Skip to main content
Erschienen in: Inflammation 6/2023

15.08.2023 | RESEARCH

SOCS1 Peptidomimetic Alleviates Glomerular Inflammation in MsPGN by Inhibiting Macrophage M1 Polarization

verfasst von: Yinghua Zhao, Fei Peng, Jiayi He, Yilun Qu, Huiming Ni, Lingling Wu, Xiangmei Chen

Erschienen in: Inflammation | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Mesangial proliferative glomerulonephritis (MsPGN), the most common pathological change in primary glomerulonephritis, is characterized by increased macrophage infiltration into glomeruli, which results in proinflammatory cytokine release. Macrophage infiltration and differentiation are induced by the Janus kinase 2 and signal transducer and activator of the transcription 1 (JAK2/STAT1) pathway. As a suppressor of cytokine signaling 1 (SOCS1) downregulates the immune response by inhibiting the JAK2/STAT1 pathway, we investigated whether a peptide mimicking the SOCS1 kinase inhibitor region, namely, SOCS1 peptidomimetic, protects against nephropathy. Glomerular JAK2/STAT1 pathway activation was synchronized with kidney injury in an MsPGN rat model. Rats treated with the SOCS1 peptidomimetic exhibited reduced pathological glomerular changes and lessened macrophage recruitment. Moreover, in vivo, the phosphorylation of the JAK2/STAT1 pathway was downregulated in infiltrated macrophages of glomeruli. In vitro, the SOCS1 peptidomimetic inhibited macrophage M1 polarization by suppressing JAK2/STAT1 activation. In conclusion, our study demonstrated that the SOCS1 peptidomimetic plays a protective role against pathologic glomerular changes in MsPGN by reducing macrophage infiltration and inhibiting macrophage polarizing to the M1 phenotype. SOCS1 peptidomimetic, therefore, presents a feasible therapeutic strategy to alleviate renal inflammation in MsPGN.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jin, M., Z. Yin, K. Wei, et al. 2019. Metanephric mesenchyme-derived Foxd1 mesangial precursor cells alleviate mesangial proliferative glomerulonephritis[J]. Journal of molecular medicine (Berlin, Germany) 97 (4): 553–561.CrossRefPubMed Jin, M., Z. Yin, K. Wei, et al. 2019. Metanephric mesenchyme-derived Foxd1 mesangial precursor cells alleviate mesangial proliferative glomerulonephritis[J]. Journal of molecular medicine (Berlin, Germany) 97 (4): 553–561.CrossRefPubMed
2.
Zurück zum Zitat Lu, Y., Y. Mei, L. Chen, et al. 2019. The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis[J]. Cellular & molecular immunology 16 (9): 735–745.CrossRef Lu, Y., Y. Mei, L. Chen, et al. 2019. The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis[J]. Cellular & molecular immunology 16 (9): 735–745.CrossRef
3.
Zurück zum Zitat Ikezumi, Y., T. Suzuki, T. Karasawa, et al. 2010. Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis[J]. American journal of nephrology 31 (3): 273–282.CrossRefPubMed Ikezumi, Y., T. Suzuki, T. Karasawa, et al. 2010. Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis[J]. American journal of nephrology 31 (3): 273–282.CrossRefPubMed
4.
Zurück zum Zitat Yoshimura, A., K. Inui, T. Nemoto, et al. 1998. Simvastatin suppresses glomerular cell proliferation and macrophage infiltration in rats with mesangial proliferative nephritis[J]. Journal of the American Society of Nephrology : JASN 9 (11): 2027–2039.CrossRefPubMed Yoshimura, A., K. Inui, T. Nemoto, et al. 1998. Simvastatin suppresses glomerular cell proliferation and macrophage infiltration in rats with mesangial proliferative nephritis[J]. Journal of the American Society of Nephrology : JASN 9 (11): 2027–2039.CrossRefPubMed
5.
Zurück zum Zitat Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, et al. 2018. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of cellular physiology 233 (9): 6425–6440.CrossRefPubMed Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, et al. 2018. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of cellular physiology 233 (9): 6425–6440.CrossRefPubMed
