Skip to main content
Erschienen in: Current Osteoporosis Reports 1/2020

02.01.2020 | Biomechanics (G Niebur and J Wallace, Section Editors)

Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk

verfasst von: Jennifer C. Coulombe, Bhavya Senwar, Virginia L. Ferguson

Erschienen in: Current Osteoporosis Reports | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility.

Recent Findings

In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes).

Summary

Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hackney K, English K, Hackney KJ, English KL. Protein and essential amino acids to protect musculoskeletal health during spaceflight: evidence of a paradox? Life. 2014;4:295–317.PubMedPubMedCentral Hackney K, English K, Hackney KJ, English KL. Protein and essential amino acids to protect musculoskeletal health during spaceflight: evidence of a paradox? Life. 2014;4:295–317.PubMedPubMedCentral
2.
Zurück zum Zitat Michel EL, Johnston RS, Dietlein LF. Biomedical results of the Skylab Program. Life Sci Space Res. 1976;14:3–18.PubMed Michel EL, Johnston RS, Dietlein LF. Biomedical results of the Skylab Program. Life Sci Space Res. 1976;14:3–18.PubMed
3.
Zurück zum Zitat Johnston RS, Dietlein LF. In: Johnst RS, Dietlein LF, editors. 491 pages Biomedical results from Skylab. NASA SP-377. Biomed. Results from Skylab. NASA SP-377, vol. 377. Washington, D.C: NASA; 1977. Johnston RS, Dietlein LF. In: Johnst RS, Dietlein LF, editors. 491 pages Biomedical results from Skylab. NASA SP-377. Biomed. Results from Skylab. NASA SP-377, vol. 377. Washington, D.C: NASA; 1977.
4.
Zurück zum Zitat NASA Human Research Program. Integrated Research Plan. HRP 47065 Rev J PCN 1; 2019. NASA Human Research Program. Integrated Research Plan. HRP 47065 Rev J PCN 1; 2019.
6.
Zurück zum Zitat Sibonga JD. Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep. 2013;11:92–8.PubMed Sibonga JD. Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep. 2013;11:92–8.PubMed
7.
Zurück zum Zitat Deymier AC, Schwartz AG, Cai Z, Daulton TL, Pasteris JD, Genin GM, et al. The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater. 2019;83:302–13.PubMed Deymier AC, Schwartz AG, Cai Z, Daulton TL, Pasteris JD, Genin GM, et al. The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater. 2019;83:302–13.PubMed
8.
Zurück zum Zitat Cohen HS, Kimball KT, Mulavara AP, Bloomberg JJ, Paloski WH. Posturography and locomotor tests of dynamic balance after long-duration spaceflight. J Vestib Res. 2012;22:191–6.PubMed Cohen HS, Kimball KT, Mulavara AP, Bloomberg JJ, Paloski WH. Posturography and locomotor tests of dynamic balance after long-duration spaceflight. J Vestib Res. 2012;22:191–6.PubMed
9.
Zurück zum Zitat Reschke MF, Clément G. Vestibular and sensorimotor dysfunction during space flight. Curr Pathobiol Rep. 2018;6:177–83. Reschke MF, Clément G. Vestibular and sensorimotor dysfunction during space flight. Curr Pathobiol Rep. 2018;6:177–83.
10.
Zurück zum Zitat Ozdemir RA, Goel R, Reschke MF, Wood SJ, Paloski WH. Critical role of somatosensation in postural control following spaceflight: vestibularly deficient astronauts are not able to maintain upright stance during compromised somatosensation. Front Physiol. 2018;9:1680.PubMedPubMedCentral Ozdemir RA, Goel R, Reschke MF, Wood SJ, Paloski WH. Critical role of somatosensation in postural control following spaceflight: vestibularly deficient astronauts are not able to maintain upright stance during compromised somatosensation. Front Physiol. 2018;9:1680.PubMedPubMedCentral
11.
Zurück zum Zitat Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364:eaau8650.PubMed Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364:eaau8650.PubMed
12.
Zurück zum Zitat Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 2019;76:412.PubMedPubMedCentral Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 2019;76:412.PubMedPubMedCentral
13.
Zurück zum Zitat Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.PubMedPubMedCentral Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.PubMedPubMedCentral
14.
Zurück zum Zitat Reitz G. Characteristic of the radiation field in low Earth orbit and in deep space. Z Med Phys. 2008;18:233–43.PubMed Reitz G. Characteristic of the radiation field in low Earth orbit and in deep space. Z Med Phys. 2008;18:233–43.PubMed
15.
Zurück zum Zitat Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81.PubMedPubMedCentral Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81.PubMedPubMedCentral
16.
Zurück zum Zitat U.S. Preventive Services Task Force. Screening for osteoporosis: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2011;154:356. U.S. Preventive Services Task Force. Screening for osteoporosis: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2011;154:356.
17.
Zurück zum Zitat •• Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS Astronauts. Aerosp Med Hum Perform. 2015;86:38–44 While ISS astronauts show significant reductions in bone mineral density (via DXA measurements), this measurement is not predictive of skeletal fragility. This article proposes new technologies and approaches for evaluating fracture risk in astronauts and points to the need for novel information to guide skeletal assessment. •• Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS Astronauts. Aerosp Med Hum Perform. 2015;86:38–44 While ISS astronauts show significant reductions in bone mineral density (via DXA measurements), this measurement is not predictive of skeletal fragility. This article proposes new technologies and approaches for evaluating fracture risk in astronauts and points to the need for novel information to guide skeletal assessment.
18.
Zurück zum Zitat Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016;20:846.PubMedPubMedCentral Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016;20:846.PubMedPubMedCentral
19.
