Skip to main content
Erschienen in: BMC Endocrine Disorders 1/2019

Open Access 01.12.2019 | Research article

Serum zinc-α2-glycoprotein levels are elevated and correlated with thyroid hormone in newly diagnosed hyperthyroidism

verfasst von: Xin-Hua Xiao, Xiao-Yan Qi, Jiao-Yang Li, Yi-Bing Wang, Ya-Di Wang, Zhe-Zhen Liao, Jing Yang, Li Ran, Ge-Bo Wen, Jiang-Hua Liu

Erschienen in: BMC Endocrine Disorders | Ausgabe 1/2019

Abstract

Background

Zinc-α2-glycoprotein (ZAG) is a recently novel lipolytic adipokine implicated in regulation of glucose and lipid metabolism in many metabolic disorders. In vitro and animal studies suggest that thyroid hormones (TH) up-regulates ZAG production in hepatocytes. However, there is no data evaluating the possible relationship between ZAG and TH in a human model of hyperthyroidism. The objective of the present study is to assess the association of serum ZAG levels with TH and lipid profile in patients with hyperthyroidism before and after methimazole treatment.

Methods

A total of 120 newly diagnosed overt hyperthyroidism and 122 healthy control subjects were recruited. Of them, 39 hyperthyroidism patients were assigned to receive methimazole treatment as follow-up study for 2 months.

Results

The clinical consequence showed that serum ZAG levels were elevated in patients with hyperthyroidism (P < 0.01). Adjust for age, gender and BMI, serum ZAG levels were positively related with serum free T3 (FT3), free T4 (FT4) levels and negatively correlated with serum total cholesterol (TC), low density lipoprotein cholesterol (LDLC) levels in hyperthyroidism subjects (all P < 0.01). After methimazole treatment, serum ZAG levels were decreased and the decline was associated with decreased FT3, FT4 and increased TC levels (all P < 0.001).

Conclusion

We conclude that ZAG may be involved in the pathogenesis of lipid metabolism disorder in patients with hyperthyroidism.

Trial registration

ChiCTR-ROC-17012943. Registered 11 October 2017, retrospectively registered.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12902-019-0336-9) contains supplementary material, which is available to authorized users.
Xin-Hua Xiao and Xiao-Yan Qi contributed equally to this work.
Abkürzungen
ALT
Alanine aminotransferase AST: Aspartate aminotransferase
BMI
Body mass index DBP: Diastolic blood pressure
DBIL
Conjugated bilirubin FPG: Fasting plasma glucose
FT3
Free T3 FT4: Free T4 HDLC: High-density lipoprotein cholesterol
LDLC
Low-density lipoprotein cholesterol SBP:Systolic blood pressure
TBIL
Tobal bilibrubin TC: Total cholesterol TG: Triglyceride
TH
Thyroid hormone TRAb: TSH receptor antibody
TSH
Thyroid-stimulating hormone WC: Waist circumference
ZAG
Zinc-α2-glycoprotein

Introduction

Hyperthyroidism is a clinical situation where there is excess TH in the circulation due to increased synthesis of hormone from a hyperactive thyroid gland [1]. In addition to typical clinical symptoms like resting energy expenditure and weight loss directly related to excess TH, the patients with hyperthyroidism are likely to accompanied by changes in lipid metabolism [2, 3]. However, the underlying mechanisms are not fully elucidated.
Adipose tissue secretes a variety of active biological substances called adipokines that act in an autocrine, paracrine and endocrine manner [4]. Several lines of evidence have shown that adipokines, such as adiponectin, leptin, resistin and fibroblast growth factor 21, etc., play an important role in regulating energy expenditure and metabolism of lipids [58]. Recently, researchers demonstrate that apart from abnormal circulating levels of TH and thyroid-stimulating hormone (TSH), changes in profile of adipokines (like adiponectin, leptin and resistin, etc.) also have been found in patients with hyperthyroidism [911]. Moreover, adipocytes express high levels of TH and TSH receptors which function similar to those in thyroid, suggesting TH may participates in the regulation of adipocyte functions [12]. Thereby, thyroid dysfunction may influence secretion of adipokines, which contributes to lipids metabolic disorders.
Zinc-alpha-2-glycoprotein (ZAG) is a recently characterized adipokine synthesized and secreted mainly by adipose tissues and liver [13]. It is a 43-kDa soluble glycoprotein first isolated from human plasma and proposed as a tumour-derived cancer cachexia [14]. It is found in various bodily fluids such as plasma, semen, sweat, milk and cerebrospinal fluid [15]. The plasma concentration of ZAG is affected by several factors, including body weight and health status. ZAG has been found to have a wide range of biological activities, but the recent interest in ZAG function comes from its specific lipolytic action and its potential role in body weight regulation. Very recently, we further explained the functions of ZAG, it can protect against obesity-associated fatty liver by ameliorating hepatic steatosis, insulin resistance and inflammation, as well as promote browning in adipocytes, once again indicating its novel role in lipid metabolism [1618].
Given that both TH and ZAG are involved in regulating energy expenditure and metabolism of lipids, moreover, in vitro and animal studies suggest that TH up-regulates ZAG production in hepatocytes [19], we suspect that overt hyperthyroidism might alter the production of ZAG. However, so far, there are limited human studies of ZAG expression and little is known of ZAG’s role in hyperthyroidism. In this study, we investigated the association of serum ZAG levels with TH and lipid profile in patients with hyperthyroidism before and after methimazole treatment.

