Skip to main content
Erschienen in: Journal of Translational Medicine 1/2014

Open Access 01.12.2014 | Research

Site-specific metabolic phenotypes in metastatic breast cancer

verfasst von: Hye Min Kim, Woo Hee Jung, Ja Seung Koo

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2014

Abstract

Background

The purpose of this study was to examine the expression of metabolism-related proteins according to metastatic site in metastatic breast cancer and to assess the implication of site-specific differential expression.

Methods

A tissue microarray containing 162 cases of metastatic breast cancer (52 lung metastasis, 47 bone metastasis, 39 brain metastasis, and 24 liver metastasis) was constructed. It was subject to immunohistochemical staining of the following proteins: Glycolysis-related: Glut-1, hexolinase II, carbonic anhydrase (CA) IX, and monocarboxylate transporter (MCT) 4; glutaminolysis-related: glutaminase (GLS) 1, glutamate dehydrogenase (GDH), and amino acid transporter (ASCT) 2; mitochondrial metabolism-related: ATP synthase, succinate dehydrogenase (SDH)A, and SDHB; and serine/glycine metabolism related: phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT), phosphoserine phosphatase (PSPH), glycine decarboxylase (GLDC), and serine hydroxymethyltransferase (SHMT).

Results

The expression levels of glycolysis-related-proteins (Glut-1, hexokinase II, CAIX, and MCT4) differed according to metastatic site, with higher expression seen in the brain and lower expression in the bone and liver (p < 0.001, 0.001, 0.009, and <0.001, respectively). Differences in metabolic phenotype were analyzed according to metastasis site. Glycolysis type was most frequently encountered in the brain and lung (p < 0.001). In univariate analysis, the factors associated with shorter overall survival were CAIX positivity (p = 0.044), PSPH positivity (p = 0.045), and SHMT1 positivity (p = 0.002), as well as serine/glycine type (p = 0.041).

Conclusions

Differences in metabolic features according to metastatic site were seen in metastatic breast cancer, with the glycolysis phenotype found predominantly in the brain and lung and the non-glycolysis phenotype in the bone and liver.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12967-014-0354-3) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

HMK participated in the design of the study and performed the statistical analysis and carried out the immunoassays. WHJ participated in its design. JSK conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ER
Estrogen receptor
PR
Progesterone receptor
FFPE
Formalin-fixed, paraffin-embedded
IHC
Immunohistochemistry
ASCO
American Society of Clinical Oncology
CAP
College of American Pathologists
TNBC
Triple negative breast cancer
PHGDH
Phosphoglycerate dehydrogenase
PSAT
Phosphoserine aminotransferase
PSPH
Phosphoserine phosphatase
GLDC
Glycine decarboxylase
SHMT
Serine hydroxymethyltransferase
CAIX
Carbonic anhydrase
MCT
Monocarboxylate transporters
GLS
Glutaminase
GDH
Glutamate dehydrogenase
ASCT
Amino acid transporter
SDH
Succinate dehydrogenase

Introduction

Breast cancer has a high morbidity and mortality, mainly because it can easily metastasize to distant organs. The main metastatic sites from breast cancer are the lung, bone, brain, and liver [1],[2]. However, most studies have focused on bone and brain metastases [3]-[8]. The main mechanism of tumor metastasis is the reciprocal interaction between tumor cells and the host tissue, involving cell adhesion, proteolysis, invasion, and angiogenesis [2],[9]. Because different cancers display distinct metastatic patterns, the seed and soil hypothesis has been proposed, which dictates that the specific tumor (seed) can survive only in specific visceral organs (soil) [10]. Accordingly, metastatic breast cancer cells show different characteristics according to the metastatic site. For example, brain metastasis is associated with young age, estrogen receptor (ER) negativity, prior lung metastasis, HER-2 overexpression, EGFR overexpression, and the basal subtype [5]-[7], while bone metastasis is associated with lower histologic grade, ER positivity, ER positivity/progesterone receptor (PR) negativity, strand growth pattern, and the presence of fibrotic foci in invasive ductal carcinoma [4],[11],[12]. Therefore, metastatic breast cancer is also likely to display distinct characteristics according to metastatic site.
According to the Warburg effect theory, while normal cells gain energy from oxidative phosphorylation, cancer cells obtain energy from glycolysis, making glycolysis an important component in cancer metabolism [13]. However, this theory cannot fully explain the energy usage of all cancer cells [14]. Glutamine and mitochondrial metabolism, along with glucose metabolism, are also important components in cancer cell metabolism. Tumor cells under active glycolysis have higher levels of glycolytic intermediates, and the metabolism of glycolytic intermediates has been recently shown to be involved in tumorigenesis. A representative metabolic pathway of glycolytic intermediates is the glycine and serine metabolic pathway [15]-[18], which has been recently studied as a new possible target for tumor therapy [19]. Targeted therapy can be used in metastatic cancer, as well as in primary cancer, making the identification of metabolic phenotypes in metastatic cancer clinically important. However, metastatic cancer displays distinct characteristics according to metastatic site, but the site-specific metabolic features have not yet been fully identified. The purpose of this study was to examine the expression of metabolism-related proteins according to their metastatic site in metastatic breast cancer and their implication.

Materials and methods

Patient selection

Patients with invasive primary breast cancer and metastasis to distant organs (lung, bone, brain, and liver) were selected from medical records of the Department of Pathology of Severance Hospital. Only patients with a diagnosis of invasive ductal carcinoma were included. In total, 162 cases were identified, and 49 cases were paired between primary cancer and metastatic cancer. All slides were reviewed, and pathologic diagnoses were approved by two pathologists (JSK and WHJ). Histological grade was assessed using the Nottingham grading system [20]. This study was approved by the Institutional Review Board (IRB) of Severance Hospital. Written informed consent was obtained from the patient for the publication of this report and any accompanying images.

Tissue microarray

On H&E-stained slides of the tumors, a representative area was selected, and the corresponding spot was marked on the surface of the paraffin block. Using a biopsy needle, a 3-mm tissue core in the selected area was punched out and placed onto a 6 × 5 recipient block. Two tissue cores were extracted to minimize extraction bias. Each tissue core was assigned a unique tissue microarray location number that was linked to a database containing other clinicopathologic data.

Immunohistochemistry (IHC)

The antibodies used for IHC in this study are shown in Table 1. Formalin-fixed, paraffin-embedded (FFPE) tissue samples were used as follows. Three-micron-thick slices from the FFPE tissue block were deparaffinized and rehydrated in xylene and alcohol solutions and stained using a Ventana Discovery XT automated stainer (Ventana Medical Systems, Tucson, AZ, USA). Antigen retrieval was performed with CC1 (Cell Conditioning 1) buffer (citrate buffer pH 6.0, Ventana Medical Systems). Appropriate positive and negative controls were used.
Table 1
Clone, dilution, and source of antibodies used in this study
Antibody
Clone
Dilution
Source
Molecular subtype related
   
  ER
SP1
1:100
Thermo Scientific, CA, USA
  PR
PgR
1:50
DAKO, Denmark
  HER-2
Polyclonal
1:1500
DAKO, Denmark
  Ki-67
MIB-1
1:150
DAKO, Denmark
Glycolysis related
  Glut-1
SPM498
1:200
Abcam, Cambridge, UK
  Hexokinase II
3D3
1:200
Abcam, Cambridge, UK
  CAIX
Polyclonal
1:100
Abcam, Cambridge, UK
  MCT4
Polyclonal
1:100
Santa Cruz, CA, USA
Glutaminolysis related
  GLS1
Polyclonal
1:50
Abcam, Cambridge, UK
  GDH
Polyclonal
1:100
Abcam, Cambridge, UK
  ASCT2
Polyclonal
1:100
Abcam, Cambridge, UK
Mitochondrial related
  ATP synthase
15H4C4
1:100
Abcam, Cambridge, UK
  SDHA
2E3GC12FB2AE2
1:100
Abcam, Cambridge, UK
  SDHB
21A11AE7
1:100
Abcam, Cambridge, UK
Serine/glycine metabolism related
   
  PHGDH
Polyclonal
1:100
Abcam, Cambridge, UK
  PSPH
Polyclonal
1:100
Abcam, Cambridge, UK
  PSAT1
Polyclonal
1:100
Abcam, Cambridge, UK
  SHMT
Polyclonal
1:100
Abcam, Cambridge, UK
  GLDC
Polyclonal
1:100
Abcam, Cambridge, UK

Interpretation of immunohistochemical results

A cut-off value of 1% or more positively stained nuclei was used to define ER and AR positivity [21]. HER-2 staining was analyzed according to the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines using the following categories: 0 = no immunostaining; 1+ = weak incomplete membranous staining, less than 10% of tumor cells; 2+ = complete membranous staining, either uniform or weak in at least 10% of tumor cells; and 3+ = uniform intense membranous staining in at least 30% of tumor cells [22]. HER-2 staining was considered positive when strong (3+) membranous staining was observed whereas it was considered negative when none or weak (0 to 1+) staining was noted.
IHC result interpretation was based on the product of the proportion of stained cells and the immunhistochemical staining intensity. A product between 0 and 1 was regarded as negative, a product between 2 and 4 as low positive, and a product between 5 and 6 as high positive [23]. The proportion of stained cells was scored as 0 for negative, 1 for positive with less than 30%, and 2 for positive with greater than or equal to 30%. The staining intensity was scored as 0 for negative, 1 for weak, 2 for moderate, and 3 for strong. Ki-67 labeling index (LI) was defined as the percentage of positive cells in tumor cell nuclei.