Zurück zum Zitat Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.PubMedPubMedCentral Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.PubMedPubMedCentral
20.
Zurück zum Zitat Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA. 2002;288:1889.PubMed Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA. 2002;288:1889.PubMed
21.
Zurück zum Zitat Wang X, Shen X, Li X, Mauli Agrawal C. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.PubMed Wang X, Shen X, Li X, Mauli Agrawal C. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.PubMed
22.
Zurück zum Zitat Paschalis EP, Mendelsohn R, Boskey AL. Infrared assessment of bone quality: a review. Clin Orthop Relat Res. 2011;469:2170–8 (Springer-Verlag.PubMedPubMedCentral Paschalis EP, Mendelsohn R, Boskey AL. Infrared assessment of bone quality: a review. Clin Orthop Relat Res. 2011;469:2170–8 (Springer-Verlag.PubMedPubMedCentral
23.
Zurück zum Zitat Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.PubMed Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.PubMed
25.
Zurück zum Zitat Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14:118–27. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14:118–27.
26.
Zurück zum Zitat van der Meulen MC, Jepsen K, Mikić B. Understanding bone strength: size isn’t everything. Bone. 2001;29:101–4.PubMed van der Meulen MC, Jepsen K, Mikić B. Understanding bone strength: size isn’t everything. Bone. 2001;29:101–4.PubMed
27.
Zurück zum Zitat Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410:93–106.PubMedPubMedCentral Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410:93–106.PubMedPubMedCentral
28.
Zurück zum Zitat Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469:2128–38 (Springer-Verlag.PubMed Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469:2128–38 (Springer-Verlag.PubMed
29.
Zurück zum Zitat Roach H. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int. 1994;18:617–28.PubMed Roach H. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int. 1994;18:617–28.PubMed
30.
Zurück zum Zitat Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24:1565–71.PubMedPubMedCentral Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24:1565–71.PubMedPubMedCentral
31.
Zurück zum Zitat Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26:1–8.PubMed Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26:1–8.PubMed
32.
Zurück zum Zitat Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.PubMed Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.PubMed
33.
Zurück zum Zitat McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M. Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Investig. 2000;30:1044–54. McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M. Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Investig. 2000;30:1044–54.
34.
Zurück zum Zitat Bembey AK, Bushby AJ, Boyde A, Ferguson VL, Oyen ML. Hydration effects on the micro-mechanical properties of bone. J Mater Res. 2006;21:1962–8. Bembey AK, Bushby AJ, Boyde A, Ferguson VL, Oyen ML. Hydration effects on the micro-mechanical properties of bone. J Mater Res. 2006;21:1962–8.
35.
Zurück zum Zitat Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X. The influence of water removal on the strength and toughness of cortical bone. J Biomech. 2006;39:931–8.PubMedPubMedCentral Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X. The influence of water removal on the strength and toughness of cortical bone. J Biomech. 2006;39:931–8.PubMedPubMedCentral
36.
Zurück zum Zitat Zimmermann EA, Ritchie RO. Bone as a structural material. Adv Healthc Mater. 2015;4:1287–304.PubMed Zimmermann EA, Ritchie RO. Bone as a structural material. Adv Healthc Mater. 2015;4:1287–304.PubMed
37.
Zurück zum Zitat Heveran CM, Schurman C, Acevedo C, Livingston EW, Howe D, Schaible EG, et al. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone. 2019;127:91–103.PubMed Heveran CM, Schurman C, Acevedo C, Livingston EW, Howe D, Schaible EG, et al. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone. 2019;127:91–103.PubMed
38.
Zurück zum Zitat Ural A, Vashishth D. Hierarchical perspective of bone toughness—from molecules to fracture. Int Mater Rev. 2014;59:245–63. Ural A, Vashishth D. Hierarchical perspective of bone toughness—from molecules to fracture. Int Mater Rev. 2014;59:245–63.
39.
Zurück zum Zitat Gordon CL, Lang TF, Augat P, Genant HK. Image-Based Assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int. 1998;8:317–25.PubMed Gordon CL, Lang TF, Augat P, Genant HK. Image-Based Assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int. 1998;8:317–25.PubMed
40.
Zurück zum Zitat LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1:157–60.PubMed LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1:157–60.PubMed
41.
Zurück zum Zitat Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997;20:547–51.PubMed Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997;20:547–51.PubMed
42.
Zurück zum Zitat Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.PubMed Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.PubMed
43.
Zurück zum Zitat Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 2018;14:229–45.PubMed Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 2018;14:229–45.PubMed
44.
Zurück zum Zitat Belavý DL, Baecker N, Armbrecht G, Beller G, Buehlmeier J, Frings-Meuthen P, et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab. 2016;34:354–65.PubMed Belavý DL, Baecker N, Armbrecht G, Beller G, Buehlmeier J, Frings-Meuthen P, et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab. 2016;34:354–65.PubMed
45.
Zurück zum Zitat Frings-Meuthen P, Boehme G, Liphardt A-M, Baecker N, Heer M, Rittweger J. Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact. 2013;13:45–52.PubMed Frings-Meuthen P, Boehme G, Liphardt A-M, Baecker N, Heer M, Rittweger J. Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact. 2013;13:45–52.PubMed
46.
