Skip to main content
Erschienen in: Clinical Pharmacokinetics 1/2006

01.01.2006 | Review Article

Significance of the Minor Cytochrome P450 3A Isoforms

verfasst von: Dr Ann K. Daly

Erschienen in: Clinical Pharmacokinetics | Ausgabe 1/2006

Einloggen, um Zugang zu erhalten

Abstract

Cytochrome P450 (CYP) 3A4 is responsible for most CYP3A-mediated drug metabolism but the minor isoforms CYP3A5, CYP3A7 and CYP3A43 also contribute. CYP3A5 is the best studied of the minor CYP3A isoforms. It is well established that only approximately 20% of livers express CYP3A5. The most common reason for the absence of expression is a splice site mutation. The frequency of variant alleles shows interethnic differences, with the wild-type CYP3A5* allele more common in Africans than Caucasians and Asians. In individuals who express CYP3A5, the percentage contributed to total hepatic CYP3A by this isoform is still unclear, with estimates ranging from 17% to 50%. CYP3A5 is also expressed in a range of extrahepatic tissues. Only limited information is available on the regulation of CYP3A5 expression but it appears to be inducible via the glucocorticoid receptor, pregnane X receptor and constitutive androstane receptor-β, as for CYP3A4. Although information on the substrate specificity of CYP3A5 is limited compared with CYP3A4, there have been a number of recent pharmacokinetic studies on a small range of substrates in individuals of known genotype to investigate the contribution of CYP3A5. In the case of midazolam, Ciclosporin, nifedipine and docetaxel, clearance by individuals with a CYP3A5-expressing genotype did not differ from that for nonexpressors, but in the case of tacrolimus, eight independent studies have demonstrated faster clearance by those carrying one or two CYP3A5*1 alleles. This may reflect faster turnover of tacrolimus by CYP3A5 than the other substrates. CYP3A5 genotype may affect cancer susceptibility. Certain combined CYP3A4/CYP3A5 haplotypes show differential susceptibility to prostate cancer and there is a nonsignificant increase in the risk of small-cell lung cancer for a CYP3A5* 1/*1 genotype. Females positive for CYP3A5*1 appear to reach puberty earlier, which may affect breast cancer risk. CYP3A5*1 homozygotes may have higher systolic blood pressure.
CYP3A7 is predominantly expressed in fetal liver but is also found in some adult livers and extrahepatically. The molecular basis for expression in adult liver relates to upstream polymorphisms, which appear to increase homology to CYP3A4 and make regulation of expression more similar. CYP3A7 has a specific role in hydroxylation of retinoic acid and 16α-hydroxylation of steroids, and is therefore of relevance both to normal development and carcinogenesis.
CYP3A43 is the most recently discovered CYP3A isoform. In addition to a low level of expression in liver, it is expressed in prostate and testis. Its substrate specificity is currently unclear. Polymorphisms predicting absence of active enzyme have been identified.
Literatur
1.
Zurück zum Zitat Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34(1–2): 83–448PubMedCrossRef Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34(1–2): 83–448PubMedCrossRef
2.
Zurück zum Zitat Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRef Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRef
3.
Zurück zum Zitat Molowa DT, Schuetz EG, Wrighton SA, et al. Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver. Proc Natl Acad Sci U S A 1986; 83(14): 5311–5PubMedCrossRef Molowa DT, Schuetz EG, Wrighton SA, et al. Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver. Proc Natl Acad Sci U S A 1986; 83(14): 5311–5PubMedCrossRef
4.
Zurück zum Zitat Beaune PH, Umbenhauer DR, Bork RW, et al. Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc Natl Acad Sci U S A 1986; 83(21): 8064–8PubMedCrossRef Beaune PH, Umbenhauer DR, Bork RW, et al. Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc Natl Acad Sci U S A 1986; 83(21): 8064–8PubMedCrossRef
5.
Zurück zum Zitat Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6(1): 1–42PubMedCrossRef Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6(1): 1–42PubMedCrossRef
6.
Zurück zum Zitat Wrighton SA, Ring BJ, Watkins PB, et al. Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol Pharmacol 1989; 36(1): 97–105PubMed Wrighton SA, Ring BJ, Watkins PB, et al. Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol Pharmacol 1989; 36(1): 97–105PubMed
7.
Zurück zum Zitat Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P450 hPCN3, a novel cytochrome P450 IIA gene product that is differentially expressed in adult human liver. J Biol Chem 1989; 264: 10388–95PubMed Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P450 hPCN3, a novel cytochrome P450 IIA gene product that is differentially expressed in adult human liver. J Biol Chem 1989; 264: 10388–95PubMed
8.
Zurück zum Zitat Schuetz JD, Molowa DT, Guzelian PS. Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. Arch Biochem Biophys 1989; 274(2): 355–65PubMedCrossRef Schuetz JD, Molowa DT, Guzelian PS. Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. Arch Biochem Biophys 1989; 274(2): 355–65PubMedCrossRef
9.