Materials and methods

Subjects

A total of 120 consecutive newly diagnosed overt hyperthyroidism (37 men and 83 women) were enrolled from the First Affiliated Hospital of University of South China (Hengyang, China), from October 2015 to August 2016. All of the subjects were diagnosed with overt hyperthyroidism by typical symptom, elevated serum TH, reduced thyroid-stimulating hormone (TSH), and TSH receptor antibody (TRAb) levels in these patients might increase or normal. Additionally, 122 healthy individuals who had undergone a routine physical examination were recruited as the control group. All of the hyperthyroidism patients were drug-naive before recruitment. Thirty-nine hyperthyroid patients received methimazole treatment for two months. No dietary recommendations were given. Exclusion criteria for both groups included age < 18 years, BMI > 35 kg/m2, known cardiovascular disease, neoplasms, smoking, diabetes, hypertension, and renal impairment (serum creatinine 120 μmol/L).

Ethics statement

The study protocol was approved by the Ethics Committee of the First Affiliated Hospital of University of South China (Number: 2015-05-01), and written informed consent was obtained from all participants before their inclusion in the study. The items of the consent form include aim, inclusion and exclusion criteria, procedures, harm and benefit, medical care, privacy and right, and withdrawal. All procedures were in accordance with the Helsinki Declaration.

Biochemical measurements

A standard questionnaire was used to collect the information about health status and medications. Blood samples were collected from 8 to 9 am after a 12-h overnight fast, and serum was separated and stored at − 20 °C for assay. Fasting plasma glucose (FPG), FT3, FT4 and TSH were measured electrochemiluminescence immunoassay (Roche Diagnostics). Total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDLC), and high-density lipoprotein cholesterol (HDLC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL) and conjugated bilirubin (DBIL) levels were measured by colorimetric enzymatic assays with an autoanalyzer. The serum concentrations of ZAG were determined using ELISA according to the manufacturer’s protocols (Biovendor, Modrice, Czech Republic).

Statistical analysis

All analyses were performed with Statistical Package for Social Sciences version 17.0 (SPSS, Chicago, IL, USA). Normal distributed data were expressed as mean ± SD. Data that were not normally distributed, as determined using Kolmogorox-Smirnov test, were logarithmically transformed before analysis and expressed as median with interquartile range (IQR). χ2 and one-way ANOVA tests were used for comparison of categorical and continuous variables, respectively. The Student’s paired t test was used for comparison of the data before and after anti-thyroid treatment. The Pearson correlation coefficient was used for analyses of correlations. Multiple stepwise regression was performed to determine variables that had independent associations with serum ZAG. P-values < 0.05 (two-sided) were considered statistically significant.