Zurück zum Zitat Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, et al. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97:E1736–40.PubMedPubMedCentral Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, et al. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97:E1736–40.PubMedPubMedCentral
47.
Zurück zum Zitat Rittweger J, Debevec T, Frings-Meuthen P, Lau P, Mittag U, Ganse B, et al. On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: results from the PlanHab study. Bone. 2016;91:130–8.PubMed Rittweger J, Debevec T, Frings-Meuthen P, Lau P, Mittag U, Ganse B, et al. On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: results from the PlanHab study. Bone. 2016;91:130–8.PubMed
48.
Zurück zum Zitat Vico L, van Rietbergen B, Vilayphiou N, Linossier M-T, Locrelle H, Normand M, et al. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following International Space Station Missions. J Bone Miner Res. 2017;32:2010–21.PubMed Vico L, van Rietbergen B, Vilayphiou N, Linossier M-T, Locrelle H, Normand M, et al. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following International Space Station Missions. J Bone Miner Res. 2017;32:2010–21.PubMed
49.
Zurück zum Zitat Orwoll ES, Adler RA, Amin S, Binkley N, Lewiecki EM, Petak SM, et al. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA bone summit. J Bone Miner Res. 2013;28:1243–55.PubMed Orwoll ES, Adler RA, Amin S, Binkley N, Lewiecki EM, Petak SM, et al. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA bone summit. J Bone Miner Res. 2013;28:1243–55.PubMed
50.
Zurück zum Zitat Leblanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ, Smith SM, et al. Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskelet Neuronal Interact. 2002;2:335–43.PubMed Leblanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ, Smith SM, et al. Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskelet Neuronal Interact. 2002;2:335–43.PubMed
51.
Zurück zum Zitat LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24:2105–14.PubMed LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24:2105–14.PubMed
52.
Zurück zum Zitat Smith SM, Heer M, Shackelford LC, Sibonga JD, Spatz J, Pietrzyk RA, et al. Bone metabolism and renal stone risk during International Space Station missions. Bone. 2015;81:712–20.PubMed Smith SM, Heer M, Shackelford LC, Sibonga JD, Spatz J, Pietrzyk RA, et al. Bone metabolism and renal stone risk during International Space Station missions. Bone. 2015;81:712–20.PubMed
53.
Zurück zum Zitat Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27:1896–906.PubMed Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27:1896–906.PubMed
54.
Zurück zum Zitat Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2010;15:613–20. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2010;15:613–20.
55.
Zurück zum Zitat Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, et al. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41:973–8.PubMed Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, et al. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41:973–8.PubMed
56.
Zurück zum Zitat Carpenter RD, LeBlanc AD, Evans H, Sibonga JD, Lang TF. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut. 2010;67:71–81. Carpenter RD, LeBlanc AD, Evans H, Sibonga JD, Lang TF. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut. 2010;67:71–81.
57.
Zurück zum Zitat Kovacs GTA, Shadden M. Analysis of age as a factor in NASA astronaut selection and career landmarks. PLoS One. 2017;12:e0181381.PubMedPubMedCentral Kovacs GTA, Shadden M. Analysis of age as a factor in NASA astronaut selection and career landmarks. PLoS One. 2017;12:e0181381.PubMedPubMedCentral
58.
Zurück zum Zitat Chatani M, Mantoku A, Takeyama K, Abduweli D, Sugamori Y, Aoki K, et al. Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep. 2015;5:14172.PubMedPubMedCentral Chatani M, Mantoku A, Takeyama K, Abduweli D, Sugamori Y, Aoki K, et al. Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep. 2015;5:14172.PubMedPubMedCentral
59.
Zurück zum Zitat Ronca AE, Moyer EL, Talyansky Y, Lowe M, Padmanabhan S, Choi S, et al. Behavior of mice aboard the International Space Station. Sci Rep. 2019;9:4717.PubMedPubMedCentral Ronca AE, Moyer EL, Talyansky Y, Lowe M, Padmanabhan S, Choi S, et al. Behavior of mice aboard the International Space Station. Sci Rep. 2019;9:4717.PubMedPubMedCentral
60.
Zurück zum Zitat Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, et al. Selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol. 2003;94:2095–103.PubMed Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, et al. Selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol. 2003;94:2095–103.PubMed
61.
Zurück zum Zitat Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, et al. Selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. I Immune population distributions. J Appl Physiol. 2003;94:2085–94.PubMed Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, et al. Selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. I Immune population distributions. J Appl Physiol. 2003;94:2085–94.PubMed
62.
Zurück zum Zitat • Novoselova EG, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Shenkman BS, et al. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology. 2015;220:500–9 This study evaluates stress responses in mice flown in the Bion-M1 mission showing elevated levels of immune parameters that may result from factors (e.g., diet, environment) other than that of microgravity. This study necessitates that future spaceflight studies evaluate for relationships between musculoskeletal changes (e.g, as reported in Gerbaix, Sci. Rep., 2017) and physiological, environmental, and other forms of stress. PubMed • Novoselova EG, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Shenkman BS, et al. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology. 2015;220:500–9 This study evaluates stress responses in mice flown in the Bion-M1 mission showing elevated levels of immune parameters that may result from factors (e.g., diet, environment) other than that of microgravity. This study necessitates that future spaceflight studies evaluate for relationships between musculoskeletal changes (e.g, as reported in Gerbaix, Sci. Rep., 2017) and physiological, environmental, and other forms of stress. PubMed