Zurück zum Zitat Kitada M, Kamataki T, Itahashi K, et al. P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16 alpha-hydroxylase of dehydroepiandrosterone 3-sulfate. J Biol Chem 1987; 262(28): 13534–7PubMed Kitada M, Kamataki T, Itahashi K, et al. P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16 alpha-hydroxylase of dehydroepiandrosterone 3-sulfate. J Biol Chem 1987; 262(28): 13534–7PubMed
10.
Zurück zum Zitat Wrighton SA, Vandenbranden M. Isolation and characterization of human fetal liver cytochrome P450HLp2: a third member of the P450III gene family. Arch Biochem Biophys 1989; 268(1): 144–51PubMedCrossRef Wrighton SA, Vandenbranden M. Isolation and characterization of human fetal liver cytochrome P450HLp2: a third member of the P450III gene family. Arch Biochem Biophys 1989; 268(1): 144–51PubMedCrossRef
11.
Zurück zum Zitat Komori M, Nishio K, Fujitani T, et al. Isolation of a new human fetal liver cytochrome P450 cDNA clone: evidence for expression of a limited number of forms of cytochrome P450 in human fetal livers. Arch Biochem Biophys 1989; 272(1): 219–25PubMedCrossRef Komori M, Nishio K, Fujitani T, et al. Isolation of a new human fetal liver cytochrome P450 cDNA clone: evidence for expression of a limited number of forms of cytochrome P450 in human fetal livers. Arch Biochem Biophys 1989; 272(1): 219–25PubMedCrossRef
12.
Zurück zum Zitat Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59(2): 386–92PubMed Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59(2): 386–92PubMed
13.
Zurück zum Zitat Gellner K, Eiselt R, Hustert E, et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 2001; 11(2): 111–21PubMedCrossRef Gellner K, Eiselt R, Hustert E, et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 2001; 11(2): 111–21PubMedCrossRef
14.
Zurück zum Zitat Westlind A, Malmebo S, Johansson I, et al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 2001; 281(5): 1349–55PubMedCrossRef Westlind A, Malmebo S, Johansson I, et al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 2001; 281(5): 1349–55PubMedCrossRef
15.
Zurück zum Zitat Guengerich FP. Cytochrome P450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17PubMedCrossRef Guengerich FP. Cytochrome P450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17PubMedCrossRef
16.
Zurück zum Zitat Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450iiia5 (Hlp3). Mol Pharmacol 1990; 38: 207–13PubMed Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450iiia5 (Hlp3). Mol Pharmacol 1990; 38: 207–13PubMed
17.
Zurück zum Zitat Jounaidi Y, Hyrailles V, Gervot L, et al. Detection of CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein?. Biochem Biophys Res Commun 1996; 221(2): 466–70PubMedCrossRef Jounaidi Y, Hyrailles V, Gervot L, et al. Detection of CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein?. Biochem Biophys Res Commun 1996; 221(2): 466–70PubMedCrossRef
18.
Zurück zum Zitat Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11(9): 773–9PubMedCrossRef Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11(9): 773–9PubMedCrossRef
19.
Zurück zum Zitat Paulussen A, Lavirijsen K, Bohets H, et al. Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics 2000; 10: 415–24PubMedCrossRef Paulussen A, Lavirijsen K, Bohets H, et al. Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics 2000; 10: 415–24PubMedCrossRef
20.
Zurück zum Zitat Finta C, Zaphiropoulos PG. The human cytochrome P450 3A locus: gene evolution by capture of downstream exons. Gene 2000; 260(1–2): 13–23PubMedCrossRef Finta C, Zaphiropoulos PG. The human cytochrome P450 3A locus: gene evolution by capture of downstream exons. Gene 2000; 260(1–2): 13–23PubMedCrossRef
21.
Zurück zum Zitat Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genet 2001; 27(4): 383–91PubMedCrossRef Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genet 2001; 27(4): 383–91PubMedCrossRef
22.
Zurück zum Zitat Chou FC, Tzeng SJ, Huang JD. Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab Dispos 2001; 29(9): 1205–9PubMed Chou FC, Tzeng SJ, Huang JD. Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab Dispos 2001; 29(9): 1205–9PubMed
23.
Zurück zum Zitat Lee SJ, Usmani KA, Chanas B, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003; 13(8): 461–72PubMedCrossRef Lee SJ, Usmani KA, Chanas B, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003; 13(8): 461–72PubMedCrossRef
24.
Zurück zum Zitat Saeki M, Saito Y, Nakamura T, et al. Single nucleotide polymorphisms and haplotype frequencies of CYP3A5 in a Japanese population. Hum Mutat 2003; 21(6): 653PubMedCrossRef Saeki M, Saito Y, Nakamura T, et al. Single nucleotide polymorphisms and haplotype frequencies of CYP3A5 in a Japanese population. Hum Mutat 2003; 21(6): 653PubMedCrossRef
25.
Zurück zum Zitat Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 1999; 259(1): 201–5PubMedCrossRef Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 1999; 259(1): 201–5PubMedCrossRef
26.
Zurück zum Zitat Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23(1): 100PubMedCrossRef Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23(1): 100PubMedCrossRef
27.