Tumor phenotype classification

In this study, breast cancer phenotypes were classified according to IHC results for ER, PR, HER-2, and Ki-67, as well as FISH results for HER-2 as follows [24]: luminal A type: ER or/and PR positive and HER-2 negative and Ki-67 LI <14%; luminal B type: (HER-2 negative) ER or/and PR positive and HER-2 negative and Ki-67 LI ≥14%, (HER-2 positive) ER or/and PR positive and HER-2 overexpressed or/and amplified; HER-2 type: ER and PR negative and HER-2 overexpressed or/and amplified; and triple negative breast cancer (TNBC) type: ER, PR, and HER-2 negative.

Classification of tumor metabolic subtype

In this study, tumor metabolic subtypes were classified according to IHC results for metabolism-related proteins as follows: Glycolysis type: 3 or more positive glycolysis-related proteins [Glut-1, hexolinase II, carbonic anhydrase (CA) IX, and monocarboxylate transporter (MCT) 4]; glutaminolysis type: 2 or more positive glutaminolysis-related proteins [glutaminase (GLS) 1, glutamate dehydrogenase (GDH), and amino acid transporter (ASCT) 2]; mitochondrial type: 2 or more positive mitochondrial metabolism proteins [ATP synthase, succinate dehydrogenase (SDH)A, and SDHB]; and serine/glycine type: 3 or more positive serine/glycine metabolism-related proteins [phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT), phosphoserine phosphatase (PSPH), glycine decarboxylase (GLDC), serine hydroxymethyltransferase (SHMT)].

Statistical analysis

Data were statistically processed using SPSS for Windows, version 12.0 (SPSS Inc., Chicago, IL, USA). Correlation analysis of immunostaining results between primary breast cancer and metastatic breast cancer was calculated by the McNemar test. Student’s t and Fisher’s exact tests were used to examine any differences in continuous and categorical variables, respectively. Corrected p-value and the Bonferroni method were used for multiple comparisons. Statistical significance was assumed when P < 0.05. Kaplan-Meier survival curves and log-rank statistics were employed to evaluate time to tumor metastasis and time to survival. Multivariate regression analysis was performed using a Cox proportional hazards model.

Results

Baseline characteristics of patients

In a total of 162 cases, 52 (32.1%) had lung metastasis, 47 (29.0%) had bone metastasis, 30 (18.5%) had brain metastasis, and 24 (14.8%) had liver metastasis. The proportion of cases with ER positivity and PR positivity was higher among those with bone and liver metastases than in those with metastasis to other sites (p < 0.001), and HER-2 positivity was higher among cases of brain metastasis compared to other sites (p = 0.017). Furthermore, luminal A type tumors were more common among patients with bone and liver metastasis, while the proportion of tripe negative breast cancer (TNBC) was higher among cases of brain and lung metastasis (p < 0.001) (Table 2).
Table 2
Basal clinicopathologic characteristics of patients with breast cancer metastasis according to metastatic site
Parameters
Total N = 162 (%)
Bone metastasis n = 47 (%)
Brain metastasis n = 39 (%)
Liver metastasis n = 24 (%)
Lung metastasis n = 52 (%)
p-value
Age (yr, mean ± SD)
52.0 ± 10.5
52.3 ± 10.0
53.5 ± 11.7
54.2 ± 10.8
49.7 ± 9.5
0.221
ER
     
<0.001
  Negative
69 (42.6)
8 (17.0)
26 (66.7)
6 (25.0)
29 (55.8)
 
  Positive
93 (57.4)
39 (83.0)
13 (33.3)
18 (75.0)
23 (44.2)
 
PR
     
<0.001
  Negative
109 (67.3)
23 (48.9)
38 (97.4)
12 (50.0)
36 (69.2)
 
  Positive
53 (32.7)
24 (51.1)
1 (2.6)
12 (50.0)
16 (30.8)
 
HER-2
     
0.017
  Negative
114 (70.4)
38 (80.9)
20 (51.3)
19 (79.2)
37 (71.2)
 
  Positive
48 (29.6)
9 (19.1)
19 (48.7)
5 (20.8)
15 (28.8)
 
Molecular subtypes
     
<0.001
  Luminal A
67 (41.4)
33 (70.2)
4 (10.3)
15 (62.5)
15 (28.8)
 
  Luminal B
27 (16.7)
7 (14.9)
9 (23.1)
3 (12.5)
8 (15.4)
 
  HER-2
30 (18.5)
5 (10.6)
12 (30.8)
3 (12.5)
10 (19.2)
 
  TNBC
38 (23.5)
2 (4.3)
14 (35.9)
3 (12.5)
19 (36.5)
 
Time to metastasis (month, mean ± SD)
30.3 ± 38.0
29.3 ± 29.2
32.7 ± 32.6
18.2 ± 16.8
35.1 ± 38.0
0.182
Patients death
53 (32.7)
23 (48.9)
11 (28.2)
7 (29.2)
12 (23.1)
0.040
Bold represents p < 0.05.

Expression of metabolism-related proteins in breast cancer metastasis according to metastatic site (Figure 1)

Analysis of metabolism-related protein expression according to metastatic site in metastatic breast cancer revealed site-specific expression patterns of glycolysis-related proteins (Glut-1, hexokinase II, CAIX, and MCT4), with higher expression levels seen in brain metastasis than in bone or liver metastasis (p < 0.001, 0.001, 0.009, and <0.001, respectively). Similar trends were seen for PHGDH (p = 0.027). The highest expression levels of SDHB and SHMT1 were found in lung metastasis, while the lowest levels were seen in bone metastasis (p = 0.006, and 0.033, respectively) (Table 3).
Table 3
Expression of metabolism-related proteins in the tumor cell compartment of breast cancer metastasis according to metastatic site
Parameters
Total N = 162 (%)
Bone metastasis n = 47 (%)
Brain metastasis n = 39 (%)
Liver metastasis n = 24 (%)
Lung metastasis n = 52 (%)
p-value
Glut-1
     
<0.001
  Negative
83 (51.2)
35 (74.5)
10 (25.6)
18 (75.0)
20 (38.5)
 
  Positive
79 (48.8)
12 (25.5)
29 (74.4)
6 (25.0)
32 (61.5)
 
Hexokinase II
     
0.001
  Negative
113 (69.8)
41 (87.2)
25 (64.1)
20 (83.3)
27 (51.9)
 
  Positive
49 (30.2)
6 (12.8)
14 (35.9)
4 (16.7)
25 (48.1)
 
CAIX
     
0.009
  Negative
130 (80.2)
44 (93.6)
26 (66.7)
21 (87.5)
39 (75.0)
 
  Positive
32 (19.8)
3 (6.4)
13 (33.3)
3 (12.5)
13 (25.0)
 
MCT4
     
<0.001
  Negative
66 (40.7)
25 (53.2)
4 (10.3)
13 (54.2)
24 (46.2)
 
  Positive
96 (59.3)
22 (46.8)
35 (89.7)
11 (45.8)
28 (53.8)
 
GLS1
     
0.473
  Negative
83 (51.2)
28 (59.6)
17 (43.6)
11 (45.8)
27 (51.9)
 
  Positive
79 (48.8)
19 (40.4)
22 (56.4)
13 (54.2)
25 (48.1)
 