63.
Zurück zum Zitat Moyer EL, Dumars PM, Sun G-S, Martin KJ, Heathcote DG, Boyle RD, et al. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days). NPJ Microgravity. 2016;2:16002.PubMedPubMedCentral Moyer EL, Dumars PM, Sun G-S, Martin KJ, Heathcote DG, Boyle RD, et al. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days). NPJ Microgravity. 2016;2:16002.PubMedPubMedCentral
64.
Zurück zum Zitat Liu Y, Biticchi R, Cilli M, Piccardi F, Cancedda R. Mouse Drawer System ( MDS ): an automated payload for supporting rodent research on the international space station. Basic Appl Myol. 2009;19:87–95. Liu Y, Biticchi R, Cilli M, Piccardi F, Cancedda R. Mouse Drawer System ( MDS ): an automated payload for supporting rodent research on the international space station. Basic Appl Myol. 2009;19:87–95.
65.
Zurück zum Zitat Shimbo M, Kudo T, Hamada M, Jeon H, Imamura Y, Asano K, et al. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies. Exp Anim. 2016;65:175–87.PubMedPubMedCentral Shimbo M, Kudo T, Hamada M, Jeon H, Imamura Y, Asano K, et al. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies. Exp Anim. 2016;65:175–87.PubMedPubMedCentral
66.
Zurück zum Zitat Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016;2016:170–6.PubMedPubMedCentral Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016;2016:170–6.PubMedPubMedCentral
67.
Zurück zum Zitat Beheshti A, McDonald J, Miller J, Grabham P, Costes S. GeneLab database analyses suggest long-term impact of space radiation on the cardiovascular system by the activation of FYN through reactive oxygen species. Int J Mol Sci. 2019;20:661.PubMedCentral Beheshti A, McDonald J, Miller J, Grabham P, Costes S. GeneLab database analyses suggest long-term impact of space radiation on the cardiovascular system by the activation of FYN through reactive oxygen species. Int J Mol Sci. 2019;20:661.PubMedCentral
68.
Zurück zum Zitat Lutwak L, Whedon GD, Lachance PA, Reid JM, Lipscomb HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J Clin Endocrinol Metab. 1969;29:1140–56.PubMed Lutwak L, Whedon GD, Lachance PA, Reid JM, Lipscomb HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J Clin Endocrinol Metab. 1969;29:1140–56.PubMed
69.
Zurück zum Zitat Smith SM, Mccoy T, Gazda D, Morgan JLL, Heer M, Zwart SR. Space flight calcium: implications for Astronaut Health, Spacecraft Operations, and Earth. Nutrients. 2012;4:2047–68.PubMedPubMedCentral Smith SM, Mccoy T, Gazda D, Morgan JLL, Heer M, Zwart SR. Space flight calcium: implications for Astronaut Health, Spacecraft Operations, and Earth. Nutrients. 2012;4:2047–68.PubMedPubMedCentral
70.
Zurück zum Zitat Vico L, Chappard D, Palle S, Bakulin AV, Novikov VE, Alexandre C. Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667). Am J Physiol Integr Comp Physiol. 1988;255:R243–7. Vico L, Chappard D, Palle S, Bakulin AV, Novikov VE, Alexandre C. Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667). Am J Physiol Integr Comp Physiol. 1988;255:R243–7.
71.
Zurück zum Zitat Sibonga J, Zhang M, Evans GL, Westerlind KC, Cavolina JM, Morey-Holton E, et al. Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone. 2000;27:535–40.PubMed Sibonga J, Zhang M, Evans GL, Westerlind KC, Cavolina JM, Morey-Holton E, et al. Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone. 2000;27:535–40.PubMed
72.
Zurück zum Zitat Wronski TJ, Morey-Holton ER, Doty SB, Maese AC, Walsh CC. Histomorphometric analysis of rat skeleton following spaceflight. Am J Physiol Integr Comp Physiol. 1987;252:R252–5. Wronski TJ, Morey-Holton ER, Doty SB, Maese AC, Walsh CC. Histomorphometric analysis of rat skeleton following spaceflight. Am J Physiol Integr Comp Physiol. 1987;252:R252–5.
73.
Zurück zum Zitat Westerlind KC, Turner RT. The skeletal effects of spaceflight in growing rats: tissue-specific alterations in mrna levels for TGF-β. J Bone Miner Res. 2009;10:843–8. Westerlind KC, Turner RT. The skeletal effects of spaceflight in growing rats: tissue-specific alterations in mrna levels for TGF-β. J Bone Miner Res. 2009;10:843–8.
74.
Zurück zum Zitat Lloyd SA, Morony SESE, Ferguson VLVL, Simske SJSJ, Stodieck LSLS, Warmington KSKS, et al. Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone. 2015;81:562–72.PubMed Lloyd SA, Morony SESE, Ferguson VLVL, Simske SJSJ, Stodieck LSLS, Warmington KSKS, et al. Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone. 2015;81:562–72.PubMed
75.
Zurück zum Zitat Backup P, Westerlind K, Harris S, Spelsberg T, Kline B, Turner R. Spaceflight results in reduced mRNA levels for tissue-specific proteins in the musculoskeletal system. Am J Physiol Metab. 2017;266:E567–73. Backup P, Westerlind K, Harris S, Spelsberg T, Kline B, Turner R. Spaceflight results in reduced mRNA levels for tissue-specific proteins in the musculoskeletal system. Am J Physiol Metab. 2017;266:E567–73.
76.
Zurück zum Zitat Vailas AC, Zernicke RF, Grindeland RE, Kaplansky A, Durnova GN, Li KC, et al. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry. FASEB J. 1990;4:47–54.PubMed Vailas AC, Zernicke RF, Grindeland RE, Kaplansky A, Durnova GN, Li KC, et al. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry. FASEB J. 1990;4:47–54.PubMed
77.
Zurück zum Zitat Lafage-Proust MH, Collet P, Dubost JM, Laroche N, Alexandre C, Vico L. Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats. Am J Phys Regul Integr Comp Phys. 1998;274. Lafage-Proust MH, Collet P, Dubost JM, Laroche N, Alexandre C, Vico L. Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats. Am J Phys Regul Integr Comp Phys. 1998;274.