Results

Subject characteristics

The clinical characteristics of study subjects are shown in Table 1. The age and sex are comparable between controls and patients. Compared to controls, patients with hyperthyroidism had higher FT4, FT3, TRAb, ZAG levels and lower TSH levels (all P < 0.001). In addition, DBP, ALT, TBIL and DBIL levels were increased and BMI, WC, TC, TG, LDLC levels were decreased in hyperthyroid patients (P < 0.01). However, no significant difference was found in SBP, FPG, HDLC and AST levels between two groups.
Table 1
Clinical and biochemical features in study subjects
Variables
Controls
Hyperthyroidism patients
P value
No. of subjects
122
120
Gender, M/F
40/82
35/85
0.580
Age (years)
41.89 ± 9.64
40.22 ± 10.88
0.208
BMI (kg/m2)
23.60 ± 2.24
21.24 ± 2.91
< 0.001
WC (cm)
81 ± 8
76 ± 7
< 0.001
SBP (mmHg)
119 ± 11
121 ± 10
0.174
DBP (mmHg)
73 ± 7
77 ± 8
< 0.001
TC (mM)
4.76 ± 1.00
3.79 ± 0.85
< 0.001
TG (mM)£
1.38 (0.99,1.91)
1.07 (0.86,1.37)
< 0.001
LDLC (mM)
2.78 ± 0.83
1.62 ± 0.55
< 0.001
HDLC (mM)
1.46 ± 0.36
1.53 ± 0.40
0.194
ALT (IU/L)£
21 (14,29)
25 (17,38)
< 0.001
AST (IU/L)£
23 (18,29)
24 (19,31)
0.081
TBIL (μmol/l)£
11.4 (8.2,15.3)
13.6 (10.3,18.2)
0.002
DBIL (μmol/l)£
3.3 (2.5,4.5)
4.6 (3.4,6.2)
< 0.001
FPG (mM)
5.13 ± 0.54
5.21 ± 0.61
0.293
FT3 (pmol/L)£
4.64 (4.01,5.63)
13.72 (9.71,19.18)
< 0.001
FT4 (pmol/L)£
16.36 (14.30,18.43)
39.00 (29.46,54.32)
< 0.001
TSH (uIU/ml)
2.560 (1.558,3.390)
0.008 (0.004,0.049)
< 0.001
TRAb (IU/ml)£
3.10 (0.70,5.58)
29.88 (20.66,63.68)
< 0.001
ZAG (mg/L)
47.81 ± 12.90
66.51 ± 13.53
< 0.001

Correlations of serum ZAG levels with thyroid hormone and other clinical parameters

We also investigated the associations between ZAG and the other parameters in hyperthyroidism subjects. ZAG was negatively correlated with BMI, TC, LDLC and TSH (all P < 0.05), positively correlated with AST, FT3, FT4 (all P < 0.05). After adjustment for age, gender and BMI, serum ZAG levels were positively related with serum FT3, FT4 levels, the correlation coefficient was 0.324 (P < 0.001) and 0.341 (P < 0.001), respectively (Fig. 1 a-b). In addition, serum ZAG levels were negatively correlated with serum TC and LDLC levels (correlation coefficient = − 0.275 and − 0.263, all P < 0.01, Fig. 1 c-d). However, there was no significant correlation between serum ZAG and SBP or DBP, TG, HDLC, ALT, TBIL, DBIL, TSH, TRAb. To determine which parameters were independently associated with serum ZAG, multiple stepwise regression analysis was performed. Age, gender, BMI, TC, LDLC, ALT, AST, FT3, FT4, and TSH were analyzed. FT3 was found to be independently associated with serum ZAG (β = 1.230, P < 0.001).