GDH
     
0.610
  Negative
2 (1.2)
1 (2.1)
1 (2.6)
0 (0.0)
0 (0.0)
 
  Positive
160 (98.8)
46 (97.9)
38 (97.4)
24 (100.0)
52 (100.0)
 
ASCT2
     
0.033
  Negative
122 (75.3)
37 (78.7)
34 (87.2)
19 (79.2)
32 (61.5)
 
  Positive
40 (24.7)
10 (21.3)
5 (12.8)
5 (20.8)
20 (38.5)
 
ATP synthase
     
0.610
  Negative
2 (1.2)
1 (2.1)
1 (2.6)
0 (0.0)
0 (0.0)
 
  Positive
160 (98.8)
46 (97.9)
38 (97.4)
24 (100.0)
52 (100.0)
 
SDHA
     
0.175
  Negative
2 (1.2)
2 (4.3)
0 (0.0)
0 (0.0)
0 (0.0)
 
  Positive
160 (98.8)
45 (95.7)
39 (100.0)
24 (100.0)
52 (100.0)
 
SDHB
     
0.006
  Negative
52 (32.1)
20 (42.6)
16 (41.0)
9 (37.5)
7 (13.5)
 
  Positive
110 (67.9)
27 (57.4)
23 (59.0)
15 (62.5)
45 (86.5)
 
PHGDH
     
0.027
  Negative
61 (37.7)
24 (51.1)
11 (28.2)
12 (50.0)
14 (26.9)
 
  Positive
101 (62.3)
23 (48.9)
28 (71.8)
12 (50.0)
38 (73.1)
 
PSPH
     
0.926
  Negative
146 (90.1)
42 (89.4)
36 (92.3)
22 (91.7)
46 (88.5)
 
  Positive
16 (9.9)
5 (10.6)
3 (7.7)
2 (8.3)
6 (11.5)
 
PSAT1
     
<0.001
  Negative
140 (86.4)
41 (87.2)
37 (94.9)
14 (58.3)
48 (92.3)
 
  Positive
22 (13.6)
6 (12.8)
2 (5.1)
10 (41.7)
4 (7.7)
 
SHMT1
     
0.033
  Negative
127 (78.4)
43 (91.5)
31 (79.5)
18 (75.0)
35 (67.3)
 
  Positive
35 (21.6)
4 (8.5)
8 (20.5)
6 (25.0)
17 (32.7)
 
GLDC
     
0.547
  Negative
96 (59.3)
31 (66.0)
24 (61.5)
14 (58.3)
27 (51.9)
 
  Positive
66 (40.7)
16 (34.0)
15 (38.5)
10 (41.7)
25 (48.1)
 
Bold represents p < 0.05.
On analysis of metabolism-related protein expression in the stromal compartment of tumors, the expression of MCT4 (p = 0.002), GLS1 (p = 0.006), GDH (p = 0.035), SDHA (p = 0.004), PHGDH (p = 0.018), PSPH (p = 0.006), PSAT1 (p < 0.001), and SHMT1 (p < 0.001) showed site specificity: higher stromal expression of MCT4, GLS1, GDH, SDHA, PHGDH, and SHMT1 were found in bone metastasis, while PSPH and PSAT1 were higher in brain metastasis (Table 4).
Table 4
Expression of metabolism-related proteins in the stromal compartment of breast cancer metastasis according to metastatic site
Parameters
Total N = 162 (%)
Bone metastasis n = 47 (%)
Brain metastasis n = 39 (%)
Liver metastasis n = 24 (%)
Lung metastasis n = 52 (%)
p-value
Hexokinase II
     
0.058
  Negative
159 (98.1)
44 (93.6)
39 (100.0)
24 (100.0)
52 (100.0)
 
  Positive
3 (1.9)
3 (6.4)
0 (0.0)
0 (0.0)
0 (0.0)
 
MCT4
     
0.002
  Negative
113 (69.8)
26 (55.3)
36 (92.3)
17 (70.8)
34 (65.4)
 
  Positive
49 (30.2)
21 (44.7)
3 (7.7)
7 (29.2)
18 (34.6)
 
GLS1
     
0.006
  Negative
157 (96.9)
42 (89.4)
39 (100.0)
24 (100.0)
52 (100.0)
 
  Positive
5 (3.1)
5 (10.6)
0 (0.0)
0 (0.0)
0 (0.0)
 
GDH
     
0.035
  Negative
140 (86.4)
36 (76.6)
38 (97.4)
22 (91.7)
44 (84.6)
 
  Positive
22 (13.6)
11 (23.4)
1 (2.6)
2 (8.3)
8 (15.4)
 
ATP synthase
     
0.084
  Negative
155 (95.7)
42 (89.4)
38 (97.4)
24 (100.0)
51 (98.1)
 
  Positive
7 (4.3)
5 (10.6)
1 (2.6)
0 (0.0)
1 (1.9)
 
SDHA
     
0.004
  Negative
145 (89.5)
36 (76.6)
38 (97.4)
21 (87.5)
50 (96.2)
 
  Positive
17 (10.5)
11 (23.4)
1 (2.6)
3 (12.5)
2 (3.8)
 
PHGDH
     
0.018
  Negative
158 (97.5)
43 (91.5)
39 (100.0)
24 (100.0)
52 (100.0)
 
  Positive
4 (2.5)
4 (8.5)
0 (0.0)
0 (0.0)
0 (0.0)
 
PSPH
     
0.006
  Negative
156 (96.3)
46 (97.9)
34 (87.2)
24 (100.0)
52 (100.0)
 
  Positive
6 (3.7)
1 (2.1)
5 (12.8)
0 (0.0)
0 (0.0)
 
PSAT1
     
<0.001
  Negative
154 (95.1)
46 (97.9)
32 (82.1)
24 (100.0)
52 (100.0)
 
  Positive
8 (4.9)
1 (2.1)
7 (17.9)
0 (0.0)
0 (0.0)
 
SHMT1
     
<0.001
  Negative
98 (60.5)
16 (34.0)
31 (79.5)
16 (66.7)
35 (67.3)
 
  Positive
64 (39.5)
31 (66.0)
8 (20.5)
8 (33.3)
17 (32.7)
 
Bold represents p < 0.05.
After a review of the metabolic phenotype according to metastatic site, the glycolysis phenotype was most often seen in the brain and lung (p < 0.001) (Table 5).
Table 5
Metabolic phenotypes of breast cancer metastasis according to metastatic site
Parameters
Total N = 162 (%)
Bone metastasis n = 47 (%)
Brain metastasis n = 39 (%)
Liver metastasis n = 24 (%)
Lung metastasis n = 52 (%)
p-value
Glycolysis type
     
<0.001
  No
81 (50.0)
36 (76.6)
9 (23.1)
17 (70.8)
19 (36.5)
 
  Yes
81 (50.0)
11 (23.4)
30 (76.9)
7 (29.2)
33 (63.5)
 
Glutamine type
     
0.308
  No
62 (38.4)
23 (48.9)
14 (35.9)
9 (37.5)
16 (30.8)
 
  Yes
100 (61.7)
24 (51.1)
25 (64.1)
15 (62.5)
36 (69.2)
 
Mitochondrial type
     
0.175
  No
2 (1.2)
2 (4.3)
0 (0.0)
0 (0.0)
0 (0.0)
 
  Yes
160 (98.8)
45 (95.7)
39 (100.0)
24 (100.0)
52 (100.0)
 
Serine/glycine type
     
0.444
  No
128 (79.0)
37 (78.7)
34 (87.2)
19 (79.2)
38 (73.1)
 
  Yes
34 (21.0)
10 (21.3)
5 (12.8)
5 (20.8)
14 (26.9)
 
Bold represents p < 0.05.