6.
Zurück zum Zitat Wang, L.-X., S.-X. Zhang, H.-J. Wu, et al. 2019. M2b macrophage polarization and its roles in diseases[J]. Journal of leukocyte biology 106 (2): 345–358.CrossRefPubMed Wang, L.-X., S.-X. Zhang, H.-J. Wu, et al. 2019. M2b macrophage polarization and its roles in diseases[J]. Journal of leukocyte biology 106 (2): 345–358.CrossRefPubMed
7.
Zurück zum Zitat Hata, Y., T. Kuwabara, K. Mori, et al. 2020. Ablation of myeloid cell MRP8 ameliorates nephrotoxic serum-induced glomerulonephritis by affecting macrophage characterization through intraglomerular crosstalk[J]. Scientific reports 10 (1): 3056.CrossRefPubMedPubMedCentral Hata, Y., T. Kuwabara, K. Mori, et al. 2020. Ablation of myeloid cell MRP8 ameliorates nephrotoxic serum-induced glomerulonephritis by affecting macrophage characterization through intraglomerular crosstalk[J]. Scientific reports 10 (1): 3056.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Liao, W.-Q., S.-Y. Cui, Q. Ouyang, et al. 2018. Modulation of macrophage polarization by human glomerular mesangial cells in response to the stimuli in renal microenvironment[J]. Journal of Interferon & Cytokine Research : The Official Journal of the International Society For Interferon and Cytokine Research 38 (12): 566–577.CrossRef Liao, W.-Q., S.-Y. Cui, Q. Ouyang, et al. 2018. Modulation of macrophage polarization by human glomerular mesangial cells in response to the stimuli in renal microenvironment[J]. Journal of Interferon & Cytokine Research : The Official Journal of the International Society For Interferon and Cytokine Research 38 (12): 566–577.CrossRef
9.
Zurück zum Zitat Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: In vivo veritas[J]. The Journal of clinical investigation 122 (3): 787–795.CrossRefPubMedPubMedCentral Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: In vivo veritas[J]. The Journal of clinical investigation 122 (3): 787–795.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ikezumi, Y., L.A. Hurst, T. Masaki, et al. 2003. Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation[J]. Kidney international 63 (1): 83–95.CrossRefPubMed Ikezumi, Y., L.A. Hurst, T. Masaki, et al. 2003. Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation[J]. Kidney international 63 (1): 83–95.CrossRefPubMed
11.
Zurück zum Zitat Rampino, T., G. Soccio, M. Gregorini, et al. 2007. Neutralization of macrophage-stimulating protein ameliorates renal injury in anti-thy 1 glomerulonephritis[J]. Journal of the American Society of Nephrology : JASN 18 (5): 1486–1496.CrossRefPubMed Rampino, T., G. Soccio, M. Gregorini, et al. 2007. Neutralization of macrophage-stimulating protein ameliorates renal injury in anti-thy 1 glomerulonephritis[J]. Journal of the American Society of Nephrology : JASN 18 (5): 1486–1496.CrossRefPubMed
12.
Zurück zum Zitat Hu, J., X. Fan, X. Meng, et al. 2014. Evidence for the involvement of JAK/STAT/SOCS pathway in the mechanism of Tangshen formula-treated diabetic nephropathy[J]. Planta medica 80 (8–9): 614–621.PubMed Hu, J., X. Fan, X. Meng, et al. 2014. Evidence for the involvement of JAK/STAT/SOCS pathway in the mechanism of Tangshen formula-treated diabetic nephropathy[J]. Planta medica 80 (8–9): 614–621.PubMed
13.
Zurück zum Zitat Brosius, F.C., and J.C. He. 2015. JAK inhibition and progressive kidney disease[J]. Current opinion in nephrology and hypertension 24 (1): 88–95.CrossRefPubMedPubMedCentral Brosius, F.C., and J.C. He. 2015. JAK inhibition and progressive kidney disease[J]. Current opinion in nephrology and hypertension 24 (1): 88–95.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Owen, K.L., N.K. Brockwell, and B.S. Parker. 2019. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression[J]. Cancers 11 (12). Owen, K.L., N.K. Brockwell, and B.S. Parker. 2019. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression[J]. Cancers 11 (12).
15.