Zurück zum Zitat Xie HG, Wood AJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5(3): 243–72PubMedCrossRef Xie HG, Wood AJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5(3): 243–72PubMedCrossRef
28.
Zurück zum Zitat Van Schaik RHN, Van Der Heiden IP, Van Den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002; 48(10): 1668–71PubMed Van Schaik RHN, Van Der Heiden IP, Van Den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002; 48(10): 1668–71PubMed
29.
Zurück zum Zitat King BP, Leathart JB, Mutch E, et al. CYP3A5 phenotypegenotype correlations in a British population. Br J Clin Pharmacol 2003; 55(6): 625–9PubMedCrossRef King BP, Leathart JB, Mutch E, et al. CYP3A5 phenotypegenotype correlations in a British population. Br J Clin Pharmacol 2003; 55(6): 625–9PubMedCrossRef
30.
Zurück zum Zitat Dally H, Edler L, Jager B, et al. The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 2003; 13(10): 607–18PubMedCrossRef Dally H, Edler L, Jager B, et al. The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 2003; 13(10): 607–18PubMedCrossRef
31.
Zurück zum Zitat Balram C, Zhou QY, Cheung YB, et al. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 2003; 59(2): 123–6PubMed Balram C, Zhou QY, Cheung YB, et al. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 2003; 59(2): 123–6PubMed
32.
Zurück zum Zitat Hiratsuka M, Takekuma Y, Endo N, et al. Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 2002; 58(6): 417–21PubMedCrossRef Hiratsuka M, Takekuma Y, Endo N, et al. Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 2002; 58(6): 417–21PubMedCrossRef
33.
Zurück zum Zitat Fukuen S, Fukuda T, Maune H, et al. Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in a Japanese population. Pharmacogenetics 2002; 12(4): 331–4PubMedCrossRef Fukuen S, Fukuda T, Maune H, et al. Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in a Japanese population. Pharmacogenetics 2002; 12(4): 331–4PubMedCrossRef
34.
Zurück zum Zitat Lin YS, Dowling ALS, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62(1): 162–72PubMedCrossRef Lin YS, Dowling ALS, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62(1): 162–72PubMedCrossRef
35.
Zurück zum Zitat Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 2003; 31(6): 755–61PubMedCrossRef Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 2003; 31(6): 755–61PubMedCrossRef
36.
Zurück zum Zitat Yamaori S, Yamazaki H, Iwano S, et al. CYP3A5 contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab Pharmacokinet 2004; 19(2): 120–9PubMedCrossRef Yamaori S, Yamazaki H, Iwano S, et al. CYP3A5 contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab Pharmacokinet 2004; 19(2): 120–9PubMedCrossRef
37.
Zurück zum Zitat Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30(10): 1108–14PubMedCrossRef Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30(10): 1108–14PubMedCrossRef
38.
Zurück zum Zitat Williams JA, Cook J, Hurst SI. Significant drug-metabolizing role for CYP3A5?. Drug Metab Dispos 2003; 31(12): 1526–31PubMedCrossRef Williams JA, Cook J, Hurst SI. Significant drug-metabolizing role for CYP3A5?. Drug Metab Dispos 2003; 31(12): 1526–31PubMedCrossRef
39.
Zurück zum Zitat Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283(3): 1552–62PubMed Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283(3): 1552–62PubMed
40.
Zurück zum Zitat Gervot L, Carriere V, Costet P, et al. CYP3A5 is the major cytochrome P450 3A expressed in human colon and colonic cell lines. Environ Toxicol Pharmacol 1996; 2(4): 381–8PubMedCrossRef Gervot L, Carriere V, Costet P, et al. CYP3A5 is the major cytochrome P450 3A expressed in human colon and colonic cell lines. Environ Toxicol Pharmacol 1996; 2(4): 381–8PubMedCrossRef
41.
Zurück zum Zitat Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 1996; 50(1): 52–9PubMed Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 1996; 50(1): 52–9PubMed
42.
Zurück zum Zitat Kivisto KT, Fritz P, Linder A, et al. Immunohistochemical localization of cytochrome-P450 3A in human pulmonary carcinomas and normal bronchial tissue. Histochem Cell Biol 1995; 103(1): 25–9PubMedCrossRef Kivisto KT, Fritz P, Linder A, et al. Immunohistochemical localization of cytochrome-P450 3A in human pulmonary carcinomas and normal bronchial tissue. Histochem Cell Biol 1995; 103(1): 25–9PubMedCrossRef
43.
Zurück zum Zitat Lechevrel M, Casson AG, Wolf CR, et al. Characterization of cytochrome P450 expression in human oesophageal mucosa. Carcinogenesis 1999; 20(2): 243–8PubMedCrossRef Lechevrel M, Casson AG, Wolf CR, et al. Characterization of cytochrome P450 expression in human oesophageal mucosa. Carcinogenesis 1999; 20(2): 243–8PubMedCrossRef
44.