Correlation of expression of metabolism-related proteins between primary and metastatic breast cancer according to metastatic site

We analyzed the expression levels of metabolism-related proteins in primary and metastatic cancers in 49 paired cases. The expression level of MCT4 was statistically different between primary and metastatic cancers (p = 0.002). When considering difference between primary and metastatic cancers according to metastatic sites, Glut-1 (p = 0.004) and MCT4 (p = 0.004) were expressed in the lung metastasis but not in the primary cancer (Table 6 and Figure 2).
Table 6
Correlation of expression of metabolism related proteins between primary and metastatic breast cancer according to metastatic site
Parameters
Total
Bone metastasis
Brain metastasis
Liver metastasis
Lung metastasis
N = 49 (%)
p-value
n = 13 (%)
p-value
n = 9 (%)
p-value
n = 4 (%)
p-value
n = 23 (%)
p-value
Glut-1
 
0.481
 
0.063
 
1.000
 
1.000
 
0.004
  (+) → (+)
10 (20.4)
 
0 (0.0)
 
4 (44.4)
 
0 (0.0)
 
6 (20.4)
 
  (+) → (−)
7 (14.3)
 
5 (38.5)
 
1 (11.1)
 
1 (25.0)
 
0 (0.0)
 
  (−) → (+)
11 (22.4)
 
0 (0.0)
 
2 (22.2)
 
0 (0.0)
 
9 (39.1)
 
  (−) → (−)
21 (42.9)
 
8 (61.5)
 
2 (22.2)
 
3 (75.0)
 
8 (34.8)
 
Hexokinase II
 
0.581
 
1.000
 
0.500
 
1.000
 
1.000
  (+) → (+)
11 (22.4)
 
1 (7.7)
 
1 (11.1)
 
0 (0.0)
 
9 (39.1)
 
  (+) → (−)
5 (10.2)
 
3 (23.1)
 
0 (0.0)
 
0 (0.0)
 
2 (8.7)
 
  (−) → (+)
8 (16.3)
 
2 (15.4)
 
2 (22.2)
 
1 (25.0)
 
3 (13.0)
 
  (−) → (−)
25 (51.0)
 
7 (53.8)
 
6 (66.7)
 
3 (75.0)
 
9 (39.1)
 
CAIX
 
0.688
 
N/A
 
1.000
 
N/A
 
1.000
  (+) → (+)
2 (4.1)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
2 (8.7)
 
  (+) → (−)
2 (4.1)
 
0 (0.0)
 
1 (11.1)
 
0 (0.0)
 
1 (4.3)
 
  (−) → (+)
4 (8.2)
 
0 (0.0)
 
2 (22.2)
 
0 (0.0)
 
2 (8.7)
 
  (−) → (−)
41 (83.7)
 
13 (100.0)
 
6 (66.7)
 
4 (100.0)
 
18 (78.3)
 
MCT4
 
0.002
 
0.250
 
0.250
 
0.500
 
0.004
  (+) → (+)
14 (28.6)
 
3 (23.1)
 
4 (44.4)
 
0 (0.0)
 
7 (30.4)
 
  (+) → (−)
2 (4.1)
 
0 (0.0)
 
0 (0.0)
 
2 (50.0)
 
0 (0.0)
 
  (−) → (+)
15 (30.6)
 
3 (23.1)
 
3 (33.3)
 
0 (0.0)
 
9 (39.1)
 
  (−) → (−)
18 (36.7)
 
7 (53.8)
 
2 (22.2)
 
2 (50.0)
 
7 (30.4)
 
GLS1
 
1.000
 
0.063
 
1.000
 
1.000
 
0.289
  (+) → (+)
15 (30.6)
 
2 (15.4)
 
3 (33.3)
 
2 (50.0)
 
8 (34.8)
 
  (+) → (−)
8 (16.3)
 
0 (0.0)
 
1 (11.1)
 
1 (25.0)
 
6 (26.1)
 
  (−) → (+)
9 (18.4)
 
5 (38.5)
 
2 (22.2)
 
0 (0.0)
 
2 (8.7)
 
  (−) → (−)
17 (34.7)
 
6 (46.2)
 
3 (33.3)
 
1 (25.0)
 
7 (30.4)
 
GDH
 
1.000
 
1.000
 
1.000
 
1.000
 
1.000
  (+) → (+)
44 (89.8)
 
11 (84.6)
 
8 (88.9)
 
3 (75.0)
 
22 (95.7)
 
  (+) → (−)
2 (4.1)
 
1 (7.7)
 
1 (11.1)
 
0 (0.0)
 
0 (0.0)
 
  (−) → (+)
3 (6.1)
 
1 (7.7)
 
0 (0.0)
 
1 (25.0)
 
1 (4.3)
 
  (−) → (−)
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
ASCT2
 
0.092
 
1.000
 
0.219
 
1.000
 
0.375
  (+) → (+)
8 (16.3)
 
0 (0.0)
 
0 (0.0)
 
1 (25.0)
 
7 (30.4)
 
  (+) → (−)
10 (20.4)
 
1 (7.7)
 
5 (55.6)
 
0 (0.0)
 
4 (17.4)
 
  (−) → (+)
3 (6.1)
 
1 (7.7)
 
1 (11.1)
 
0 (0.0)
 
1 (4.3)
 
  (−) → (−)
28 (57.1)
 
11 (84.6)
 
3 (33.3)
 
3 (75.0)
 
11 (47.8)
 
ATP synthase
 
1.000
 
1.000
 
N/A
 
N/A
 
N/A
  (+) → (+)
48 (98.0)
 
12 (92.3)
 
9 (100.0)
 
4 (100.0)
 
23 (100.0)
 
  (+) → (−)
1 (2.0)
 
1 (7.7)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
  (−) → (+)
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
  (−) → (−)
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
SDHA
 
1.000
 
1.000
 
1.000
 
N/A
 
N/A
  (+) → (+)
44 (89.8)
 
9 (69.2)
 
8 (88.9)
 
4 (100.0)
 
23 (100.0)
 
  (+) → (−)
2 (4.1)
 
2 (15.4)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
  (−) → (+)
3 (6.1)
 
2 (15.4)
 
1 (11.1)
 
0 (0.0)
 
0 (0.0)
 
  (−) → (−)
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
SDHB
 
0.263
 
1.000
 
1.000
 
1.000
 
0.063
  (+) → (+)
24 (49.0)
 
4 (30.8)
 
3 (33.3)
 
1 (25.0)
 
16 (69.9)
 
  (+) → (−)
7 (14.3)
 
3 (23.1)
 
3 (33.3)
 
1 (25.0)
 
0 (0.0)
 
  (−) → (+)
13 (26.5)
 
3 (23.1)
 
3 (33.3)
 
2 (50.0)
 
5 (21.7)
 
  (−) → (−)
5 (10.2)
 
3 (23.1)
 
0 (0.0)
 
0 (0.0)
 
2 (8.7)
 
PHGDH
 
0.581
 
1.000
 
1.000
 
1.000
 
0.688
  (+) → (+)
22 (44.9)
 
3 (23.1)
 
6 (66.7)
 
1 (25.0)
 
12 (52.2)
 
  (+) → (−)
5 (10.2)
 
2 (15.4)
 
1 (11.1)
 
0 (0.0)
 
2 (8.7)
 
  (−) → (+)
8 (16.3)
 
2 (15.4)
 
1 (11.1)
 
1 (25.0)
 
4 (17.4)
 
  (−) → (−)
14 (28.6)
 
6 (46.2)
 
1 (11.1)
 
2 (50.0)
 
5 (21.7)
 
PSPH
 
1.000
 
N/A
 
1.000
 
1.000
 
1.000
  (+) → (+)
1 (2.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
1 (4.3)
 
  (+) → (−)
3 (6.1)
 
0 (0.0)
 
1 (11.1)
 
0 (0.0)
 
2 (8.7)
 
  (−) → (+)
2 (4.1)
 
0 (0.0)
 
0 (0.0)
 
1 (25.0)
 
1 (4.3)
 
  (−) → (−)
43 (87.8)
 
13 (100.0)
 
8 (88.9)
 
3 (75.0)
 
19 (82.6)
 
PSAT1
 
0.607
 
1.000
 
1.000
 
1.000
 
0.219
  (+) → (+)
1 (2.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
1 (4.3)
 
  (+) → (−)
9 (18.4)
 
3 (23.1)
 
0 (0.0)
 
1 (25.0)
 
5 (21.7)
 
  (−) → (+)
6 (12.2)
 
2 (15.4)
 
1 (11.1)
 
2 (50.0)
 
1 (4.3)
 
  (−) → (−)
33 (67.3)
 
8 (61.5)
 
8 (88.9)
 
1 (25.0)
 
16 (69.6)
 
SHMT1
 
1.000
 
1.000
 
1.000
 
N/A
 
1.000
  (+) → (+)
10 (20.4)
 
0 (0.0)
 
2 (22.2)
 
0 (0.0)
 
8 (34.8)
 
  (+) → (−)
2 (4.1)
 
1 (7.7)
 
0 (0.0)
 
0 (0.0)
 
1 (4.3)
 
  (−) → (+)
1 (2.0)
 
0 (0.0)
 
0 (0.0)
 
0 (0.0)
 
1 (4.3)
 
  (−) → (−)
36 (73.5)
 
12 (92.3)
 
7 (77.8)
 
4 (100.0)
 
13 (56.5)
 
GLDC
 
0.143
 
0.375
 
1.000
 
1.000
 
0.508
  (+) → (+)
12 (24.5)
 
0 (0.0)
 
3 (33.3)
 
1 (25.0)
 
8 (34.8)
 
  (+) → (−)
5 (10.2)
 
1 (7.7)
 
1 (11.1)
 
0 (0.0)
 
3 (13.0)
 
  (−) → (+)
12 (24.5)
 
4 (30.8)
 
1 (11.1)
 
1 (25.0)
 
6 (26.1)
 
  (−) → (−)
20 (40.8)
 
8 (61.5)
 
4 (44.4)
 
2 (50.0)
 
6 (26.1)
 
*p-value was calculated by McNemar test.
Bold represents p < 0.05.