Zurück zum Zitat Butturini, E., D. Boriero, A. Carcereri De Prati, et al. 2019. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia[J]. Archives of biochemistry and biophysics 669: 22–30. Butturini, E., D. Boriero, A. Carcereri De Prati, et al. 2019. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia[J]. Archives of biochemistry and biophysics 669: 22–30.
16.
Zurück zum Zitat Liu, Y., Z. Liu, H. Tang, et al. 2019. The -methyladenosine (mA)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of mRNA[J]. American journal of physiology Cell physiology 317 (4): C762–C775.CrossRefPubMed Liu, Y., Z. Liu, H. Tang, et al. 2019. The -methyladenosine (mA)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of mRNA[J]. American journal of physiology Cell physiology 317 (4): C762–C775.CrossRefPubMed
17.
Zurück zum Zitat Gan, Z.-S., Q.-Q. Wang, J.-H. Li, et al. 2017. Iron Reduces M1 Macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1[J]. Mediators of inflammation 2017: 8570818. Gan, Z.-S., Q.-Q. Wang, J.-H. Li, et al. 2017. Iron Reduces M1 Macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1[J]. Mediators of inflammation 2017: 8570818.
18.
Zurück zum Zitat Wang, F., S. Zhang, R. Jeon, et al. 2018. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity[J]. eBioMedicine 30: 303–316.CrossRefPubMedPubMedCentral Wang, F., S. Zhang, R. Jeon, et al. 2018. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity[J]. eBioMedicine 30: 303–316.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Ding, N., Y. Wang, C. Dou, et al. 2019. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway[J]. Journal of cellular physiology 234 (6): 8788–8796.CrossRefPubMed Ding, N., Y. Wang, C. Dou, et al. 2019. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway[J]. Journal of cellular physiology 234 (6): 8788–8796.CrossRefPubMed
20.
Zurück zum Zitat Durham, G.A., J.J.L. Williams, M.T. Nasim, et al. 2019. Targeting SOCS Proteins to control JAK-STAT signalling in disease[J]. Trends in pharmacological sciences 40 (5): 298–308.CrossRefPubMed Durham, G.A., J.J.L. Williams, M.T. Nasim, et al. 2019. Targeting SOCS Proteins to control JAK-STAT signalling in disease[J]. Trends in pharmacological sciences 40 (5): 298–308.CrossRefPubMed
21.
Zurück zum Zitat Yoshimura, A., M. Ito, S. Chikuma, et al. 2018. Negative regulation of cytokine signaling in immunity[J]. Cold Spring Harbor perspectives in biology 10 (7). Yoshimura, A., M. Ito, S. Chikuma, et al. 2018. Negative regulation of cytokine signaling in immunity[J]. Cold Spring Harbor perspectives in biology 10 (7).
22.
Zurück zum Zitat Sharma, J., T.D. Collins, T. Roach, et al. 2021. Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model[J]. Scientific reports 11 (1): 6354.CrossRefPubMedPubMedCentral Sharma, J., T.D. Collins, T. Roach, et al. 2021. Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model[J]. Scientific reports 11 (1): 6354.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bernal, S., L. Lopez-Sanz, L. Jimenez-Castilla, et al. 2021. Protective effect of suppressor of cytokine signalling 1-based therapy in experimental abdominal aortic aneurysm[J]. British Journal of Pharmacology 178 (3): 564–581.CrossRefPubMed Bernal, S., L. Lopez-Sanz, L. Jimenez-Castilla, et al. 2021. Protective effect of suppressor of cytokine signalling 1-based therapy in experimental abdominal aortic aneurysm[J]. British Journal of Pharmacology 178 (3): 564–581.CrossRefPubMed
24.
