. Invest Ophthalmol Vis Sci 54(4):2771–2780PubMedPubMedCentral
49.
Zurück zum Zitat Dyachuk V, Furlan A, Shahidi MK, Giovenco M, Kaukua N, Konstantinidou C, Pachnis V, Memic F, Marklund U, Muller T, Birchmeier C, Fried K, Ernfors P, Adameyko I (2014) Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345(6192):82–87PubMed Dyachuk V, Furlan A, Shahidi MK, Giovenco M, Kaukua N, Konstantinidou C, Pachnis V, Memic F, Marklund U, Muller T, Birchmeier C, Fried K, Ernfors P, Adameyko I (2014) Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345(6192):82–87PubMed
50.
Zurück zum Zitat Kaucka M, Adameyko I (2014) Non-canonical functions of the peripheral nerve. Exp Cell Res 321(1):17–24PubMed Kaucka M, Adameyko I (2014) Non-canonical functions of the peripheral nerve. Exp Cell Res 321(1):17–24PubMed
51.
Zurück zum Zitat Pye RJ, Woods GM, Kreiss A (2016) Devil facial tumor disease. Vet Pathol 53(4):726–736PubMed Pye RJ, Woods GM, Kreiss A (2016) Devil facial tumor disease. Vet Pathol 53(4):726–736PubMed
52.
Zurück zum Zitat Karu N, Wilson R, Hamede R, Jones M, Woods GM, Hilder EF, Shellie RA (2016) Discovery of biomarkers for tasmanian devil cancer (DFTD) by metabolic profiling of serum. J Proteome Res 15(10):3827–3840PubMed Karu N, Wilson R, Hamede R, Jones M, Woods GM, Hilder EF, Shellie RA (2016) Discovery of biomarkers for tasmanian devil cancer (DFTD) by metabolic profiling of serum. J Proteome Res 15(10):3827–3840PubMed
53.
Zurück zum Zitat Lachish S, Jones M, McCallum H (2007) The impact of disease on the survival and population growth rate of the tasmanian devil. J Anim Ecol 76(5):926–936PubMed Lachish S, Jones M, McCallum H (2007) The impact of disease on the survival and population growth rate of the tasmanian devil. J Anim Ecol 76(5):926–936PubMed
54.
Zurück zum Zitat Loh R, Hayes D, Mahjoor A, O’Hara A, Pyecroft S, Raidal S (2006) The immunohistochemical characterization of devil facial tumor disease (DFTD) in the tasmanian devil (Sarcophilus harrisii). Vet Pathol 43(6):896–903PubMed Loh R, Hayes D, Mahjoor A, O’Hara A, Pyecroft S, Raidal S (2006) The immunohistochemical characterization of devil facial tumor disease (DFTD) in the tasmanian devil (Sarcophilus harrisii). Vet Pathol 43(6):896–903PubMed
55.
Zurück zum Zitat Clark HB, Minesky JJ, Agrawal D, Agrawal HC (1985) Myelin basic protein and P2 protein are not immunohistochemical markers for Schwann cell neoplasms. A comparative study using antisera to S-100, P2, and myelin basic proteins. Am J Pathol 121(1):96–101PubMedPubMedCentral Clark HB, Minesky JJ, Agrawal D, Agrawal HC (1985) Myelin basic protein and P2 protein are not immunohistochemical markers for Schwann cell neoplasms. A comparative study using antisera to S-100, P2, and myelin basic proteins. Am J Pathol 121(1):96–101PubMedPubMedCentral
56.
Zurück zum Zitat Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P, Rebbeck CA, Obendorf D, Conlan C, Bahlo M, Blizzard CA, Pyecroft S, Kreiss A, Kellis M, Stark A, Harkins TT, Marshall Graves JA, Woods GM, Hannon GJ, Papenfuss AT (2010) The tasmanian devil transcriptome reveals Schwann Cell origins of a clonally transmissible cancer. Science 327(5961):84–87PubMedPubMedCentral Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P, Rebbeck CA, Obendorf D, Conlan C, Bahlo M, Blizzard CA, Pyecroft S, Kreiss A, Kellis M, Stark A, Harkins TT, Marshall Graves JA, Woods GM, Hannon GJ, Papenfuss AT (2010) The tasmanian devil transcriptome reveals Schwann Cell origins of a clonally transmissible cancer. Science 327(5961):84–87PubMedPubMedCentral
57.