Influences of methimazole treatment on metabolic parameters and serum ZAG levels

No serious adverse events were recorded during the follow-up observation study. The levels of FT3 and FT4 were significantly decreased (P < 0.01) from baseline while the levels of Weight, TC and LDLC were dramatically increased (P < 0.01) in patients with overt hyperthyroidism (Table 2). Serum ZAG levels was decreased from 64.85 ± 12.84 mg/l to 55.72 ± 8.83 mg/l after methimazole treatment (P < 0.001) (Table 2). Interestingly, the decreased ZAG levels were significantly correlated with the decreased FT3, FT4 and increased TC levels, even after adjustment for the independent variables of age, gender and BMI (FT3: partial r = 0.381; FT4: partial r = 0.362, TC: partial r = − 0.364, all P < 0.05) (Fig. 2).
Table 2
Comparison of clinical parameters after methimazole treatment in patients with overt hyperthyroidism
Parameters
Clinical hyperthyroidism group (n = 39)
Baseline
After treatment
Age, y
40.31 ± 11.45
40.31 ± 11.45
Gender, M/F, n
15/24
15/24
Weight (kg)
54.60 ± 6.72
56.83 ± 6.38**
BMI, kg/m2
20.67 ± 2.75
21.90 ± 2.54
SBP (mmHg)
120 ± 9
118 ± 10
DBP (mmHg)
76 ± 7
74 ± 7
TC (mM)
3.63 ± 0.83
3.82 ± 0.76**
TG (mM)
1.10 ± 0.37
1.15 ± 0.34
LDLC (mM)
1.51 ± 0.46
1.81 ± 0.51**
HDLC (mM)
1.48 ± 0.42
1.49 ± 0.35
ALT (IU/L)
31 ± 21
32 ± 15
AST (IU/L)
30 ± 11
31 ± 12
FT3 (pmol/L)
14.68 ± 6.39
9.40 ± 4.59**
FT4 (pmol/L)£
34.12 (27.61,48.93)
25.69 (21.05,30.68)**
TSH (pmol/L)£
0.006 (0.004,0.010)
0.180 (0.094,0.400)**
ZAG (mg/L)
64.85 ± 12.84
55.72 ± 8.83**

Discussion

In this study, we found that serum ZAG levels were increased in patients with newly diagnosed hyperthyroidism and declined after methimazole treatment. Serum ZAG levels were positively related with serum FT3, FT4 levels and negatively correlated with serum TC and LDLC levels in hyperthyroidism subjects after adjustment for age, gender and BMI. Moreover, the decline of ZAG levels was significantly correlated with the decrease of FT3, FT4 and increased TC levels. These findings present for the first time the clinical relevance between TH and serum ZAG levels in hyperthyroidism subjects.
Epidemiological studies have shown that hyperthyroidism results in a hyper-metabolic state associated with increased energy expenditure causing weight loss [20]. Significantly, the patients with hyperthyroidism are likely to accompanied by changes in lipid metabolism [2]. Our study was consistent with the notion and showed that hyperthyroid patients had decreased levels of blood lipids and displayed an ectomorphic type as measured by BMI and WC. Numerous putative underlying mechanisms have been proposed to explain this changes in lipid metabolism: i) TH can directly trigger a series of pathway mainly involved in lipid metabolism and energy homeostasis, such as PI3K/Akt, MAPK/ERK, SIRT1, peroxisome proliferator activated receptors (PPARs), etc. [21, 22]. ii) More importantly, TH participates in the regulation of adipocyte functions including secreting adipokines [10, 23, 24]. As refered before, there is striking evidence that TH excess lead to prominent changes in classical adipokines (like adiponectin, leptin and resistin, etc.), we wonder serum ZAG, a novel lipid-mobilizing adipokine, whether changed in hyperthyroidism patients.
To the best of our knowledge, there is only one study investigating serum ZAG concentration in hyperthyroid patients [19]. It concluded that serum ZAG levels were increased in patients with hyperthyroidism and declined after methimazole treatment. However, they did not have data demonstrating the association of serum ZAG levels with TH and lipid profile in patients with hyperthyroidism before and after treatment. Here, we detected consistent changes in serum ZAG levels in patients with newly diagnosed hyperthyroidism. Furthermore, association analyses showed that serum ZAG levels were positively related with serum FT3, FT4 levels after adjusting for age, gender and BMI in patients with newly diagnosed hyperthyroidism both before and after treatment with methimazole. Remarkably, multiple regression confirmed the FT3 was independently related to serum ZAG. Combined with a previous in vivo study which suggested TH could increase ZAG production [19], we therefore concluded that the increased circulating ZAG levels in hyperthyroidism patients may partly due to TH excess.
Many works documented the alteration in serum concentrations of ZAG was closely linked with dyslipidemia in various endocrine metabolic disorders, such as type 2 diabetes mellitus, polycystic ovary syndrome, growth hormone deficiency, Cushing’s syndrome, obesity, non-alcoholic fatty liver disease and metabolic syndrome [2531]. In addition, Studies performed by Olofsson et al. showed that serum levels of ZAG were significantly correlated with serum TC and TG levels, and a polymorphism in the ZAG gene was also associated with circulating TC levels in healthy and obese Swedish population, suggesting that ZAG is involved in lipid metabolism [32]. In good agreement, we observed in the present study that the serum levels of ZAG were negatively associated with TC, LDLC levels after adjusting for age, gender and BMI in patients with newly diagnosed hyperthyroidism both before and after treatment with methimazole. Hence, these lines of clinical evidences suggest a potential role of ZAG in pathogenesis of metabolic syndrome.
There are several limitations in our current study. First, the study was a non-randomized controlled trial, which may cause some bias. Second, the sample size was relatively small and consisted entirely of Chinese people, which may have hampered the generalization of our findings. Despite there are some limitations, it seems likely that ZAG may have a pathophysiological role in lipid metabolism in patients with hyperthyroidism. Further detailed studies are still needed to better elucidate the underlying molecular mechanisms.