78.
Zurück zum Zitat Evans GL, Morey-Holton E, Turner RT. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur. J Appl Physiol. 1998;84:2132–7.PubMed Evans GL, Morey-Holton E, Turner RT. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur. J Appl Physiol. 1998;84:2132–7.PubMed
79.
Zurück zum Zitat Bateman TA, Zimmerman RJ, Ayers RA, Ferguson VL, Chapes SK, Simske SJ. Histomorphometric, physical, and mechanical effects of spaceflight and insulin-like growth factor-I on rat long bones. Bone. 1998;23:527–35.PubMed Bateman TA, Zimmerman RJ, Ayers RA, Ferguson VL, Chapes SK, Simske SJ. Histomorphometric, physical, and mechanical effects of spaceflight and insulin-like growth factor-I on rat long bones. Bone. 1998;23:527–35.PubMed
80.
Zurück zum Zitat Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33:387–98.PubMed Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33:387–98.PubMed
81.
Zurück zum Zitat Sheng MHC, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau KHW, et al. Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth. Bone. 1999;25:421–9.PubMed Sheng MHC, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau KHW, et al. Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth. Bone. 1999;25:421–9.PubMed
82.
Zurück zum Zitat Silva MJ, Brodt MD, Lynch MA, Stephens AL, Wood DJ, Civitelli R. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice. PLoS One. 2012;7:e34980.PubMedPubMedCentral Silva MJ, Brodt MD, Lynch MA, Stephens AL, Wood DJ, Civitelli R. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice. PLoS One. 2012;7:e34980.PubMedPubMedCentral
83.
Zurück zum Zitat Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18:397–403.PubMed Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18:397–403.PubMed
84.
Zurück zum Zitat Cancedda R, Liu Y, Ruggiu A, Tavella S, Biticchi R, Santucci D, et al. The mice drawer system (MDS) experiment and the space endurance record-breaking mice. PLoS One. 2012;7:e32243.PubMedPubMedCentral Cancedda R, Liu Y, Ruggiu A, Tavella S, Biticchi R, Santucci D, et al. The mice drawer system (MDS) experiment and the space endurance record-breaking mice. PLoS One. 2012;7:e32243.PubMedPubMedCentral
85.
Zurück zum Zitat Tavella S, Ruggiu A, Giuliani A, Brun F, Canciani B, Manescu A, et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the international space station (ISS). PLoS One. 2012;7:e33179.PubMedPubMedCentral Tavella S, Ruggiu A, Giuliani A, Brun F, Canciani B, Manescu A, et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the international space station (ISS). PLoS One. 2012;7:e33179.PubMedPubMedCentral
86.
Zurück zum Zitat Dadwal UC, Maupin KA, Zamarioli A, Tucker A, Harris JS, Fischer JP, et al. The effects of spaceflight and fracture healing on distant skeletal sites. Sci Rep. 2019;9:11419.PubMedPubMedCentral Dadwal UC, Maupin KA, Zamarioli A, Tucker A, Harris JS, Fischer JP, et al. The effects of spaceflight and fracture healing on distant skeletal sites. Sci Rep. 2019;9:11419.PubMedPubMedCentral
87.
Zurück zum Zitat Blaber EA, Dvorochkin N, Lee C, Alwood JS, Yousuf R, Pianetta P, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One. 2013;8:e61372.PubMedPubMedCentral Blaber EA, Dvorochkin N, Lee C, Alwood JS, Yousuf R, Pianetta P, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One. 2013;8:e61372.PubMedPubMedCentral
88.
Zurück zum Zitat Macaulay TR, Siamwala JH, Hargens AR, Macias BR. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression. Bone Rep. 2017;7:57–62.PubMedPubMedCentral Macaulay TR, Siamwala JH, Hargens AR, Macias BR. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression. Bone Rep. 2017;7:57–62.PubMedPubMedCentral
89.
Zurück zum Zitat • Blaber EA, Dvorochkin N, Torres ML, Yousuf R, Burns BP, Globus RK, et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 2014;13:181–201 Bone changes were observed in group-housed mice flown in NASA rodent habitats, where osteocytes, along with osteoclasts, are implicated in reduced bone quantity and structural quality. PubMed • Blaber EA, Dvorochkin N, Torres ML, Yousuf R, Burns BP, Globus RK, et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 2014;13:181–201 Bone changes were observed in group-housed mice flown in NASA rodent habitats, where osteocytes, along with osteoclasts, are implicated in reduced bone quantity and structural quality. PubMed
90.
Zurück zum Zitat Keune JA, Philbrick KA, Branscum AJ, Iwaniec UT, Turner RT. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation. NPJ Microgravity. 2016;2:16016.PubMedPubMedCentral Keune JA, Philbrick KA, Branscum AJ, Iwaniec UT, Turner RT. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation. NPJ Microgravity. 2016;2:16016.PubMedPubMedCentral
91.
Zurück zum Zitat Zhang C, Li L, Jiang Y, Wang C, Geng B, Wang Y, et al. Space microgravity drives transdifferentiation of human bone marrow–derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 2018;32:4444–58.PubMed Zhang C, Li L, Jiang Y, Wang C, Geng B, Wang Y, et al. Space microgravity drives transdifferentiation of human bone marrow–derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 2018;32:4444–58.PubMed
92.
Zurück zum Zitat Nabavi N, Khandani A, Camirand A, Harrison RE. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone. 2011;49:965–74.PubMed Nabavi N, Khandani A, Camirand A, Harrison RE. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone. 2011;49:965–74.PubMed
93.
Zurück zum Zitat Kumei Y, Shimokawa H, Ohya K, Katano H, Akiyama H, Hirano M, et al. Small GTPase Ras and Rho expression in rat osteoblasts during spaceflight. Ann N Y Acad Sci. 2007;1095:292–9.PubMed Kumei Y, Shimokawa H, Ohya K, Katano H, Akiyama H, Hirano M, et al. Small GTPase Ras and Rho expression in rat osteoblasts during spaceflight. Ann N Y Acad Sci. 2007;1095:292–9.PubMed