Zurück zum Zitat Gollamudi M, Nethery D, Liu J, Kern JA (2004) Autocrine activation of ErbB2/ErbB3 receptor complex by NRG-1 in non-small cell lung cancer cell lines. Lung Cancer 43(2):135–143PubMed Gollamudi M, Nethery D, Liu J, Kern JA (2004) Autocrine activation of ErbB2/ErbB3 receptor complex by NRG-1 in non-small cell lung cancer cell lines. Lung Cancer 43(2):135–143PubMed
58.
Zurück zum Zitat Kern JA, Slebos RJ, Top B, Rodenhuis S, Lager D, Robinson RA, Weiner D, Schwartz DA (1994) C-erbB-2 expression and codon 12 K-ras mutations both predict shortened survival for patients with pulmonary adenocarcinomas. J Clin Invest 93(2):516–520PubMedPubMedCentral Kern JA, Slebos RJ, Top B, Rodenhuis S, Lager D, Robinson RA, Weiner D, Schwartz DA (1994) C-erbB-2 expression and codon 12 K-ras mutations both predict shortened survival for patients with pulmonary adenocarcinomas. J Clin Invest 93(2):516–520PubMedPubMedCentral
59.
Zurück zum Zitat Kern JA, Torney L, Weiner D, Gazdar A, Shepard HM, Fendly B (1993) Inhibition of human lung cancer cell line growth by an anti-p185HER2 antibody. Am J Respir Cell Mol Biol 9(4):448–454PubMed Kern JA, Torney L, Weiner D, Gazdar A, Shepard HM, Fendly B (1993) Inhibition of human lung cancer cell line growth by an anti-p185HER2 antibody. Am J Respir Cell Mol Biol 9(4):448–454PubMed
60.
Zurück zum Zitat Pytel P, Karrison T, Can G, Tonsgard JH, Krausz T, Montag AG (2010) Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development. Int J Surg Pathol 18(6):449–457PubMed Pytel P, Karrison T, Can G, Tonsgard JH, Krausz T, Montag AG (2010) Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development. Int J Surg Pathol 18(6):449–457PubMed
61.
Zurück zum Zitat Bunimovich YL, Keskinov AA, Shurin GV, Shurin MR (2017) Schwann cells: a new player in the tumor microenvironment. Cancer Immunol Immunother 66(8):959–968PubMed Bunimovich YL, Keskinov AA, Shurin GV, Shurin MR (2017) Schwann cells: a new player in the tumor microenvironment. Cancer Immunol Immunother 66(8):959–968PubMed
62.
Zurück zum Zitat Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13(6):397–411PubMedPubMedCentral Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13(6):397–411PubMedPubMedCentral
63.
Zurück zum Zitat Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma Lancet 369(9579):2106–2120PubMed Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma Lancet 369(9579):2106–2120PubMed
64.
Zurück zum Zitat Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP (1999) The international neuroblastoma pathology classification (the Shimada system). Cancer 86(2):364–372PubMed Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP (1999) The international neuroblastoma pathology classification (the Shimada system). Cancer 86(2):364–372PubMed
65.
Zurück zum Zitat Liu S, Tian Y, Chlenski A, Yang Q, Zage P, Salwen HR, Crawford SE, Cohn SL (2005) Cross-talk between Schwann cells and neuroblasts influences the biology of neuroblastoma Xenografts. Am J Pathol 166(3):891–900PubMedPubMedCentral Liu S, Tian Y, Chlenski A, Yang Q, Zage P, Salwen HR, Crawford SE, Cohn SL (2005) Cross-talk between Schwann cells and neuroblasts influences the biology of neuroblastoma Xenografts. Am J Pathol 166(3):891–900PubMedPubMedCentral
66.
Zurück zum Zitat Ambros IM, Attarbaschi A, Rumpler S, Luegmayr A, Turkof E, Gadner H, Ambros PF (2001) Neuroblastoma cells provoke Schwann cell proliferation in vitro. Med Pediatr Oncol 36(1):163–168PubMed Ambros IM, Attarbaschi A, Rumpler S, Luegmayr A, Turkof E, Gadner H, Ambros PF (2001) Neuroblastoma cells provoke Schwann cell proliferation in vitro. Med Pediatr Oncol 36(1):163–168PubMed
67.
Zurück zum Zitat Huang D, Rutkowski JL, Brodeur GM, Chou PM, Kwiatkowski JL, Babbo A, Cohn SL (2000) Schwann cell-conditioned medium inhibits angiogenesis. Cancer Res 60(21):5966–5971PubMed Huang D, Rutkowski JL, Brodeur GM, Chou PM, Kwiatkowski JL, Babbo A, Cohn SL (2000) Schwann cell-conditioned medium inhibits angiogenesis. Cancer Res 60(21):5966–5971PubMed
68.