Conclusion

Our study demonstrates that serum ZAG levels are elevated in patients with hyperthyroidism and decreased after methimazole treatment. The decline of ZAG was associated with FT3, FT4 and TC levels. Our findings provide clinical evidence that ZAG may be involved in the pathogenesis of lipid metabolism disorder in patients with hyperthyroidism (Additional file 1).

Acknowledgments

Not applicable.

Funding

This work was supported by research grants from the National Natural Science Foundation of China (81870595) and Major special projects of Hunan provincial health and family planning commission(A2017011).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
The study protocol was approved by the Ethics Committee of the First Affiliated Hospital of University of South China, and written informed consent was obtained from all participants before their inclusion in the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Maji D. Hyperthyroidism. J Indian Med Assoc. 2006;104(10):563–4 566-7. Maji D. Hyperthyroidism. J Indian Med Assoc. 2006;104(10):563–4 566-7.
2.
Zurück zum Zitat Song Y, Yao X, Ying H. Thyroid hormone action in metabolic regulation. Protein Cell. 2011;2:358–68.CrossRefPubMed Song Y, Yao X, Ying H. Thyroid hormone action in metabolic regulation. Protein Cell. 2011;2:358–68.CrossRefPubMed
3.
Zurück zum Zitat Mashita K, Tarui S. Thyroid gland dysfunction and metabolic abnormalities, with special reference to abnormal lipid and glucose metabolism. Nihon Rinsho. 1980;38(3):1656–65. Mashita K, Tarui S. Thyroid gland dysfunction and metabolic abnormalities, with special reference to abnormal lipid and glucose metabolism. Nihon Rinsho. 1980;38(3):1656–65.
4.
Zurück zum Zitat Kokkinos S, Papazoglou D, Zisimopoulos A, Papanas N, Tiaka E, Antonoglou C, Maltezos E. Retinol binding Protein-4 and adiponectin levels in thyroid overt and subclinical dysfunction. Exp Clin Endocrinol Diabetes. 2016;124(2):87–92. Kokkinos S, Papazoglou D, Zisimopoulos A, Papanas N, Tiaka E, Antonoglou C, Maltezos E. Retinol binding Protein-4 and adiponectin levels in thyroid overt and subclinical dysfunction. Exp Clin Endocrinol Diabetes. 2016;124(2):87–92.
5.
Zurück zum Zitat Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.CrossRef Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.CrossRef
6.
Zurück zum Zitat Rodríguez AJ, Neeman T, Giles AG, Mastronardi CA, Paz Filho G. Leptin replacement therapy for the treatment of non-HAART associated lipodystrophy syndromes: a meta-analysis into the effects of leptin on metabolic and hepatic endpoints. Arq Bras Endocrinol Metabol. 2014;58(8):783–97.CrossRef Rodríguez AJ, Neeman T, Giles AG, Mastronardi CA, Paz Filho G. Leptin replacement therapy for the treatment of non-HAART associated lipodystrophy syndromes: a meta-analysis into the effects of leptin on metabolic and hepatic endpoints. Arq Bras Endocrinol Metabol. 2014;58(8):783–97.CrossRef
7.
Zurück zum Zitat Adeghate E. An update on the biology and physiology of resistin. Cell Mol Life Sci. 2004;61(19–20):2485–96.CrossRef Adeghate E. An update on the biology and physiology of resistin. Cell Mol Life Sci. 2004;61(19–20):2485–96.CrossRef
8.