94.
Zurück zum Zitat Kumei Y, Morita S, Katano H, Akiyama H, Hirano M, Oyha K, et al. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and α-tubulin. in. Ann N Y Acad Sci. 2006;1090:311–7.PubMed Kumei Y, Morita S, Katano H, Akiyama H, Hirano M, Oyha K, et al. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and α-tubulin. in. Ann N Y Acad Sci. 2006;1090:311–7.PubMed
95.
Zurück zum Zitat Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Rep. 2013;14:509–19.PubMedPubMedCentral Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Rep. 2013;14:509–19.PubMedPubMedCentral
96.
Zurück zum Zitat Guignandon A, Faure C, Neutelings T, Rattner A, Mineur P, Linossier M-T, et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 2014;28:4077–87.PubMedPubMedCentral Guignandon A, Faure C, Neutelings T, Rattner A, Mineur P, Linossier M-T, et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 2014;28:4077–87.PubMedPubMedCentral
97.
Zurück zum Zitat Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res. 2005;20:1858–66.PubMedPubMedCentral Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res. 2005;20:1858–66.PubMedPubMedCentral
98.
Zurück zum Zitat Sun Z, Cao X, Zhang Z, Hu Z, Zhang L, Wang H, et al. Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep. 2015;5:8077.PubMedPubMedCentral Sun Z, Cao X, Zhang Z, Hu Z, Zhang L, Wang H, et al. Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep. 2015;5:8077.PubMedPubMedCentral
99.
Zurück zum Zitat Yan M, Wang Y, Yang M, Liu Y, Qu B, Ye Z, et al. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2015;460:327–32.PubMed Yan M, Wang Y, Yang M, Liu Y, Qu B, Ye Z, et al. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2015;460:327–32.PubMed
100.
Zurück zum Zitat Dai Z, Wu F, Chen J, Xu H, Wang H, Guo F, et al. Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity. PLoS One. 2013;8:e63661.PubMedPubMedCentral Dai Z, Wu F, Chen J, Xu H, Wang H, Guo F, et al. Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity. PLoS One. 2013;8:e63661.PubMedPubMedCentral
101.
Zurück zum Zitat Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TMHTM, Ali AM, et al. Morphological and phenotypical characteristics of human osteoblasts after short-term space mission. Bull Exp Biol Med. 2014;156:393–8.PubMed Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TMHTM, Ali AM, et al. Morphological and phenotypical characteristics of human osteoblasts after short-term space mission. Bull Exp Biol Med. 2014;156:393–8.PubMed
102.
Zurück zum Zitat Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, et al. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteome. 2016;137:3–18. Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, et al. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteome. 2016;137:3–18.
103.
Zurück zum Zitat Sambandam Y, Townsend MT, Pierce JJ, Lipman CM, Haque A, Bateman TA, et al. Microgravity control of autophagy modulates osteoclastogenesis. Bone. 2014;61:125–31.PubMedPubMedCentral Sambandam Y, Townsend MT, Pierce JJ, Lipman CM, Haque A, Bateman TA, et al. Microgravity control of autophagy modulates osteoclastogenesis. Bone. 2014;61:125–31.PubMedPubMedCentral
104.
Zurück zum Zitat • Gerbaix M, Gnyubkin V, Farlay D, Olivier C, Ammann P, Courbon G, et al. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons. Sci Rep. 2017;7:2659 Bone changes were observed in group-housed mice flown in the Bion-M1 rodent habitat, where osteocytes are implicated in reduced bone tissue-level mechanical properties. along with reduced populations of mesenchymal and hematopoietic stem cells and cell-mediated tissue regeneration. No changes in bone biochemistry were observed. PubMedPubMedCentral • Gerbaix M, Gnyubkin V, Farlay D, Olivier C, Ammann P, Courbon G, et al. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons. Sci Rep. 2017;7:2659 Bone changes were observed in group-housed mice flown in the Bion-M1 rodent habitat, where osteocytes are implicated in reduced bone tissue-level mechanical properties. along with reduced populations of mesenchymal and hematopoietic stem cells and cell-mediated tissue regeneration. No changes in bone biochemistry were observed. PubMedPubMedCentral
105.
Zurück zum Zitat Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res. 2016;31:1356–65.PubMedPubMedCentral Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res. 2016;31:1356–65.PubMedPubMedCentral
106.
Zurück zum Zitat Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22:1197–207 (John Wiley & Sons, Ltd.PubMed Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22:1197–207 (John Wiley & Sons, Ltd.PubMed
107.
Zurück zum Zitat Coulombe JC, Livingston EW, Ortega AM, Bateman TA, Vance EA, Stodieck LS, et al. Microgravity exposure diminishes trabecular microarchitecture and cortical bone structure differently in growing and skeletally mature mice (Conference Presentation). J Bone Miner Res. 2018;33:326. Coulombe JC, Livingston EW, Ortega AM, Bateman TA, Vance EA, Stodieck LS, et al. Microgravity exposure diminishes trabecular microarchitecture and cortical bone structure differently in growing and skeletally mature mice (Conference Presentation). J Bone Miner Res. 2018;33:326.
108.
Zurück zum Zitat Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.PubMed Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.PubMed
109.
Zurück zum Zitat Qing H, Ardeshirpour L, Divieti Pajevic P, Dusevich V, Jähn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29.PubMedPubMedCentral Qing H, Ardeshirpour L, Divieti Pajevic P, Dusevich V, Jähn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29.PubMedPubMedCentral
110.
Zurück zum Zitat Rodionova NV, Oganov VS, Zolotova NV. Ultrastructural changes in osteocytes in microgravity conditions. Adv Space Res. 2002;30:765–70.PubMed Rodionova NV, Oganov VS, Zolotova NV. Ultrastructural changes in osteocytes in microgravity conditions. Adv Space Res. 2002;30:765–70.PubMed