Correlation between pathologic factors and expression of metabolism-related proteins

On analyzing the association between expression of metabolism-related proteins and pathologic factors, ER negativity was associated with Glut-1 positivity (p < 0.001), hexokinase II positivity (p < 0.001), CAIX positivity (p < 0.001), glycolysis type (p < 0.001), glutaminolysis type (p = 0.001), PHGDH positivity (p < 0.001), and SHMT1 positivity (p < 0.001). PR negativity was associated with MCT4 positivity (p = 0.001) and higher Ki-67 LI was associated with Glut-1 positivity (p = 0.001) and MCT4 positivity (p = 0.001). Glut-1 (p < 0.001), CAIX (p < 0.001), and SHMT1 (p < 0.001) were associated with molecular subtype. If these proteins were expressed, the proportion of TNBC was higher, while luminal A type was higher when these proteins were not expressed. In addition, TNBC was more common in glycolysis type, while luminal A was more common in non-glycolysis type (p < 0.001) (Figure 3).

The association between the expression of metabolism-related proteins and patient prognosis

On analyzing the association of metabolic phenotype and the expression of metabolism-related proteins with patient prognosis with univariate analysis (Figure 4 and Table 7), we found that factors associated with shorter overall survival (OS) were CAIX positivity (p = 0.044), PSPH positivity (p = 0.045), SHMT1 positivity (p = 0.002), and serine/glycine type (p = 0.041). The factors associated with shorter OS in multivariate analysis were higher Ki-67 LI (hazard ratio: 4.096, 95% CI: 1.664–10.08, P = 0.002) and tumoral SHMT1 positivity (hazard ratio: 2.836, 95% CI: 1.239–6.495, P = 0.014) (Table 8).
Table 7
Univariate analysis of the association between expression levels of metabolism-related proteins in metastatic breast cancers and overall survival by the log-rank test
Parameters
Total N = 162 (%)
Bone metastasis n = 47 (%)
Brain metastasis n = 39 (%)
Liver metastasis n = 24 (%)
Lung metastasis n = 52 (%)
Mean survival (95% CI) months
P-value
Mean survival (95% CI) months
P-value
Mean survival (95% CI) months
P-value
Mean survival (95% CI) months
P-value
Mean survival (95% CI) months
P-value
Glut-1
 
0.141
 
0.020
 
0.504
 
0.591
 
0.833
  Negative
121 (103–139)
 
102 (76–129)
 
94 (65–123)
 
84 (64–105)
 
131 (97–165)
 
  Positive
92 (72–111)
 
56 (41–70)
 
101 (74–127)
 
62 (35–88)
 
120 (89–150)
 
Hexokinase II
 
0.727
 
0.912
 
0.680
 
0.418
 
0.192
  Negative
112 (96–128)
 
83 (61–104)
 
103 (76–130)
 
85 (65–105)
 
146 (117–175)
 
  Positive
96 (68–124)
 
62 (42–81)
 
54 (42–65)
 
56 (21–90)
 
103 (69–137)
 
CAIX
 
0.044
 
<0.001
 
0.527
 
0.964
 
0.046
  Negative
115 (100–130)
 
87 (67–108)
 
115 (90–141)
 
81 (61–101)
 
140 (114–166)
 
  Positive
80 (56–103)
 
16 (0–41)
 
64 (42–86)
 
67 (30–105)
 
87 (49–124)
 
MCT4
 
0.612
 
0.787
 
0.995
 
0.652
 
0.456
  Negative
107 (87–128)
 
92 (62–122)
 
73 (29–117)
 
85 (63–107)
 
120 (85–154)
 
  Positive
113 (95–131)
 
66 (55–77)
 
107 (84–130)
 
61 (40–82)
 
138 (107–168)
 
GLS1
 
0.274
 
0.690
 
0.061
 
0.348
 
0.896
  Negative
114 (96–132)
 
85 (61–108)
 
133 (108–158)
 
70 (52–88)
 
127 (95–160)
 
  Positive
110 (91–130)
 
61 (43–78)
 
61 (43–80)
 
72 (47–98)
 
133 (102–164)
 
GDH
 
0.919
 
0.171
 
n/a
 
n/a
 
n/a
  Negative
165 (165–165)
 
165 (165–165)
 
n/a
 
n/a
 
n/a
 
  Positive
111 (97–125)
 
72 (58–86)
 
n/a
 
n/a
 
n/a
 
ASCT2
 
0.686
 
0.948
 
n/a
 
0.761
 
0.730
  Negative
111 (96–127)
 
89 (64–114)
 
n/a
 
83 (62–104)
 
135 (107–162)
 
  Positive
89 (74–104)
 
80 (47–114)
 
n/a
 
58 (40–76)
 
70 (57–83)
 
ATP synthase
 
0.965
 
0.171
 
n/a
 
n/a
 
n/a
  Negative
165 (165–165)
 
165 (165–165)
 
n/a
 
n/a
 
n/a
 
  Positive
111 (97–125)
 
72 (58–86)
 
n/a
 
n/a
 
n/a
 
SDHA
 
0.830
 
0.132
 
n/a
 
n/a
 
n/a
  Negative
165 (165–165)
 
165 (165–165)
 
n/a
 
n/a
 
n/a
 
  Positive
111 (96–125)
 
72 (57–86)
 
n/a
 
n/a
 
n/a
 
SDHB
 
0.460
 
0.630
 
0.372
 
0.870
 
0.649
  Negative
102 (80–124)
 
85 (52–118)
 
115 (85–146)
 
49 (45–53)
 
82 (48–115)
 
  Positive
117 (101–133)
 
68 (57–80)
 
70 (52–88)
 
80 (57–103)
 
135 (112–158)
 
PHGDH
 
0.590
 
0.494
 
0.878
 
0.048
 
0.939
  Negative
117 (96–138)
 
90 (61–119)
 
84 (53–115)
 
78 (65–90)
 
127 (80–174)
 
  Positive
108 (90–126)
 
60 (48–71)
 
107 (81–133)
 
64 (39–89)
 
122 (89–154)
 
PSPH
 
0.045
 
0.011
 
0.714
 
0.654
 
0.477
  Negative
114 (99–128)
 
88 (67–110)
 
108 (86–131)
 
83 (63–102)
 
131 (105–157)
 
  Positive
68 (36–100)
 
35 (22–49)
 
30 (17–42)
 
53 (22–83)
 
94 (41–147)
 
PSAT1
 
0.542
 
n/a
 
n/a
 
0.927
 
0.074
  Negative
109 (94–123)
 
n/a
 
n/a
 
83 (59–106)
 
134 (109–158)
 
  Positive
79 (63–95)
 
n/a
 
n/a
 
65 (46–83)
 
38 (11–65)
 
SHMT1
 
0.002
 
0.258
 
0.022
 
0.089
 
0.009
  Negative
119 (104–134)
 
84 (64–105)
 
117 (95–140)
 
90 (71–109)
 
147 (121–172)
 
  Positive
63 (31–94)
 
31 (7–56)
 
27 (19–34)
 
39 (24–55)
 
78 (32–123)
 
GLDC
 
0.281
 
0.485
 
0.024
 
0.281
 
0.370
  Negative
115 (98–133)
 
80 (55–104)
 
127 (105–150)
 
89 (68–111)
 
135 (102–168)
 
  Positive
99 (80–119)
 
66 (56–76)
 
53 (31–76)
 
59 (35–82)
 