Zurück zum Zitat Kwiatkowski JL, Rutkowski JL, Yamashiro DJ, Tennekoon GI, Brodeur GM (1998) Schwann cell-conditioned medium promotes neuroblastoma survival and differentiation. Cancer Res 58(20):4602–4606PubMed Kwiatkowski JL, Rutkowski JL, Yamashiro DJ, Tennekoon GI, Brodeur GM (1998) Schwann cell-conditioned medium promotes neuroblastoma survival and differentiation. Cancer Res 58(20):4602–4606PubMed
69.
Zurück zum Zitat Liu Y, Song L (2015) HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation. Int J Clin Experiment Pathol 8(1):504–510 Liu Y, Song L (2015) HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation. Int J Clin Experiment Pathol 8(1):504–510
70.
Zurück zum Zitat Mantyh PW (2006) Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 7(10):797–809PubMed Mantyh PW (2006) Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 7(10):797–809PubMed
71.
Zurück zum Zitat Everdingen MH, Rijke JM, Kessels AG, Schouten HC, Kleef M, Patijn J (2007) Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 18(9):1437–1449 Everdingen MH, Rijke JM, Kessels AG, Schouten HC, Kleef M, Patijn J (2007) Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 18(9):1437–1449
72.
Zurück zum Zitat Schmidt BL, Hamamoto DT, Simone DA, Wilcox GL (2010) Mechanism of Cancer Pain. Mol Interven 10(3):164–178 Schmidt BL, Hamamoto DT, Simone DA, Wilcox GL (2010) Mechanism of Cancer Pain. Mol Interven 10(3):164–178
73.
74.
Zurück zum Zitat Vendrell I, Macedo D, Alho I, Dionsio MR, Costa L (2015) Treatment of cancer pain by targeting cytokines. Mediat Inflam 984570:11 Vendrell I, Macedo D, Alho I, Dionsio MR, Costa L (2015) Treatment of cancer pain by targeting cytokines. Mediat Inflam 984570:11
75.
Zurück zum Zitat Jimenez-Andrade JM, Ghilardi JR, Castaneda-Corral G, Kuskowski MA, Mantyh PW (2011) Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152(11):2564–2574PubMedPubMedCentral Jimenez-Andrade JM, Ghilardi JR, Castaneda-Corral G, Kuskowski MA, Mantyh PW (2011) Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152(11):2564–2574PubMedPubMedCentral
76.
Zurück zum Zitat Campana WM (2007) Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun 21(5):522–527PubMedPubMedCentral Campana WM (2007) Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun 21(5):522–527PubMedPubMedCentral
77.
Zurück zum Zitat Hoke A (2006) Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2(8):448–454PubMed Hoke A (2006) Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2(8):448–454PubMed
78.
Zurück zum Zitat Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24(8):450–455PubMed Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24(8):450–455PubMed
79.
Zurück zum Zitat Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM (2009) Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain 13(2):138–145PubMed Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM (2009) Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain 13(2):138–145PubMed
80.
Zurück zum Zitat Ducourneau VR, Dolique T, Hachem-Delaunay S, Miraucourt LS, Amadio A, Blaszczyk L, Jacquot F, Ly J, Devoize L, Oliet SH, Dallel R, Mothet JP, Nagy F, Fenelon VS, Voisin DL (2014) Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain 155(2):275–291PubMed Ducourneau VR, Dolique T, Hachem-Delaunay S, Miraucourt LS, Amadio A, Blaszczyk L, Jacquot F, Ly J, Devoize L, Oliet SH, Dallel R, Mothet JP, Nagy F, Fenelon VS, Voisin DL (2014) Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain 155(2):275–291PubMed
81.
Zurück zum Zitat Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK (2016) Targeting glia for bone cancer pain. Expert Opin Ther Targets 20(11):1365–1374PubMed Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK (2016) Targeting glia for bone cancer pain. Expert Opin Ther Targets 20(11):1365–1374PubMed
82.
Zurück zum Zitat Demir IE, Tieftrunk E, Schorn S, Saricaoglu OC, Pfitzinger PL, Teller S, Wang K, Waldbaur C, Kurkowski MU, Wormann SM, Shaw VE, Kehl T, Laschinger M, Costello E, Algul H, Friess H, Ceyhan GO (2016) Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia. Gut 65(6):1001–1014PubMed Demir IE, Tieftrunk E, Schorn S, Saricaoglu OC, Pfitzinger PL, Teller S, Wang K, Waldbaur C, Kurkowski MU, Wormann SM, Shaw VE, Kehl T, Laschinger M, Costello E, Algul H, Friess H, Ceyhan GO (2016) Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia. Gut 65(6):1001–1014PubMed
83.