111.
Zurück zum Zitat Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57:142–54.PubMed Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57:142–54.PubMed
112.
Zurück zum Zitat Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL. A new open-source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone. Bone. 2018;110:115–27.PubMedPubMedCentral Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL. A new open-source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone. Bone. 2018;110:115–27.PubMedPubMedCentral
113.
Zurück zum Zitat Coulombe JC, Mullen ZK, Wiens AM, Stodieck LS, Ferguson VL. Microgravity exposure in growing mice is detrimental to osteocyte lacunar volume and shape (Conference Presentation). J Bone Miner Res. 2018;33:98. Coulombe JC, Mullen ZK, Wiens AM, Stodieck LS, Ferguson VL. Microgravity exposure in growing mice is detrimental to osteocyte lacunar volume and shape (Conference Presentation). J Bone Miner Res. 2018;33:98.
114.
Zurück zum Zitat Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A Model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem. 2003;88:104–12.PubMed Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A Model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem. 2003;88:104–12.PubMed
115.
Zurück zum Zitat Zernicke RF, Vailas AC, Grindeland RE, Kaplansky A, Salem GJ, Martinez DA. Spaceflight effects on biomechanical and biochemical properties of rat vertebrae. Am J Physiol Integr Comp Physiol. 1990;258:R1327–32. Zernicke RF, Vailas AC, Grindeland RE, Kaplansky A, Salem GJ, Martinez DA. Spaceflight effects on biomechanical and biochemical properties of rat vertebrae. Am J Physiol Integr Comp Physiol. 1990;258:R1327–32.
116.
Zurück zum Zitat Simmons DJ, Grynpas MD, Rosenberg GD. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887. FASEB J. 1990;4:29–33.PubMed Simmons DJ, Grynpas MD, Rosenberg GD. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887. FASEB J. 1990;4:29–33.PubMed
117.
Zurück zum Zitat Simmons DJ, Russell JE, Grynpas MD. Bone maturation and quality of bone material in rats flown on the space shuttle ‘Spacelab-3 Mission’. Bone Miner. 1986;1:485–93.PubMed Simmons DJ, Russell JE, Grynpas MD. Bone maturation and quality of bone material in rats flown on the space shuttle ‘Spacelab-3 Mission’. Bone Miner. 1986;1:485–93.PubMed
118.
Zurück zum Zitat Patterson-Buckendahl P, Arnaud SB, Mechanic GL, Martin RB, Grindeland RE, Cann CE. Fragility and composition of growing rat bone after one week in spaceflight. Am. J. Physiol. Integr. Comp. Physiol. 1987;252:R240–6. Patterson-Buckendahl P, Arnaud SB, Mechanic GL, Martin RB, Grindeland RE, Cann CE. Fragility and composition of growing rat bone after one week in spaceflight. Am. J. Physiol. Integr. Comp. Physiol. 1987;252:R240–6.
119.
Zurück zum Zitat Mechanic GL, Arnaud SB, Boyde A, Bromage TG, Buckendahl P, Elliott JC, et al. Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite. FASEB J. 1990;4:34–40.PubMed Mechanic GL, Arnaud SB, Boyde A, Bromage TG, Buckendahl P, Elliott JC, et al. Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite. FASEB J. 1990;4:34–40.PubMed
120.
Zurück zum Zitat France EP, Oloff CM, Kazarian LE. Bone Mineral Analysis of Rat Vertebra Following Spaceflight: Cosmos 1129. Physiologist, supl. 1983;25(6):S147-S148. France EP, Oloff CM, Kazarian LE. Bone Mineral Analysis of Rat Vertebra Following Spaceflight: Cosmos 1129. Physiologist, supl. 1983;25(6):S147-S148.
121.
Zurück zum Zitat Simmons DJ, Russell JE, Winter F, Tran Van P, Vignery A, Baron R, et al. Effect of spaceflight on the non-weight-bearing bones of rat skeleton. Am. J. Physiol. Integr. Comp. Physiol. 1983;244:R319–26. Simmons DJ, Russell JE, Winter F, Tran Van P, Vignery A, Baron R, et al. Effect of spaceflight on the non-weight-bearing bones of rat skeleton. Am. J. Physiol. Integr. Comp. Physiol. 1983;244:R319–26.
122.
Zurück zum Zitat Glimcher MJ. The nature of the mineral component of bone and the mechanism of calcification. Instr Course Lect. 1987;36:49–69.PubMed Glimcher MJ. The nature of the mineral component of bone and the mechanism of calcification. Instr Course Lect. 1987;36:49–69.PubMed
123.
Zurück zum Zitat Shaw SR, Vailas AC, Grindeland RE, Zernicke RF. Effects of a 1-wk spaceflight on morphological and mechanical properties of growing bone. Am. J. Physiol. Integr. Comp. Physiol. 1988;254:R78–83. Shaw SR, Vailas AC, Grindeland RE, Zernicke RF. Effects of a 1-wk spaceflight on morphological and mechanical properties of growing bone. Am. J. Physiol. Integr. Comp. Physiol. 1988;254:R78–83.
124.
Zurück zum Zitat Vernikos J, Schneider VS. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology. 2010;56:157–66.PubMed Vernikos J, Schneider VS. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology. 2010;56:157–66.PubMed
125.
Zurück zum Zitat Liu Y, Wang E. Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genomics Proteomics Bioinformatics. 2008;6:29–41.PubMedPubMedCentral Liu Y, Wang E. Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genomics Proteomics Bioinformatics. 2008;6:29–41.PubMedPubMedCentral
126.
Zurück zum Zitat Radugina EA, Almeida EAC, Blaber E, Poplinskaya VA, Markitantova YV, Grigoryan EN. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps. Life Sci Space Res. 2018;16:18–25. Radugina EA, Almeida EAC, Blaber E, Poplinskaya VA, Markitantova YV, Grigoryan EN. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps. Life Sci Space Res. 2018;16:18–25.
127.
Zurück zum Zitat Jonscher KR, Alfonso-Garcia A, Suhalim JL, Orlicky DJ, Potma EO, Ferguson VL, et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS One. 2016;11.PubMedPubMedCentral Jonscher KR, Alfonso-Garcia A, Suhalim JL, Orlicky DJ, Potma EO, Ferguson VL, et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS One. 2016;11.PubMedPubMedCentral
128.