Zurück zum Zitat Murray GI, Pritchard S, Melvin WT, et al. Cytochrome-P450 CYP3A5 in the human anterior-pituitary gland. FEBS Lett 1995; 364(1): 79–82PubMedCrossRef Murray GI, Pritchard S, Melvin WT, et al. Cytochrome-P450 CYP3A5 in the human anterior-pituitary gland. FEBS Lett 1995; 364(1): 79–82PubMedCrossRef
45.
Zurück zum Zitat Gibson GG, Plant NJ, Swales KE, et al. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002; 32(3): 165–206PubMedCrossRef Gibson GG, Plant NJ, Swales KE, et al. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002; 32(3): 165–206PubMedCrossRef
46.
Zurück zum Zitat Jounaidi Y, Guzelian PS, Maurel P, et al. Sequence of the 5′-flanking region of CYP3A5: comparative analysis with CYP3A4 and CYP3A7. Biochem Biophys Res Commun 1994; 205(3): 1741–7PubMedCrossRef Jounaidi Y, Guzelian PS, Maurel P, et al. Sequence of the 5′-flanking region of CYP3A5: comparative analysis with CYP3A4 and CYP3A7. Biochem Biophys Res Commun 1994; 205(3): 1741–7PubMedCrossRef
47.
Zurück zum Zitat Schuetz JD, Schuetz EG, Thottassery JV, et al. Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Mol Pharmacol 1996; 49(1): 63–72PubMed Schuetz JD, Schuetz EG, Thottassery JV, et al. Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Mol Pharmacol 1996; 49(1): 63–72PubMed
48.
Zurück zum Zitat Iwano S, Saito T, Takahashi Y, et al. Cooperative regulation of CYP3A5 gene transcription by NF-Y and Sp family members. Biochem Biophys Res Commun 2001; 286(1): 55–60PubMedCrossRef Iwano S, Saito T, Takahashi Y, et al. Cooperative regulation of CYP3A5 gene transcription by NF-Y and Sp family members. Biochem Biophys Res Commun 2001; 286(1): 55–60PubMedCrossRef
49.
Zurück zum Zitat Hukkanen J, Vaisanen T, Lassila A, et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther 2003; 304(2): 745–52PubMedCrossRef Hukkanen J, Vaisanen T, Lassila A, et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther 2003; 304(2): 745–52PubMedCrossRef
50.
Zurück zum Zitat Rodriguez-Antona C, Jover R, Gomez-Lechon MJ, et al. Quantitative RT-PCR measurement of human cytochrome P-450s: application to drug induction studies. Arch Biochem Biophys 2000; 376(1): 109–16PubMedCrossRef Rodriguez-Antona C, Jover R, Gomez-Lechon MJ, et al. Quantitative RT-PCR measurement of human cytochrome P-450s: application to drug induction studies. Arch Biochem Biophys 2000; 376(1): 109–16PubMedCrossRef
51.
Zurück zum Zitat Asghar A, Gorski JC, Haehner-Daniels B, et al. Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Drug Metab Dispos 2002; 30(1): 20–6PubMedCrossRef Asghar A, Gorski JC, Haehner-Daniels B, et al. Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Drug Metab Dispos 2002; 30(1): 20–6PubMedCrossRef
52.
Zurück zum Zitat Burk O, Koch I, Raucy J, et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem 2004; 279(37): 38379–85PubMedCrossRef Burk O, Koch I, Raucy J, et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem 2004; 279(37): 38379–85PubMedCrossRef
53.
Zurück zum Zitat Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1α,25-dihydroxyvitamin D3. Mol Pharmacol 1997; 51(5): 741–54PubMed Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1α,25-dihydroxyvitamin D3. Mol Pharmacol 1997; 51(5): 741–54PubMed
54.
Zurück zum Zitat Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase. Pharmacogenetics 1997; 7(3): 203–10PubMedCrossRef Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase. Pharmacogenetics 1997; 7(3): 203–10PubMedCrossRef
55.
Zurück zum Zitat Huang W, Lin YS, McConn II DJ, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 2004; 32(12): 1434–45PubMedCrossRef Huang W, Lin YS, McConn II DJ, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 2004; 32(12): 1434–45PubMedCrossRef
56.
Zurück zum Zitat Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes P450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 2003; 31(7): 938–44PubMedCrossRef Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes P450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 2003; 31(7): 938–44PubMedCrossRef
57.
Zurück zum Zitat Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5 and CYP3A7. Drug Metab Dispos 2002; 30: 883–91PubMedCrossRef Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5 and CYP3A7. Drug Metab Dispos 2002; 30: 883–91PubMedCrossRef
58.
Zurück zum Zitat Yamaori S, Yamazaki H, Suzuki A, et al. Effects of cytochrome b (5) on drug oxidation activities of human cytochrome P450 (CYP) 3As: similarity of CYP3A5 with CYP3A4 but not CYP3A7. Biochem Pharmacol 2003; 66(12): 2333–40PubMedCrossRef Yamaori S, Yamazaki H, Suzuki A, et al. Effects of cytochrome b (5) on drug oxidation activities of human cytochrome P450 (CYP) 3As: similarity of CYP3A5 with CYP3A4 but not CYP3A7. Biochem Pharmacol 2003; 66(12): 2333–40PubMedCrossRef
59.