Zurück zum Zitat Plummer, C.E., T. Polk, J. Sharma, et al. 2022. Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide[J]. Scientific reports 12 (1): 7177.CrossRefPubMedPubMedCentral Plummer, C.E., T. Polk, J. Sharma, et al. 2022. Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide[J]. Scientific reports 12 (1): 7177.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Liu, B., J. Lin, L. Bai, et al. 2019. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway[J]. Frontiers in pharmacology 10: 978.CrossRefPubMedPubMedCentral Liu, B., J. Lin, L. Bai, et al. 2019. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway[J]. Frontiers in pharmacology 10: 978.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Bai, J., L. Wu, X. Chen, et al. 1982. Suppressor of cytokine signaling-1/STAT1 regulates renal inflammation in mesangial proliferative glomerulonephritis models[J]. Frontiers in immunology 2018: 9. Bai, J., L. Wu, X. Chen, et al. 1982. Suppressor of cytokine signaling-1/STAT1 regulates renal inflammation in mesangial proliferative glomerulonephritis models[J]. Frontiers in immunology 2018: 9.
27.
Zurück zum Zitat Linossi, E.M., J.J. Babon, D.J. Hilton, et al. 2013. Suppression of cytokine signaling: The SOCS perspective[J]. Cytokine & growth factor reviews 24 (3): 241–248.CrossRef Linossi, E.M., J.J. Babon, D.J. Hilton, et al. 2013. Suppression of cytokine signaling: The SOCS perspective[J]. Cytokine & growth factor reviews 24 (3): 241–248.CrossRef
28.
Zurück zum Zitat Liang, Y.-B., H. Tang, Z.-B. Chen, et al. 2017. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type[J]. Molecular medicine reports 16 (5): 6405–6411.CrossRefPubMed Liang, Y.-B., H. Tang, Z.-B. Chen, et al. 2017. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type[J]. Molecular medicine reports 16 (5): 6405–6411.CrossRefPubMed
29.
Zurück zum Zitat Lopez-Sanz, L., S. Bernal, C. Recio, et al. 2018. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition[J]. Laboratory investigation; a journal of technical methods and pathology 98 (10): 1276–1290. Lopez-Sanz, L., S. Bernal, C. Recio, et al. 2018. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition[J]. Laboratory investigation; a journal of technical methods and pathology 98 (10): 1276–1290.
30.
Zurück zum Zitat He, C., C.-R. Yu, M.J. Mattapallil, et al. 2016. SOCS1 mimetic peptide suppresses chronic intraocular inflammatory disease (Uveitis)[J]. Mediators of inflammation 2016: 2939370.CrossRefPubMedPubMedCentral He, C., C.-R. Yu, M.J. Mattapallil, et al. 2016. SOCS1 mimetic peptide suppresses chronic intraocular inflammatory disease (Uveitis)[J]. Mediators of inflammation 2016: 2939370.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat La Manna, S., L. Lopez-Sanz, S. Bernal, et al. 2020. Antioxidant effects of PS5, a peptidomimetic of suppressor of cytokine signaling 1, in experimental atherosclerosis[J]. Antioxidants (Basel, Switzerland) 9 (8). La Manna, S., L. Lopez-Sanz, S. Bernal, et al. 2020. Antioxidant effects of PS5, a peptidomimetic of suppressor of cytokine signaling 1, in experimental atherosclerosis[J]. Antioxidants (Basel, Switzerland) 9 (8).
32.
Zurück zum Zitat Madonna, S., C. Scarponi, N. Doti, et al. 2013. Therapeutical potential of a peptide mimicking the SOCS1 kinase inhibitory region in skin immune responses[J]. European journal of immunology 43 (7): 1883–1895.CrossRefPubMed Madonna, S., C. Scarponi, N. Doti, et al. 2013. Therapeutical potential of a peptide mimicking the SOCS1 kinase inhibitory region in skin immune responses[J]. European journal of immunology 43 (7): 1883–1895.CrossRefPubMed
Metadaten
Titel
SOCS1 Peptidomimetic Alleviates Glomerular Inflammation in MsPGN by Inhibiting Macrophage M1 Polarization
verfasst von
Yinghua Zhao
Fei Peng
Jiayi He
Yilun Qu
Huiming Ni
Lingling Wu
Xiangmei Chen
Publikationsdatum
15.08.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01886-3

Weitere Artikel der Ausgabe 6/2023

Inflammation 6/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Wie managen Sie die schmerzhafte diabetische Polyneuropathie?

10.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Mit Capsaicin-Pflastern steht eine neue innovative Therapie bei schmerzhafter diabetischer Polyneuropathie zur Verfügung. Bei therapierefraktären Schmerzen stellt die Hochfrequenz-Rückenmarkstimulation eine adäquate Option dar.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.