Zurück zum Zitat Luo Y, Ye S, Chen X, Gong F, Lu W, Li X. Rush to the fire: FGF21 extinguishes metabolic stress, metaflammation and tissue damage. Cytokine Growth Factor Rev. 2017;38:59–65.CrossRef Luo Y, Ye S, Chen X, Gong F, Lu W, Li X. Rush to the fire: FGF21 extinguishes metabolic stress, metaflammation and tissue damage. Cytokine Growth Factor Rev. 2017;38:59–65.CrossRef
9.
Zurück zum Zitat Bossowski A, Sawicka B, Szalecki M, Koput A, Wysocka J, Zelazowska-Rutkowska B. Analysis of serum adiponectin, resistin and leptin levels in children and adolescents with autoimmune thyroid disorders. J Pediatr Endocrinol Metab. 2010;23:369–77.CrossRef Bossowski A, Sawicka B, Szalecki M, Koput A, Wysocka J, Zelazowska-Rutkowska B. Analysis of serum adiponectin, resistin and leptin levels in children and adolescents with autoimmune thyroid disorders. J Pediatr Endocrinol Metab. 2010;23:369–77.CrossRef
10.
Zurück zum Zitat Chen Y, Wu X, Wu R, Sun X, Yang B, Wang Y, Xu Y. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep. 2016;19:6–26174. Chen Y, Wu X, Wu R, Sun X, Yang B, Wang Y, Xu Y. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep. 2016;19:6–26174.
11.
Zurück zum Zitat Wang G, Liu J, Yang N, Hu Y, Zhang H, Miao L, Yao Z, Xu Y. Levothyroxine treatment restored the decreased circulating fibroblast growth factor 21 levels in patients with hypothyroidism. Eur J Intern Med. 2016;31:94–8.CrossRef Wang G, Liu J, Yang N, Hu Y, Zhang H, Miao L, Yao Z, Xu Y. Levothyroxine treatment restored the decreased circulating fibroblast growth factor 21 levels in patients with hypothyroidism. Eur J Intern Med. 2016;31:94–8.CrossRef
12.
Zurück zum Zitat Nannipieri M1, Cecchetti F, Anselmino M, Camastra S, Niccolini P, Lamacchia M, Rossi M, Iervasi G, Ferrannini E. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes 2009; 33: 1001–1006. Nannipieri M1, Cecchetti F, Anselmino M, Camastra S, Niccolini P, Lamacchia M, Rossi M, Iervasi G, Ferrannini E. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes 2009; 33: 1001–1006.
13.
Zurück zum Zitat Cabassi A, Tedeschi S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr Opin Clin Nutr Metab Care. 2013;16(3):267–71.CrossRefPubMed Cabassi A, Tedeschi S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr Opin Clin Nutr Metab Care. 2013;16(3):267–71.CrossRefPubMed
14.
Zurück zum Zitat BURGI W, SCHMID K. Preparation and properties of Zn-alpha 2-glycoprotein of normal human plasma. J Biol Chem. 1961;236:1066–74. BURGI W, SCHMID K. Preparation and properties of Zn-alpha 2-glycoprotein of normal human plasma. J Biol Chem. 1961;236:1066–74.
15.
Zurück zum Zitat Hassan MI, Bilgrami S, Kumar V, Singh N, Yadav S, Kaur P, Singh TP. Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. J Mol Biol. 2008;384(3):663–72.CrossRef Hassan MI, Bilgrami S, Kumar V, Singh N, Yadav S, Kaur P, Singh TP. Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. J Mol Biol. 2008;384(3):663–72.CrossRef
16.
Zurück zum Zitat Xiao X, Li H, Qi X, Wang Y, Xu C, Liu G, Wen G, Liu J. Zinc alpha2 glycoprotein alleviates palmitic acid-induced intracellular lipid accumulation in hepatocytes. Mol Cell Endocrinol. 2017;439:155–64.CrossRef Xiao X, Li H, Qi X, Wang Y, Xu C, Liu G, Wen G, Liu J. Zinc alpha2 glycoprotein alleviates palmitic acid-induced intracellular lipid accumulation in hepatocytes. Mol Cell Endocrinol. 2017;439:155–64.CrossRef
17.
Zurück zum Zitat Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun. 2018;496(2):287–93.CrossRef Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun. 2018;496(2):287–93.CrossRef