Zurück zum Zitat Magnon C (2015) Role of the autonomic nervous system in tumorigenesis and metastasis. Mol Cell Oncol 2(2):e975643PubMedPubMedCentral Magnon C (2015) Role of the autonomic nervous system in tumorigenesis and metastasis. Mol Cell Oncol 2(2):e975643PubMedPubMedCentral
84.
Zurück zum Zitat Jobling P, Pundavela J, Oliveira SM, Roselli S, Walker MM, Hondermarck H (2015) Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res 75(9):1777–1781PubMed Jobling P, Pundavela J, Oliveira SM, Roselli S, Walker MM, Hondermarck H (2015) Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res 75(9):1777–1781PubMed
85.
86.
Zurück zum Zitat Keskinov AA, Tapias V, Watkins SC, Ma Y, Shurin MR, Shurin GV (2016) Impact of the sensory neurons on melanoma growth in vivo. PLoS One 11(5):e0156095PubMedPubMedCentral Keskinov AA, Tapias V, Watkins SC, Ma Y, Shurin MR, Shurin GV (2016) Impact of the sensory neurons on melanoma growth in vivo. PLoS One 11(5):e0156095PubMedPubMedCentral
87.
Zurück zum Zitat Batsakis JG (1985) Nerves and neurotropic carcinomas. Ann Otol Rhinol Laryngol 94(4 Pt 1):426–427PubMed Batsakis JG (1985) Nerves and neurotropic carcinomas. Ann Otol Rhinol Laryngol 94(4 Pt 1):426–427PubMed
88.
Zurück zum Zitat Bapat AA, Hostetter G, Von Hoff DD, Han H (2011) Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11(10):695–707PubMed Bapat AA, Hostetter G, Von Hoff DD, Han H (2011) Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11(10):695–707PubMed
89.
Zurück zum Zitat Varsha BK, Radhika MB, Makarla S, Kuriakose MA, Kiran GS, Padmalatha GV (2015) Perineural invasion in oral squamous cell carcinoma: case series and review of literature. J Oral Maxillofac Pathol 19(3):335–341PubMedPubMedCentral Varsha BK, Radhika MB, Makarla S, Kuriakose MA, Kiran GS, Padmalatha GV (2015) Perineural invasion in oral squamous cell carcinoma: case series and review of literature. J Oral Maxillofac Pathol 19(3):335–341PubMedPubMedCentral
90.
Zurück zum Zitat Knijn N, Mogk SC, Teerenstra S, Simmer F, Nagtegaal ID (2016) Perineural invasion is a strong prognostic factor in colorectal cancer: a systematic review. Am J Surg Pathol 40(1):103–112PubMed Knijn N, Mogk SC, Teerenstra S, Simmer F, Nagtegaal ID (2016) Perineural invasion is a strong prognostic factor in colorectal cancer: a systematic review. Am J Surg Pathol 40(1):103–112PubMed
91.
Zurück zum Zitat Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K (2018) Role of the nervous system in cancer metastasis. J Exp Clin Cancer Res 37(1):5–17PubMedPubMedCentral Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K (2018) Role of the nervous system in cancer metastasis. J Exp Clin Cancer Res 37(1):5–17PubMedPubMedCentral
92.
Zurück zum Zitat Cui L, Shi Y, Zhang GN (2015) Perineural invasion as a prognostic factor for cervical cancer: a systematic review and meta-analysis. Arch Gynecol Obstet 292(1):13–19PubMed Cui L, Shi Y, Zhang GN (2015) Perineural invasion as a prognostic factor for cervical cancer: a systematic review and meta-analysis. Arch Gynecol Obstet 292(1):13–19PubMed
93.
Zurück zum Zitat Gao A, Wang L, Li J, Li H, Han Y, Ma X, Sun Y (2016) Prognostic value of perineural invasion in esophageal and esophagogastric junction carcinoma: a meta-analysis. Dis Markers 5:7340180 Gao A, Wang L, Li J, Li H, Han Y, Ma X, Sun Y (2016) Prognostic value of perineural invasion in esophageal and esophagogastric junction carcinoma: a meta-analysis. Dis Markers 5:7340180
94.
Zurück zum Zitat Olar A, He D, Florentin D, Ding Y, Ayala G (2014) Biological correlates of prostate cancer perineural invasion diameter. Human Pathol 45(7):1365–1369 Olar A, He D, Florentin D, Ding Y, Ayala G (2014) Biological correlates of prostate cancer perineural invasion diameter. Human Pathol 45(7):1365–1369
95.