Zurück zum Zitat Galetin A, Brown C, Hallifax D, et al. Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos 2004; 32(12): 1411–20PubMedCrossRef Galetin A, Brown C, Hallifax D, et al. Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos 2004; 32(12): 1411–20PubMedCrossRef
60.
Zurück zum Zitat Gorski JC, Hall SD, Jones DR, et al. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994; 47(9): 1643–53PubMedCrossRef Gorski JC, Hall SD, Jones DR, et al. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994; 47(9): 1643–53PubMedCrossRef
61.
Zurück zum Zitat Gillam EM, Wunsch RM, Ueng YF, et al. Expression of cytochrome P450 3A7 in Escherichia coli: effects of 5′ modification and catalytic characterization of recombinant enzyme expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch Biochem Biophys 1997; 346(1): 81–90PubMedCrossRef Gillam EM, Wunsch RM, Ueng YF, et al. Expression of cytochrome P450 3A7 in Escherichia coli: effects of 5′ modification and catalytic characterization of recombinant enzyme expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch Biochem Biophys 1997; 346(1): 81–90PubMedCrossRef
62.
Zurück zum Zitat Floyd MD, Gervasini G, Masica AL, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 2003; 13(10): 595–606PubMedCrossRef Floyd MD, Gervasini G, Masica AL, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 2003; 13(10): 595–606PubMedCrossRef
63.
Zurück zum Zitat Eap CB, Buclin T, Hustert E, et al. Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur J Clin Pharmacol 2004; 60(4): 231–6PubMed Eap CB, Buclin T, Hustert E, et al. Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur J Clin Pharmacol 2004; 60(4): 231–6PubMed
64.
Zurück zum Zitat Shih PS, Huang JD. Pharmacokinetics of midazolam and 1′-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab Dispos 2002; 30(12): 1491–6PubMedCrossRef Shih PS, Huang JD. Pharmacokinetics of midazolam and 1′-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab Dispos 2002; 30(12): 1491–6PubMedCrossRef
65.
Zurück zum Zitat Wong M, Balleine RL, Collins M, et al. CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 2004; 75(6): 529–38PubMedCrossRef Wong M, Balleine RL, Collins M, et al. CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 2004; 75(6): 529–38PubMedCrossRef
66.
Zurück zum Zitat Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002; 20(17): 3683–90PubMedCrossRef Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002; 20(17): 3683–90PubMedCrossRef
67.
Zurück zum Zitat Macphee IAM, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74(11): 1486–9PubMedCrossRef Macphee IAM, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74(11): 1486–9PubMedCrossRef
68.
Zurück zum Zitat Zheng HX, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 2003; 3(4): 477–83PubMedCrossRef Zheng HX, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 2003; 3(4): 477–83PubMedCrossRef
69.
Zurück zum Zitat Thervet E, Anglicheau D, King B, et al. Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76(8): 1233–5PubMedCrossRef Thervet E, Anglicheau D, King B, et al. Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76(8): 1233–5PubMedCrossRef
70.
Zurück zum Zitat Hesselink DA, van Schaik RHN, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74(3): 245–54PubMedCrossRef Hesselink DA, van Schaik RHN, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74(3): 245–54PubMedCrossRef
71.
Zurück zum Zitat Zheng HX, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 2004; 44(2): 135–40PubMedCrossRef Zheng HX, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 2004; 44(2): 135–40PubMedCrossRef
72.
Zurück zum Zitat Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14(3): 147–54PubMedCrossRef Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14(3): 147–54PubMedCrossRef
73.
Zurück zum Zitat Goto M, Masuda S, Kiuchi T, et al. CYP3A5*l-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 2004; 14(7): 471–8PubMedCrossRef Goto M, Masuda S, Kiuchi T, et al. CYP3A5*l-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 2004; 14(7): 471–8PubMedCrossRef
74.
Zurück zum Zitat Tsuchiya N, Satoh S, Tada H, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004; 78(8): 1182–7PubMedCrossRef Tsuchiya N, Satoh S, Tada H, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004; 78(8): 1182–7PubMedCrossRef
75.
Zurück zum Zitat Yates CR, Zhang WH, Song PF, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol 2003; 43(6): 555–64PubMed Yates CR, Zhang WH, Song PF, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol 2003; 43(6): 555–64PubMed
76.
Zurück zum Zitat Anglicheau D, Thervet E, Etienne I, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 2004; 75(5): 422–33PubMedCrossRef Anglicheau D, Thervet E, Etienne I, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 2004; 75(5): 422–33PubMedCrossRef
77.
Zurück zum Zitat Kreutz R, Zurcher H, Kain S, et al. The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics 2004; 14(10): 665–71PubMedCrossRef Kreutz R, Zurcher H, Kain S, et al. The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics 2004; 14(10): 665–71PubMedCrossRef
78.