19.
Zurück zum Zitat Simo R, Hernandez C, Saez-Lopez C, Soldevila B, Puig-Domingo M, Selva DM. Thyroid hormone upregulates zinc-alpha2-glycoprotein production in the liver but not in adipose tissue. PLoS One. 2014;9:e85753.CrossRefPubMed Simo R, Hernandez C, Saez-Lopez C, Soldevila B, Puig-Domingo M, Selva DM. Thyroid hormone upregulates zinc-alpha2-glycoprotein production in the liver but not in adipose tissue. PLoS One. 2014;9:e85753.CrossRefPubMed
20.
Zurück zum Zitat Li H, Yuan X, Liu L, Zhou J, Li C, Yang P, Bu L, Zhang M, Qu S. Clinical evaluation of various thyroid hormones on thyroid function. Int J Endocrinol 2014; 2014: 618572. Li H, Yuan X, Liu L, Zhou J, Li C, Yang P, Bu L, Zhang M, Qu S. Clinical evaluation of various thyroid hormones on thyroid function. Int J Endocrinol 2014; 2014: 618572.
21.
Zurück zum Zitat Senese R, Lasala P, Leanza C, de Lange P. New avenues for regulation of lipid metabolism by thyroid hormones and analogs. Front Physiol 2014; 5:475. Senese R, Lasala P, Leanza C, de Lange P. New avenues for regulation of lipid metabolism by thyroid hormones and analogs. Front Physiol 2014; 5:475.
22.
Zurück zum Zitat Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol. 2018;14(5):259–69.CrossRefPubMed Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol. 2018;14(5):259–69.CrossRefPubMed
23.
Zurück zum Zitat Seifi S, Tabandeh MR, Nazifi S, Saeb M, Shirian S, Sarkoohi P. Regulation of adiponectin gene expression in adipose tissue by thyroid hormones. J Physiol Biochem. 2012;68(2):193–203.CrossRef Seifi S, Tabandeh MR, Nazifi S, Saeb M, Shirian S, Sarkoohi P. Regulation of adiponectin gene expression in adipose tissue by thyroid hormones. J Physiol Biochem. 2012;68(2):193–203.CrossRef
24.
Zurück zum Zitat Md O, de Síbio MT, Olimpio RM, Moretto FC, Luvizotto Rde A, Nogueira CR. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes. Einstein (Sao Paulo). 2015;13(1):72–8.CrossRef Md O, de Síbio MT, Olimpio RM, Moretto FC, Luvizotto Rde A, Nogueira CR. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes. Einstein (Sao Paulo). 2015;13(1):72–8.CrossRef
25.
Zurück zum Zitat Tian M, Liang Z, Liu R, Li K, Tan X, Luo Y, Yang M, Gu HF, Liu H, Li L, Yang G. Effects of sitagliptin on circulating zinc-alpha2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial. Eur J Endocrinol. 2016;174:147–55.CrossRef Tian M, Liang Z, Liu R, Li K, Tan X, Luo Y, Yang M, Gu HF, Liu H, Li L, Yang G. Effects of sitagliptin on circulating zinc-alpha2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial. Eur J Endocrinol. 2016;174:147–55.CrossRef
26.
Zurück zum Zitat Lai Y, Chen J, Li L, Yin J, He J, Yang M, Jia Y, Liu D, Liu H, Liao Y, Yang G. Circulating zinc-alpha2-glycoprotein levels and insulin resistance in polycystic ovary syndrome. Sci Rep. 2016;6:25934.CrossRefPubMed Lai Y, Chen J, Li L, Yin J, He J, Yang M, Jia Y, Liu D, Liu H, Liao Y, Yang G. Circulating zinc-alpha2-glycoprotein levels and insulin resistance in polycystic ovary syndrome. Sci Rep. 2016;6:25934.CrossRefPubMed
27.