Zurück zum Zitat Demir IE, Boldis A, Pfitzinger PL, Teller S, Brunner E, Klose N, Kehl T, Maak M, Lesina M, Laschinger M, Janssen KP, Algul H, Friess H, Ceyhan GO (2014) Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst 106(8):1 Demir IE, Boldis A, Pfitzinger PL, Teller S, Brunner E, Klose N, Kehl T, Maak M, Lesina M, Laschinger M, Janssen KP, Algul H, Friess H, Ceyhan GO (2014) Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst 106(8):1
96.
Zurück zum Zitat Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee SY, Barajas F, Chen CH, Bakst RL, Vakiani E, Hall A, Wong RJ (2016) Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 126(4):1538–1554PubMedPubMedCentral Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee SY, Barajas F, Chen CH, Bakst RL, Vakiani E, Hall A, Wong RJ (2016) Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 126(4):1538–1554PubMedPubMedCentral
97.
98.
Zurück zum Zitat Sroka IC, Chopra H, Das L, Gard JM, Nagle RB, Cress AE (2016) Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J Cell Biochem 117(2):491–499PubMedPubMedCentral Sroka IC, Chopra H, Das L, Gard JM, Nagle RB, Cress AE (2016) Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J Cell Biochem 117(2):491–499PubMedPubMedCentral
99.
Zurück zum Zitat Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N, Ojima H, Kitago M, Shinoda M, Hashiguchi A, Sakamoto M (2018) Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int 68(4):214–223PubMed Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N, Ojima H, Kitago M, Shinoda M, Hashiguchi A, Sakamoto M (2018) Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int 68(4):214–223PubMed
100.
Zurück zum Zitat Shan C, Wei J, Hou R, Wu B, Yang Z, Wang L, Lei D, Yang X (2016) Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep 35(1):427–435PubMed Shan C, Wei J, Hou R, Wu B, Yang Z, Wang L, Lei D, Yang X (2016) Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep 35(1):427–435PubMed
101.
Zurück zum Zitat Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR (2018) Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res 78(20):5927–5939PubMed Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR (2018) Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res 78(20):5927–5939PubMed
102.
Zurück zum Zitat Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100(6):1431–1448PubMed Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100(6):1431–1448PubMed
103.
Zurück zum Zitat McKerracher L, Rosen KM (2015) MAG, myelin and overcoming growth inhibition in the CNS. Front Mol Neurosci 8:51–56PubMedPubMedCentral McKerracher L, Rosen KM (2015) MAG, myelin and overcoming growth inhibition in the CNS. Front Mol Neurosci 8:51–56PubMedPubMedCentral
104.
Zurück zum Zitat Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6(250):250ra115PubMedPubMedCentral Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6(250):250ra115PubMedPubMedCentral
105.
Zurück zum Zitat Bakst RL, Barajas F, He S, Chernichenko N, Chen C, He S, McNamara W, Lee S, Deborde S, Wong RJ (2013) Are Schwann cells a target in radiation for perineural invasion? Int J Radiat Oncol Biol Phys 87(25):S629 Bakst RL, Barajas F, He S, Chernichenko N, Chen C, He S, McNamara W, Lee S, Deborde S, Wong RJ (2013) Are Schwann cells a target in radiation for perineural invasion? Int J Radiat Oncol Biol Phys 87(25):S629
106.
Zurück zum Zitat Lehmann HC, Hoke A (2010) Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets 9(6):801–806PubMedPubMedCentral Lehmann HC, Hoke A (2010) Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets 9(6):801–806PubMedPubMedCentral
107.
Zurück zum Zitat Magnaghi V, Procacci P, Tata AM (2009) Chap. 15: novel pharmacological approaches to Schwann cells as neuroprotective agents for peripheral nerve regeneration. Int Rev Neurobiol 87:295–315PubMed Magnaghi V, Procacci P, Tata AM (2009) Chap. 15: novel pharmacological approaches to Schwann cells as neuroprotective agents for peripheral nerve regeneration. Int Rev Neurobiol 87:295–315PubMed
Metadaten
Titel
Schwann cells shape the neuro-immune environs and control cancer progression
verfasst von
German V. Martyn
Galina V. Shurin
Anton A. Keskinov
Yuri L. Bunimovich
Michael R. Shurin
Publikationsdatum
03.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 11/2019
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-018-02296-3

Weitere Artikel der Ausgabe 11/2019

Cancer Immunology, Immunotherapy 11/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.