Zurück zum Zitat Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Drew A, et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci Rep. 2019;9:8215.PubMedPubMedCentral Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Drew A, et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci Rep. 2019;9:8215.PubMedPubMedCentral
129.
Zurück zum Zitat Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein M, et al. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue. Radiat Res. 2013;180.PubMed Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein M, et al. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue. Radiat Res. 2013;180.PubMed
130.
Zurück zum Zitat Mao X, Sandberg L, Gridley D, Herrmann E, Zhang G, Raghavan R, et al. Proteomic analysis of mouse brain subjected to spaceflight. Int J Mol Sci. 2018;20:7.PubMedCentral Mao X, Sandberg L, Gridley D, Herrmann E, Zhang G, Raghavan R, et al. Proteomic analysis of mouse brain subjected to spaceflight. Int J Mol Sci. 2018;20:7.PubMedCentral
131.
Zurück zum Zitat Lang T, Van Loon JJWA, Bloomfield S, Vico L, Chopard A, Rittweger J, et al. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity. 2017;3:8.PubMedPubMedCentral Lang T, Van Loon JJWA, Bloomfield S, Vico L, Chopard A, Rittweger J, et al. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity. 2017;3:8.PubMedPubMedCentral
132.
Zurück zum Zitat Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, et al. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One. 2013;8:e75097.PubMedPubMedCentral Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, et al. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One. 2013;8:e75097.PubMedPubMedCentral
133.
Zurück zum Zitat Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, et al. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol. 2015;118:830–8.PubMedPubMedCentral Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, et al. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol. 2015;118:830–8.PubMedPubMedCentral
134.
Zurück zum Zitat Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, et al. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J. 2013;27:2282–92.PubMedPubMedCentral Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, et al. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J. 2013;27:2282–92.PubMedPubMedCentral
135.
Zurück zum Zitat Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5.PubMed Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5.PubMed
136.
Zurück zum Zitat Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19:1945–54.PubMed Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19:1945–54.PubMed
137.
Zurück zum Zitat Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, et al. Structural adaptations to bone loss in aging men and women. Bone. 2006;38:112–8.PubMed Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, et al. Structural adaptations to bone loss in aging men and women. Bone. 2006;38:112–8.PubMed
138.
Zurück zum Zitat Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26:375–80.PubMed Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26:375–80.PubMed
139.
Zurück zum Zitat Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18:1012–9.PubMed Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18:1012–9.PubMed
140.
Zurück zum Zitat Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93.PubMed Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93.PubMed
141.
Zurück zum Zitat Cavolina JM, Evans GL, Harris SA, Zhang M, Westerlind KC, Turner RT. The effects of orbital space flight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats. Endocrinology. 1997;138:1567–76.PubMed Cavolina JM, Evans GL, Harris SA, Zhang M, Westerlind KC, Turner RT. The effects of orbital space flight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats. Endocrinology. 1997;138:1567–76.PubMed
142.
Zurück zum Zitat Petit MA, Beck TJ, Lin H-M, Bentley C, Legro RS, Lloyd T. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women’s Health Study. Bone. 2004;35:750–9.PubMed Petit MA, Beck TJ, Lin H-M, Bentley C, Legro RS, Lloyd T. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women’s Health Study. Bone. 2004;35:750–9.PubMed
143.
Zurück zum Zitat Mahoney E. Sending American Astronauts to Moon in 2024: NASA Accepts Challenge. NASA Press Release. 2019. Mahoney E. Sending American Astronauts to Moon in 2024: NASA Accepts Challenge. NASA Press Release. 2019.
144.
Zurück zum Zitat Schierholz S, Jorgan G, Northon K. (Editor). NASA Opens International Space Station to New Commercial Opportunities. NASA Press Release. 2019. Schierholz S, Jorgan G, Northon K. (Editor). NASA Opens International Space Station to New Commercial Opportunities. NASA Press Release. 2019.
Metadaten
Titel
Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk
verfasst von
Jennifer C. Coulombe
Bhavya Senwar
Virginia L. Ferguson
Publikationsdatum
02.01.2020
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 1/2020
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-019-00540-y

Weitere Artikel der Ausgabe 1/2020

Current Osteoporosis Reports 1/2020 Zur Ausgabe

Biomechanics (G Niebur, J Wallace, Section Editors)

In Vivo Assessment of Cortical Bone Fragility

Osteoimmunology (M Nakamura and J Lorenzo, Section Editors)

The Effects of Sclerostin on the Immune System

Osteoimmunology (M Nakamura and J Lorenzo, Section Editors)

The Interrelationship Between Diabetes, IL-17 and Bone Loss

Muscle and Bone (L. Bonewald and M. Hamrick, Section Editors)

Complicated Muscle-Bone Interactions in Children with Cerebral Palsy

Imaging (F. Wehrli and T. Lang, Section Editors)

MRI Assessment of Bone Marrow Composition in Osteoporosis

QUALITY OF CARE IN OSTEOPOROSIS (S SILVERMAN AND J CURTIS, SECTION EDITORS)

General and Specific Considerations as to why Osteoporosis-Related Care Is Often Suboptimal

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.