Zurück zum Zitat Balaž M, Ukropcova B, Kurdiova T, Vlcek M, Surova M, Krumpolec P, Vanuga P, Gašperíková D, Klimeš I, Payer J, Wolfrum C, Ukropec J. Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: the role of zinc-α2-glycoprotein. Adipocyte. 2014;4(2):113–22.CrossRefPubMed Balaž M, Ukropcova B, Kurdiova T, Vlcek M, Surova M, Krumpolec P, Vanuga P, Gašperíková D, Klimeš I, Payer J, Wolfrum C, Ukropec J. Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: the role of zinc-α2-glycoprotein. Adipocyte. 2014;4(2):113–22.CrossRefPubMed
28.
Zurück zum Zitat Escoté X, Aranda GB, Mora M, Casals G, Enseñat J, Vidal O, Esteban Y, Halperin I, Hanzu FA. Zinc alpha-2 glycoprotein is overproduced in Cushing's syndrome. Endocrinol Diabetes Nutr. 2017;64(1):26–33.CrossRef Escoté X, Aranda GB, Mora M, Casals G, Enseñat J, Vidal O, Esteban Y, Halperin I, Hanzu FA. Zinc alpha-2 glycoprotein is overproduced in Cushing's syndrome. Endocrinol Diabetes Nutr. 2017;64(1):26–33.CrossRef
29.
Zurück zum Zitat Ge S, Ryan AS. Zinc-α2-glycoprotein expression in adipose tissue of obese postmenopausal women before and after weight loss and exercise + weight loss. Metabolism. 2014;63(8):995–9.CrossRefPubMed Ge S, Ryan AS. Zinc-α2-glycoprotein expression in adipose tissue of obese postmenopausal women before and after weight loss and exercise + weight loss. Metabolism. 2014;63(8):995–9.CrossRefPubMed
30.
Zurück zum Zitat Yilmaz Y, Yonal O, Eren F, Kurt R, Celikel CA, Ozdogan O, Imeryuz N, Kalayci C, Avsar E. Serum zinc-α2-glycoprotein concentrations in patients with non-alcoholic fatty liver disease. Clin Chem Lab Med. 2011;49(1):93–7.CrossRef Yilmaz Y, Yonal O, Eren F, Kurt R, Celikel CA, Ozdogan O, Imeryuz N, Kalayci C, Avsar E. Serum zinc-α2-glycoprotein concentrations in patients with non-alcoholic fatty liver disease. Clin Chem Lab Med. 2011;49(1):93–7.CrossRef
31.
Zurück zum Zitat Lei L, Li K, Li L, Fang X, Zhou T, Zhang C, Luo Y, Liu H, Li X, Zheng H, Zhang L, Yang G, Gao L. Circulating zinc-α2-glycoprotein levels are low in newly diagnosed patients with metabolic syndrome and correlate with adiponectin. Nutr Metab (Lond). 2017;14:53.CrossRef Lei L, Li K, Li L, Fang X, Zhou T, Zhang C, Luo Y, Liu H, Li X, Zheng H, Zhang L, Yang G, Gao L. Circulating zinc-α2-glycoprotein levels are low in newly diagnosed patients with metabolic syndrome and correlate with adiponectin. Nutr Metab (Lond). 2017;14:53.CrossRef
32.
Zurück zum Zitat Olofsson LE, Olsson B, Lystig T, Jacobson P, Jernås M, Sjöholm K, Gummesson A, Sjöström L, Eriksson P, Hamsten A, Hale LP, Thelle DS, Carlsson B, Carlsson LM. Preliminary report: Zn-alpha2-glycoprotein genotype and serum levels are associated with serum lipids. Metabolism. 2010;59(9):1316–8.CrossRef Olofsson LE, Olsson B, Lystig T, Jacobson P, Jernås M, Sjöholm K, Gummesson A, Sjöström L, Eriksson P, Hamsten A, Hale LP, Thelle DS, Carlsson B, Carlsson LM. Preliminary report: Zn-alpha2-glycoprotein genotype and serum levels are associated with serum lipids. Metabolism. 2010;59(9):1316–8.CrossRef
Metadaten
Titel
Serum zinc-α2-glycoprotein levels are elevated and correlated with thyroid hormone in newly diagnosed hyperthyroidism
verfasst von
Xin-Hua Xiao
Xiao-Yan Qi
Jiao-Yang Li
Yi-Bing Wang
Ya-Di Wang
Zhe-Zhen Liao
Jing Yang
Li Ran
Ge-Bo Wen
Jiang-Hua Liu
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Endocrine Disorders / Ausgabe 1/2019
Elektronische ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-019-0336-9

Weitere Artikel der Ausgabe 1/2019

BMC Endocrine Disorders 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.