111 (78–144)
 
Glycolysis type
 
0.615
 
0.159
 
0.614
 
0.921
 
0.961
  No
116 (97–134)
 
96 (71–122)
 
91 (59–123)
 
82 (61–103)
 
128 (91–164)
 
  Yes
99 (80–118)
 
63 (51–75)
 
102 (76–128)
 
69 (44–94)
 
123 (95–151)
 
Glutamine type
 
0.116
 
0.661
 
0.251
 
0.213
 
0.454
  No
121 (101–142)
 
90 (59–120)
 
128 (96–159)
 
74 (54–93)
 
140 (105–175)
 
  Yes
99 (79–119)
 
72 (51–93)
 
68 (51–84)
 
72 (49–95)
 
129 (101–157)
 
Mitochondrial type
 
0.830
 
0.132
 
n/a
 
n/a
 
n/a
  No
165 (165–165)
 
165 (165–165)
 
n/a
 
n/a
 
n/a
 
  Yes
111 (96–125)
 
72 (57–86)
 
n/a
 
n/a
 
n/a
 
Serine/glycine type
 
0.041
 
0.886
 
0.467
 
0.034
 
0.019
  No
116 (101–131)
 
83 (61–105)
 
109 (86–133)
 
90 (72–109)
 
142 (116–168)
 
  Yes
79 (56–103)
 
60 (45–76)
 
66 (30–103)
 
38 (15–60)
 
72 (32–112)
 
Molecular subtypes
 
0.002
 
<0.001
 
0.081
 
N/A
 
N/A
  Luminal A
105 (86–124)
 
84 (62–107)
 
55 (10–100)
 
N/A
 
N/A
 
  Luminal B
140 (111–170)
 
60 (26–93)
 
138 (112–164)
 
N/A
 
N/A
 
  HER-2
134 (109–158)
 
62 (47–77)
 
79 (60–97)
 
N/A
 
N/A
 
  TNBC
51 (38–64)
 
3 (2–4)
 
31 (22–39)
 
N/A
 
N/A
 
Bold represents p < 0.05.
Table 8
Multivariate analysis of patient prognosis in metastatic breast cancer
Parameters
Overall survival
Hazard ratio
95% CI
P-value
ER status
  
0.067
  Negative versus positive
10.42
0.846-128.4
 
PR status
  
0.091
  Negative versus positive
1.195
0.898-4.237
 
HER2 status
  
0.408
  Negative versus positive
0.436
0.075-2.869
 
Ki-67 LI
  
0.002
  ≤14 versus >14
4.096
1.664-10.08
 
Tumor phenotypes
  
0.147
  Luminal A
   
  Luminal B
6.697
0.387-116.0
 
  HER2
7.286
0.348-152.4
 
  TNBC
0.433
0.055-3.387
 
CAIX
  
0.189
  Negative versus positive
1.690
0.773-3.695
 
PSPH
  
0.117
  Negative versus positive
2.156
0.825-5.634
 
SHMT1
  
0.014
  Negative versus positive
2.836
1.239-6.495
 
Serine/glycine type
  
0.451
  No versus Yes
0.723
0.311-1.679
 
Bold represents p < 0.05.
Univariate analysis was performed to analyze the association between expression of metabolism-related proteins and metabolic phenotype according to metastatic site. The factors associated with shorter OS were Glut-1 positivity (p = 0.020), CAIX positivity (p < 0.001), and PSPH positivity (p = 0.011) in bone metastasis. SHMT1 positivity (p = 0.022) and GLDC positivity (p = 0.024) were associated with shorter OS in brain metastasis, PHGDH positivity (p = 0.048) was associated with shorter OS in liver metastasis, and CAIX positivity (p = 0.046) was associated with shorter OS in lung metastasis (Figure 5 and Table 7).

Discussion

In this study, differences in metabolic features of tumors were seen according to metastatic site among cases of metastatic breast cancer. Briefly, brain and lung metastasis showed higher expression levels of glycolysis-related proteins (Glut-1, hexokinase II, CAIX, and MCT4) than did bone and liver metastasis. Thus, there are several possible reasons for the different metabolic features according to metastatic site. First, the molecular subtypes showed site specificity in metastatic breast cancer, with a high proportion of TNBC in brain and lung metastases and luminal A in bone and liver metastases. In previous studies, the expression levels of glycolysis-related proteins were higher in TNBC or basal-like type [25],[26]. Such data are in agreement with the results from this study that the expression of glycolysis-related proteins is higher in brain and lung metastases, which consist of more TNBC cases. Another possible reason is the variety of influences from circulation tumor cells (CTC). Given that CTC, defined as cancer cells in the blood of cancer patients, plays a significant role in the metastatic process, CTC and its metabolites have an influence on metastatic properties. This may result in site specificity according to metastatic site; however, further study is required [27]. One other reason is the different metabolic characteristics of metastatic sites. For example, given that bone tissue creates the hematopoietic cells, the metabolites of bone tissue are expected to differ from those of liver, brain, or lung. This is supported by the fact that immune-responsive tissue and immune-privileged tissues are reported to show different cellular compositions, as well as different metabolic and immunological responses [28].
The stromal expression levels of hexokinase II, MCT4, GLS1, GDH, SDHA, PHGDH, and SHMT1 were higher in bone metastasis compared to that at other sites. In terms of histologic features, bone metastasis forms highly rich tumor stroma with prominent fibroblasts. The reverse-Warburg effect theory, which describes the metabolic interaction between tumor cells and the stroma, supports the expression of metabolism-related proteins in the stroma in bone metastasis. The theory insists that lactate created by glycolysis in the stroma is transferred to tumor cells and metabolized as the substrate by oxidative phosphorylation in tumor cells [29],[30]. Therefore, the reverse Warburg effect phenotype may be applicable to bone metastasis, in which glycolysis-related molecules or glycolytic metabolism intermediates are highly expressed. In previous studies, luminal type tumors were more likely to have the reverse Warburg effect phenotype [31]. This may explain why metastatic tumors with the reverse Warburg effect phenotype are more likely to occur in the bone, since luminal type tumors are most commonly found in the bone. However, further validation studies are needed to confirm these findings.
Primary tumors were negative for Glut-1 and MCT4, but some positivity was seen in lung metastasis. Previous studies reported differential expression of most important biomarkers of breast cancer (ER, PR, and HER-2) between primary cancer and metastatic cancer, with 21–50% showing HER-2 loss, about 30% showing HER-2 gain [8],[32], 3.2–44% showing ER loss [33]-[35], 24% showing PR loss [35], and ER or PR gain not reported. In other words, when primary breast cancer progresses to metastatic cancer, expression of ER/PR can be lost. The loss of ER/PR may be because metastatic cancer exhibits more aggressive features compared to primary tumors; thus, ER/PR, a good prognostic marker, presents as a loss rather than as a gain. In this study, Glut-1 expression was associated with ER negativity and MCT4 expression was associated with PR negativity. In the progression of primary to metastatic cancer, ER/PR is lost and the expression of metabolism-related proteins like Glut-1 and MCT4 appear. Further validation is required to generalize the findings of this study.
The clinical significance of this study is that inhibition of the metabolic pathway may be a potential treatment target. The expression of metabolism-related proteins, especially glycolysis-related proteins differed according to metastatic site. Previous preclinical studies reported that Glut-1 inhibitor [36],[37], CAIX inhibitor [38], and MCT4 inhibitor [39] suppress tumor growth in several tumor types. Thus, these proteins are possible targets for chemotherapy in brain and lung metastasis, which showed higher expression levels of glycolysis-related proteins. However, it should be noted that a compensating response may appear if one or two molecules are inhibited in metabolic pathway targeted therapy [40].

Conclusion

In conclusion, differences in metabolic features according to metastatic site were seen in metastatic breast cancer, with the glycolysis phenotype found predominantly in the brain and lung since the expression of glycolysis-related protein was higher and the non-glycolysis phenotype in the bone and liver.