Zurück zum Zitat Bader A, Hansen T, Kirchner G, et al. Primary porcine enterocyte and hepatocyte cultures to study drug oxidation reactions. Br J Pharmacol 2000; 129(2): 331–42PubMedCrossRef Bader A, Hansen T, Kirchner G, et al. Primary porcine enterocyte and hepatocyte cultures to study drug oxidation reactions. Br J Pharmacol 2000; 129(2): 331–42PubMedCrossRef
79.
Zurück zum Zitat Fukuda T, Onishi S, Fukuen S, et al. CYP3A5 genotype did not impact on nifedipine disposition in healthy volunteers. Pharmacogenomics J 2004; 4(1): 34–9PubMedCrossRef Fukuda T, Onishi S, Fukuen S, et al. CYP3A5 genotype did not impact on nifedipine disposition in healthy volunteers. Pharmacogenomics J 2004; 4(1): 34–9PubMedCrossRef
80.
Zurück zum Zitat Shou M, Martinet M, Korzekwa KR, et al. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 1998; 8(5): 391–401PubMedCrossRef Shou M, Martinet M, Korzekwa KR, et al. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 1998; 8(5): 391–401PubMedCrossRef
81.
Zurück zum Zitat Katz DA, Grimm DR, Cassar SC, et al. CYP3A5 genotype has a dose-dependent effect on ABT-773 plasma levels. Clin Pharmacol Ther 2004; 75(6): 516–28PubMedCrossRef Katz DA, Grimm DR, Cassar SC, et al. CYP3A5 genotype has a dose-dependent effect on ABT-773 plasma levels. Clin Pharmacol Ther 2004; 75(6): 516–28PubMedCrossRef
82.
Zurück zum Zitat Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 1999; 27(2): 180–7PubMed Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 1999; 27(2): 180–7PubMed
83.
Zurück zum Zitat Jones DR, Gorski JC, Hamman MA, et al. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290(3): 1116–25PubMed Jones DR, Gorski JC, Hamman MA, et al. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290(3): 1116–25PubMed
84.
Zurück zum Zitat Khan KK, He YQ, Correia MA, et al. Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: selective inactivation of P450 3A4. Drug Metab Dispos 2002; 30(9): 985–90PubMedCrossRef Khan KK, He YQ, Correia MA, et al. Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: selective inactivation of P450 3A4. Drug Metab Dispos 2002; 30(9): 985–90PubMedCrossRef
85.
Zurück zum Zitat McConn II DJ, Lin YS, Allen K, et al. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 2004; 32(10): 1083–91PubMed McConn II DJ, Lin YS, Allen K, et al. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 2004; 32(10): 1083–91PubMed
86.
Zurück zum Zitat Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90(16): 1225–9PubMedCrossRef Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90(16): 1225–9PubMedCrossRef
87.
Zurück zum Zitat Paris PL, Kupelian PA, Hall JM, et al. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol Biomarkers Prev 1999; 8(10): 901–5PubMed Paris PL, Kupelian PA, Hall JM, et al. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol Biomarkers Prev 1999; 8(10): 901–5PubMed
88.
Zurück zum Zitat Plummer SJ, Conti DV, Paris PL, et al. CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(9): 928–32PubMed Plummer SJ, Conti DV, Paris PL, et al. CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(9): 928–32PubMed
89.
Zurück zum Zitat Modugno F, Knoll C, Kanbour-Shakir A, et al. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat 2003; 82(3): 191–7PubMedCrossRef Modugno F, Knoll C, Kanbour-Shakir A, et al. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat 2003; 82(3): 191–7PubMedCrossRef
90.
Zurück zum Zitat Spurdle AB, Goodwin B, Hodgson E, et al. The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 2002; 12(5): 355–66PubMedCrossRef Spurdle AB, Goodwin B, Hodgson E, et al. The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 2002; 12(5): 355–66PubMedCrossRef
91.
Zurück zum Zitat Kadlubar FF, Berkowitz GS, Delongchamp RR, et al. The CYP3A4*1B variant is related to the onset of puberty, a known risk factor for the development of breast cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(4): 327–31PubMed Kadlubar FF, Berkowitz GS, Delongchamp RR, et al. The CYP3A4*1B variant is related to the onset of puberty, a known risk factor for the development of breast cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(4): 327–31PubMed
92.
Zurück zum Zitat Liu TC, Lin SF, Chen TP, et al. Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep 2002; 9(2): 327–9PubMed Liu TC, Lin SF, Chen TP, et al. Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep 2002; 9(2): 327–9PubMed
93.
Zurück zum Zitat Blanco JG, Edick MJ, Hancock ML, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002; 12(8): 605–11PubMedCrossRef Blanco JG, Edick MJ, Hancock ML, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002; 12(8): 605–11PubMedCrossRef
94.
Zurück zum Zitat Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A 1998; 95(22): 13176–81PubMedCrossRef Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A 1998; 95(22): 13176–81PubMedCrossRef
95.
Zurück zum Zitat Aplenc R, Glatfelter W, Han P, et al. CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br J Haematol 2003; 122(2): 240–4PubMedCrossRef Aplenc R, Glatfelter W, Han P, et al. CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br J Haematol 2003; 122(2): 240–4PubMedCrossRef
96.
Zurück zum Zitat Givens RC, Lin YS, Dowling ALS, et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003; 95(3): 1297–300PubMed Givens RC, Lin YS, Dowling ALS, et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003; 95(3): 1297–300PubMed
97.
Zurück zum Zitat Shimada T, Yamazaki H, Mimura M, et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 1996; 24(5): 515–22PubMed Shimada T, Yamazaki H, Mimura M, et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 1996; 24(5): 515–22PubMed
98.
Zurück zum Zitat Greuet J, Pichard L, Bonfils C, et al. The fetal specific gene CYP3A7 is inducible by rifampicin in adult human hepatocytes in primary culture. Biochem Biophys Res Commun 1996; 225(2): 689–94PubMedCrossRef Greuet J, Pichard L, Bonfils C, et al. The fetal specific gene CYP3A7 is inducible by rifampicin in adult human hepatocytes in primary culture. Biochem Biophys Res Commun 1996; 225(2): 689–94PubMedCrossRef
99.
Zurück zum Zitat Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4(1): 11–20PubMedCrossRef Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4(1): 11–20PubMedCrossRef
100.
Zurück zum Zitat Burk O, Tegu de H, Koch I, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277(27): 24280–8PubMedCrossRef Burk O, Tegu de H, Koch I, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277(27): 24280–8PubMedCrossRef
101.
Zurück zum Zitat Stevens JC, Hines RN, Gu CG, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 2003; 307(2): 573–82PubMedCrossRef Stevens JC, Hines RN, Gu CG, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 2003; 307(2): 573–82PubMedCrossRef
102.
Zurück zum Zitat Schuetz JD, Kauma S, Guzelian PS. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest 1993; 92(2): 1018–24PubMedCrossRef Schuetz JD, Kauma S, Guzelian PS. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest 1993; 92(2): 1018–24PubMedCrossRef
103.
Zurück zum Zitat Sarkar MA, Vadlamuri V, Ghosh S, et al. Expression and cyclic variability of CYP3A4 and CYP3A7 isoforms in human endometrium and cervix during the menstrual cycle. Drug Metab Dispos 2003; 31(1): 1–6PubMedCrossRef Sarkar MA, Vadlamuri V, Ghosh S, et al. Expression and cyclic variability of CYP3A4 and CYP3A7 isoforms in human endometrium and cervix during the menstrual cycle. Drug Metab Dispos 2003; 31(1): 1–6PubMedCrossRef
104.
Zurück zum Zitat Chen H, Fantel AG, Juchau MR. Catalysis of the 4-hydroxylation of retinoic acids by CYP3A7 in human fetal hepatic tissues. Drug Metab Dispos 2000; 28(9): 1051–7PubMed Chen H, Fantel AG, Juchau MR. Catalysis of the 4-hydroxylation of retinoic acids by CYP3A7 in human fetal hepatic tissues. Drug Metab Dispos 2000; 28(9): 1051–7PubMed
105.
Zurück zum Zitat Marill J, Cresteil T, Lanotte M, et al. Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol 2000; 58(6): 1341–8PubMed Marill J, Cresteil T, Lanotte M, et al. Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol 2000; 58(6): 1341–8PubMed
106.
Zurück zum Zitat Clagett-Dame M, DeLuca HF. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr 2002; 22: 347–81PubMedCrossRef Clagett-Dame M, DeLuca HF. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr 2002; 22: 347–81PubMedCrossRef
107.
Zurück zum Zitat Lee AJ, Conney AH, Zhu BT. Human cytochrome P450 3A7 has a distinct high catalytic activity for the 16α-hydroxylation of estrone but not 17β-estradiol. Cancer Res 2003; 63(19): 6532–6PubMed Lee AJ, Conney AH, Zhu BT. Human cytochrome P450 3A7 has a distinct high catalytic activity for the 16α-hydroxylation of estrone but not 17β-estradiol. Cancer Res 2003; 63(19): 6532–6PubMed
108.
Zurück zum Zitat Pascussi JM, Jounaidi Y, Drocourt L, et al. Evidence for the presence of a functional pregnane X receptor response element in the CYP3A7 promoter gene. Biochem Biophys Res Commun 1999; 260(2): 377–81PubMedCrossRef Pascussi JM, Jounaidi Y, Drocourt L, et al. Evidence for the presence of a functional pregnane X receptor response element in the CYP3A7 promoter gene. Biochem Biophys Res Commun 1999; 260(2): 377–81PubMedCrossRef
109.
Zurück zum Zitat Bertilsson G, Berkenstam A, Blomquist P. Functionally conserved xenobiotic responsive enhancer in cytochrome P450 3A7. Biochem Biophys Res Commun 2001; 280(1): 139–44PubMedCrossRef Bertilsson G, Berkenstam A, Blomquist P. Functionally conserved xenobiotic responsive enhancer in cytochrome P450 3A7. Biochem Biophys Res Commun 2001; 280(1): 139–44PubMedCrossRef
110.