Acknowledgements

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (1420080).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

HMK participated in the design of the study and performed the statistical analysis and carried out the immunoassays. WHJ participated in its design. JSK conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS: Breast cancer metastasis to the central nervous system. Am J Pathol. 2005, 167: 913-920. 10.1016/S0002-9440(10)61180-7.PubMedCentralCrossRefPubMed Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS: Breast cancer metastasis to the central nervous system. Am J Pathol. 2005, 167: 913-920. 10.1016/S0002-9440(10)61180-7.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Woodhouse EC, Chuaqui RF, Liotta LA: General mechanisms of metastasis. Cancer. 1997, 80: 1529-1537. 10.1002/(SICI)1097-0142(19971015)80:8+<1529::AID-CNCR2>3.0.CO;2-F.CrossRefPubMed Woodhouse EC, Chuaqui RF, Liotta LA: General mechanisms of metastasis. Cancer. 1997, 80: 1529-1537. 10.1002/(SICI)1097-0142(19971015)80:8+<1529::AID-CNCR2>3.0.CO;2-F.CrossRefPubMed
3.
Zurück zum Zitat Abali H, Celik I: High incidence of central nervous system involvement in patients with breast cancer treated with epirubicin and docetaxel. Am J Clin Oncol. 2002, 25: 632-633. 10.1097/00000421-200212000-00023.CrossRefPubMed Abali H, Celik I: High incidence of central nervous system involvement in patients with breast cancer treated with epirubicin and docetaxel. Am J Clin Oncol. 2002, 25: 632-633. 10.1097/00000421-200212000-00023.CrossRefPubMed
4.
Zurück zum Zitat Colleoni M, O’Neill A, Goldhirsch A, Gelber RD, Bonetti M, Thurlimann B, Price KN, Castiglione-Gertsch M, Coates AS, Lindtner J, Collins J, Senn HJ, Cavalli F, Forbes J, Gudgeon A, Simoncini E, Cortes-Funes H, Veronesi A, Fey M, Rudenstam CM: Identifying breast cancer patients at high risk for bone metastases. J Clin Oncol. 2000, 18: 3925-3935.PubMed Colleoni M, O’Neill A, Goldhirsch A, Gelber RD, Bonetti M, Thurlimann B, Price KN, Castiglione-Gertsch M, Coates AS, Lindtner J, Collins J, Senn HJ, Cavalli F, Forbes J, Gudgeon A, Simoncini E, Cortes-Funes H, Veronesi A, Fey M, Rudenstam CM: Identifying breast cancer patients at high risk for bone metastases. J Clin Oncol. 2000, 18: 3925-3935.PubMed
5.
Zurück zum Zitat Evans AJ, James JJ, Cornford EJ, Chan SY, Burrell HC, Pinder SE, Gutteridge E, Robertson JF, Hornbuckle J, Cheung KL: Brain metastases from breast cancer: identification of a high-risk group. Clin Oncol (R Coll Radiol). 2004, 16: 345-349. 10.1016/j.clon.2004.03.012.CrossRef Evans AJ, James JJ, Cornford EJ, Chan SY, Burrell HC, Pinder SE, Gutteridge E, Robertson JF, Hornbuckle J, Cheung KL: Brain metastases from breast cancer: identification of a high-risk group. Clin Oncol (R Coll Radiol). 2004, 16: 345-349. 10.1016/j.clon.2004.03.012.CrossRef
6.
Zurück zum Zitat Gaedcke J, Traub F, Milde S, Wilkens L, Stan A, Ostertag H, Christgen M, von Wasielewski R, Kreipe HH: Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol. 2007, 20: 864-870. 10.1038/modpathol.3800830.CrossRefPubMed Gaedcke J, Traub F, Milde S, Wilkens L, Stan A, Ostertag H, Christgen M, von Wasielewski R, Kreipe HH: Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol. 2007, 20: 864-870. 10.1038/modpathol.3800830.CrossRefPubMed
7.
Zurück zum Zitat Hicks DG, Short SM, Prescott NL, Tarr SM, Coleman KA, Yoder BJ, Crowe JP, Choueiri TK, Dawson AE, Budd GT, Tubbs RR, Casey G, Weil RJ: Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol. 2006, 30: 1097-1104. 10.1097/01.pas.0000213306.05811.b9.CrossRefPubMed Hicks DG, Short SM, Prescott NL, Tarr SM, Coleman KA, Yoder BJ, Crowe JP, Choueiri TK, Dawson AE, Budd GT, Tubbs RR, Casey G, Weil RJ: Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol. 2006, 30: 1097-1104. 10.1097/01.pas.0000213306.05811.b9.CrossRefPubMed
8.
Zurück zum Zitat Lorincz T, Toth J, Badalian G, Timar J, Szendroi M: HER-2/neu genotype of breast cancer may change in bone metastasis. Pathol Oncol Res. 2006, 12: 149-152. 10.1007/BF02893361.CrossRefPubMed Lorincz T, Toth J, Badalian G, Timar J, Szendroi M: HER-2/neu genotype of breast cancer may change in bone metastasis. Pathol Oncol Res. 2006, 12: 149-152. 10.1007/BF02893361.CrossRefPubMed
9.
Zurück zum Zitat Nicolson GL: Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 1988, 7: 143-188. 10.1007/BF00046483.CrossRefPubMed Nicolson GL: Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 1988, 7: 143-188. 10.1007/BF00046483.CrossRefPubMed
10.
Zurück zum Zitat Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 1889, 1: 571-572. 10.1016/S0140-6736(00)49915-0.CrossRef Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 1889, 1: 571-572. 10.1016/S0140-6736(00)49915-0.CrossRef
11.
Zurück zum Zitat Hasebe T, Imoto S, Yokose T, Ishii G, Iwasaki M, Wada N: Histopathologic factors significantly associated with initial organ-specific metastasis by invasive ductal carcinoma of the breast: a prospective study. Hum Pathol. 2008, 39: 681-693. 10.1016/j.humpath.2007.09.012.CrossRefPubMed Hasebe T, Imoto S, Yokose T, Ishii G, Iwasaki M, Wada N: Histopathologic factors significantly associated with initial organ-specific metastasis by invasive ductal carcinoma of the breast: a prospective study. Hum Pathol. 2008, 39: 681-693. 10.1016/j.humpath.2007.09.012.CrossRefPubMed
12.
Zurück zum Zitat Wei B, Wang J, Bourne P, Yang Q, Hicks D, Bu H, Tang P: Bone metastasis is strongly associated with estrogen receptor-positive/progesterone receptor-negative breast carcinomas. Hum Pathol. 2008, 39: 1809-1815. 10.1016/j.humpath.2008.05.010.CrossRefPubMed Wei B, Wang J, Bourne P, Yang Q, Hicks D, Bu H, Tang P: Bone metastasis is strongly associated with estrogen receptor-positive/progesterone receptor-negative breast carcinomas. Hum Pathol. 2008, 39: 1809-1815. 10.1016/j.humpath.2008.05.010.CrossRefPubMed
13.
Zurück zum Zitat Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.CrossRefPubMed Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.CrossRefPubMed
14.
Zurück zum Zitat Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E: Energy metabolism in tumor cells. FEBS J. 2007, 274: 1393-1418. 10.1111/j.1742-4658.2007.05686.x.CrossRefPubMed Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E: Energy metabolism in tumor cells. FEBS J. 2007, 274: 1393-1418. 10.1111/j.1742-4658.2007.05686.x.CrossRefPubMed
15.
Zurück zum Zitat Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012, 336: 1040-1044. 10.1126/science.1218595.PubMedCentralCrossRefPubMed Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012, 336: 1040-1044. 10.1126/science.1218595.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Bhargava R, Beriwal S, Striebel JM, Dabbs DJ: Breast cancer molecular class ERBB2: preponderance of tumors with apocrine differentiation and expression of basal phenotype markers CK5, CK5/6, and EGFR. Appl Immunohistochem Mol Morphol. 2010, 18: 113-118. 10.1097/PAI.0b013e3181b94ff1.CrossRefPubMed Bhargava R, Beriwal S, Striebel JM, Dabbs DJ: Breast cancer molecular class ERBB2: preponderance of tumors with apocrine differentiation and expression of basal phenotype markers CK5, CK5/6, and EGFR. Appl Immunohistochem Mol Morphol. 2010, 18: 113-118. 10.1097/PAI.0b013e3181b94ff1.CrossRefPubMed
17.
Zurück zum Zitat Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011, 476: 346-350. 10.1038/nature10350.PubMedCentralCrossRefPubMed Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011, 476: 346-350. 10.1038/nature10350.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B: Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012, 148: 259-272. 10.1016/j.cell.2011.11.050.CrossRefPubMed Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B: Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012, 148: 259-272. 10.1016/j.cell.2011.11.050.CrossRefPubMed
19.
Zurück zum Zitat Dang CV, Hamaker M, Sun P, Le A, Gao P: Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl). 2011, 89: 205-212. 10.1007/s00109-011-0730-x.CrossRef Dang CV, Hamaker M, Sun P, Le A, Gao P: Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl). 2011, 89: 205-212. 10.1007/s00109-011-0730-x.CrossRef
20.