Zurück zum Zitat Matsunaga T, Maruyama M, Harada E, et al. Expression and induction of CYP3As in human fetal hepatocytes. Biochem Biophys Res Commun 2004; 318(2): 428–34PubMedCrossRef Matsunaga T, Maruyama M, Harada E, et al. Expression and induction of CYP3As in human fetal hepatocytes. Biochem Biophys Res Commun 2004; 318(2): 428–34PubMedCrossRef
111.
Zurück zum Zitat Hashimoto H, Toide K, Kitamura R, et al. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur J Biochem 1993; 218(2): 585–95PubMedCrossRef Hashimoto H, Toide K, Kitamura R, et al. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur J Biochem 1993; 218(2): 585–95PubMedCrossRef
112.
Zurück zum Zitat Krusekopf S, Roots I, Kleeberg U. Differential drug-induced mRNA expression of human CYP3A4 compared to CYP3A5, CYP3A7 and CYP3A43. Eur J Pharmacol 2003; 466(1–2): 7–12PubMedCrossRef Krusekopf S, Roots I, Kleeberg U. Differential drug-induced mRNA expression of human CYP3A4 compared to CYP3A5, CYP3A7 and CYP3A43. Eur J Pharmacol 2003; 466(1–2): 7–12PubMedCrossRef
113.
Zurück zum Zitat Cauffiez C, Lo-Guidice JM, Chevalier D, et al. First report of a genetic polymorphism of the cytochrome P450 3A43 (CYP3A43) gene: identification of a loss-of-function variant. Hum Mutat 2004; 23(1): 101PubMedCrossRef Cauffiez C, Lo-Guidice JM, Chevalier D, et al. First report of a genetic polymorphism of the cytochrome P450 3A43 (CYP3A43) gene: identification of a loss-of-function variant. Hum Mutat 2004; 23(1): 101PubMedCrossRef
114.
Zurück zum Zitat Zeigler-Johnson C, Friebel T, Walker AH, et al. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 2004; 64(22): 8461–7PubMedCrossRef Zeigler-Johnson C, Friebel T, Walker AH, et al. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 2004; 64(22): 8461–7PubMedCrossRef
115.
Zurück zum Zitat Stone A, Ratnasinghe LD, Emerson GL, et al. CYP3A43 Pro(340) Ala polymorphism and prostate cancer risk in African Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 2005 May; 14(5): 1257–61PubMedCrossRef Stone A, Ratnasinghe LD, Emerson GL, et al. CYP3A43 Pro(340) Ala polymorphism and prostate cancer risk in African Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 2005 May; 14(5): 1257–61PubMedCrossRef
116.
Zurück zum Zitat Kamdem LK, Streit F, Zanger UM, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005 Aug; 51(8): 1374–81PubMedCrossRef Kamdem LK, Streit F, Zanger UM, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005 Aug; 51(8): 1374–81PubMedCrossRef
117.
Zurück zum Zitat Fromm MF, Schmidt BM, Pahl A, et al. CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet Genomics 2005 Oct; 15(10): 737–41PubMedCrossRef Fromm MF, Schmidt BM, Pahl A, et al. CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet Genomics 2005 Oct; 15(10): 737–41PubMedCrossRef
118.
Zurück zum Zitat Ho H, Pinto A, Hall SD, et al. Association between the CYP3A5 genotype and blood pressure. Hypertension 2005 Feb; 45(2): 294–8PubMedCrossRef Ho H, Pinto A, Hall SD, et al. Association between the CYP3A5 genotype and blood pressure. Hypertension 2005 Feb; 45(2): 294–8PubMedCrossRef
119.
Zurück zum Zitat Rivisto KT, Niemi M, Schaeffeler E, et al. CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study. Am J Pharmacogenomics 2005; 5(3): 191–5CrossRef Rivisto KT, Niemi M, Schaeffeler E, et al. CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study. Am J Pharmacogenomics 2005; 5(3): 191–5CrossRef
120.
Zurück zum Zitat Kreutz R, Zuurman M, Kain S, et al. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet Genomics 2005 Dec; 15(12): 831–7PubMedCrossRef Kreutz R, Zuurman M, Kain S, et al. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet Genomics 2005 Dec; 15(12): 831–7PubMedCrossRef
121.
Zurück zum Zitat Sim SC, Edwards RJ, Boobis AR, et al. CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 2005 Sep; 15(9): 625–31PubMedCrossRef Sim SC, Edwards RJ, Boobis AR, et al. CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 2005 Sep; 15(9): 625–31PubMedCrossRef
Metadaten
Titel
Significance of the Minor Cytochrome P450 3A Isoforms
verfasst von
Dr Ann K. Daly
Publikationsdatum
01.01.2006
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 1/2006
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200645010-00002

Weitere Artikel der Ausgabe 1/2006

Clinical Pharmacokinetics 1/2006 Zur Ausgabe

Original Research Article

Compliance-Guided Therapy