Zurück zum Zitat Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991, 19: 403-410. 10.1111/j.1365-2559.1991.tb00229.x.CrossRefPubMed Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991, 19: 403-410. 10.1111/j.1365-2559.1991.tb00229.x.CrossRefPubMed
21.
Zurück zum Zitat Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB: American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010, 28: 2784-2795. 10.1200/JCO.2009.25.6529.PubMedCentralCrossRefPubMed Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB: American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010, 28: 2784-2795. 10.1200/JCO.2009.25.6529.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007, 25: 118-145. 10.1200/JCO.2006.09.2775.CrossRefPubMed Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007, 25: 118-145. 10.1200/JCO.2006.09.2775.CrossRefPubMed
23.
Zurück zum Zitat Won KY, Kim GY, Kim YW, Song JY, Lim SJ: Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum Pathol. 2010, 41: 107-112. 10.1016/j.humpath.2009.07.006.CrossRefPubMed Won KY, Kim GY, Kim YW, Song JY, Lim SJ: Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum Pathol. 2010, 41: 107-112. 10.1016/j.humpath.2009.07.006.CrossRefPubMed
24.
Zurück zum Zitat Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ: Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011, 22: 1736-1747. 10.1093/annonc/mdr304.PubMedCentralCrossRefPubMed Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ: Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011, 22: 1736-1747. 10.1093/annonc/mdr304.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, Schmitt F, Baltazar F: GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011, 26: 1279-1286.PubMed Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, Schmitt F, Baltazar F: GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011, 26: 1279-1286.PubMed
26.
Zurück zum Zitat Choi J, Jung WH, Koo JS: Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2013, 80: 41-52. 10.1159/000339513.CrossRefPubMed Choi J, Jung WH, Koo JS: Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2013, 80: 41-52. 10.1159/000339513.CrossRefPubMed
27.
Zurück zum Zitat Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, Piccart M, Pierga JY: Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev. 2013, 32: 179-188. 10.1007/s10555-012-9398-0.PubMedCentralCrossRefPubMed Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, Piccart M, Pierga JY: Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev. 2013, 32: 179-188. 10.1007/s10555-012-9398-0.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Khatami M: Unresolved inflammation: ‘immune tsunami’ or erosion of integrity in immune-privileged and immune-responsive tissues and acute and chronic inflammatory diseases or cancer. Expert Opin Biol Ther. 2011, 11: 1419-1432. 10.1517/14712598.2011.592826.CrossRefPubMed Khatami M: Unresolved inflammation: ‘immune tsunami’ or erosion of integrity in immune-privileged and immune-responsive tissues and acute and chronic inflammatory diseases or cancer. Expert Opin Biol Ther. 2011, 11: 1419-1432. 10.1517/14712598.2011.592826.CrossRefPubMed
29.
Zurück zum Zitat Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle. 2010, 9: 2201-2219. 10.4161/cc.9.11.11848.CrossRefPubMed Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle. 2010, 9: 2201-2219. 10.4161/cc.9.11.11848.CrossRefPubMed
30.
Zurück zum Zitat Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009, 8: 3984-4001. 10.4161/cc.8.23.10238.CrossRefPubMed Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009, 8: 3984-4001. 10.4161/cc.8.23.10238.CrossRefPubMed
31.
Zurück zum Zitat Choi J, Kim Do H, Jung WH, Koo JS: Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res. 2013, 15: R78-10.1186/bcr3472.PubMedCentralCrossRefPubMed Choi J, Kim Do H, Jung WH, Koo JS: Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res. 2013, 15: R78-10.1186/bcr3472.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Zidan J, Dashkovsky I, Stayerman C, Basher W, Cozacov C, Hadary A: Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer. 2005, 93: 552-556. 10.1038/sj.bjc.6602738.PubMedCentralCrossRefPubMed Zidan J, Dashkovsky I, Stayerman C, Basher W, Cozacov C, Hadary A: Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer. 2005, 93: 552-556. 10.1038/sj.bjc.6602738.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Brunn Rasmussen B, Kamby C: Immunohistochemical detection of estrogen receptors in paraffin sections from primary and metastatic breast cancer. Pathol Res Pract. 1989, 185: 856-859. 10.1016/S0344-0338(89)80286-9.CrossRefPubMed Brunn Rasmussen B, Kamby C: Immunohistochemical detection of estrogen receptors in paraffin sections from primary and metastatic breast cancer. Pathol Res Pract. 1989, 185: 856-859. 10.1016/S0344-0338(89)80286-9.CrossRefPubMed
34.
Zurück zum Zitat Gomez-Fernandez C, Daneshbod Y, Nassiri M, Milikowski C, Alvarez C, Nadji M: Immunohistochemically determined estrogen receptor phenotype remains stable in recurrent and metastatic breast cancer. Am J Clin Pathol. 2008, 130: 879-882. 10.1309/AJCPD1AO3YSYQYNW.CrossRefPubMed Gomez-Fernandez C, Daneshbod Y, Nassiri M, Milikowski C, Alvarez C, Nadji M: Immunohistochemically determined estrogen receptor phenotype remains stable in recurrent and metastatic breast cancer. Am J Clin Pathol. 2008, 130: 879-882. 10.1309/AJCPD1AO3YSYQYNW.CrossRefPubMed
35.
Zurück zum Zitat Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J: Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996, 14: 2584-2589.PubMed Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J: Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996, 14: 2584-2589.PubMed
36.
Zurück zum Zitat Mohanti BK, Rath GK, Anantha N, Kannan V, Das BS, Chandramouli BA, Banerjee AK, Das S, Jena A, Ravichandran R, Sahi UP, Kumar R, Kapoor N, Kalia VK, Dwarakanath BS, Jain V: Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys. 1996, 35: 103-111. 10.1016/S0360-3016(96)85017-6.CrossRefPubMed Mohanti BK, Rath GK, Anantha N, Kannan V, Das BS, Chandramouli BA, Banerjee AK, Das S, Jena A, Ravichandran R, Sahi UP, Kumar R, Kapoor N, Kalia VK, Dwarakanath BS, Jain V: Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys. 1996, 35: 103-111. 10.1016/S0360-3016(96)85017-6.CrossRefPubMed
37.
Zurück zum Zitat Aft RL, Zhang FW, Gius D: Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer. 2002, 87: 805-812. 10.1038/sj.bjc.6600547.PubMedCentralCrossRefPubMed Aft RL, Zhang FW, Gius D: Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer. 2002, 87: 805-812. 10.1038/sj.bjc.6600547.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Vullo D, Franchi M, Gallori E, Pastorek J, Scozzafava A, Pastorekova S, Supuran CT: Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett. 2003, 13: 1005-1009. 10.1016/S0960-894X(03)00091-X.CrossRefPubMed Vullo D, Franchi M, Gallori E, Pastorek J, Scozzafava A, Pastorekova S, Supuran CT: Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett. 2003, 13: 1005-1009. 10.1016/S0960-894X(03)00091-X.CrossRefPubMed
39.
Zurück zum Zitat Gallagher SM, Castorino JJ, Wang D, Philp NJ: Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 2007, 67: 4182-4189. 10.1158/0008-5472.CAN-06-3184.CrossRefPubMed Gallagher SM, Castorino JJ, Wang D, Philp NJ: Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 2007, 67: 4182-4189. 10.1158/0008-5472.CAN-06-3184.CrossRefPubMed
40.
Zurück zum Zitat Khatami M: Unresolved inflammation and cancer: loss of natural immune surveillance as the correct ‘target’ for therapy! seeing the ‘Elephant’ in the light of logic. Cell Biochem Biophys. 2012, 62: 501-509. 10.1007/s12013-011-9319-9.CrossRefPubMed Khatami M: Unresolved inflammation and cancer: loss of natural immune surveillance as the correct ‘target’ for therapy! seeing the ‘Elephant’ in the light of logic. Cell Biochem Biophys. 2012, 62: 501-509. 10.1007/s12013-011-9319-9.CrossRefPubMed
Metadaten
Titel
Site-specific metabolic phenotypes in metastatic breast cancer
verfasst von
Hye Min Kim
Woo Hee Jung
Ja Seung Koo
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2014
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-014-0354-3

Weitere Artikel der Ausgabe 1/2014

Journal of Translational Medicine 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.