Skip to main content
Erschienen in: European Journal of Medical Research 1/2010

01.12.2010 | Research

Spinning around or stagnation - what do osteoblasts and chondroblasts really like?

verfasst von: C Zilkens, T Lögters, B Bittersohl, R Krauspe, S Lensing-Höhn, M Jäger

Erschienen in: European Journal of Medical Research | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

Objective

The influcence of cytomechanical forces in cellular migration, proliferation and differentation of mesenchymal stem cells (MSCs) is still poorly understood in detail.

Methods

Human MSCs were isolated and cultivated onto the surface of a 3 × 3 mm porcine collagen I/III carrier. After incubation, cell cultures were transfered to the different cutures systems: regular static tissue flasks (group I), spinner flasks (group II) and rotating wall vessels (group III). Following standard protocols cells were stimulated lineage specific towards the osteogenic and chondrogenic lines. To evaluate the effects of applied cytomechanical forces towards cellular differentiation distinct parameters were measured (morphology, antigen and antigen expression) after a total cultivation period of 21 days in vitro.

Results

Depending on the cultivation technique we found significant differences in both gen and protein expression.

Conclusion

Cytomechanical forces with rotational components strongly influence the osteogenic and chondrogenic differentiation.
Literatur
1.
Zurück zum Zitat Jäger M, Westhoff B, Wild A, Krauspe R: Bone harvesting from the iliac crest. Orthopade 2005,34(10):976–982. 84, 86–90, 92–94 10.1007/s00132-005-0839-0PubMedCrossRef Jäger M, Westhoff B, Wild A, Krauspe R: Bone harvesting from the iliac crest. Orthopade 2005,34(10):976–982. 84, 86–90, 92–94 10.1007/s00132-005-0839-0PubMedCrossRef
2.
Zurück zum Zitat Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA: Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996, 329: 300–309.PubMedCrossRef Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA: Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996, 329: 300–309.PubMedCrossRef
3.
Zurück zum Zitat Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma 1989,3(3):192–195. 10.1097/00005131-198909000-00002PubMedCrossRef Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma 1989,3(3):192–195. 10.1097/00005131-198909000-00002PubMedCrossRef
4.
Zurück zum Zitat Muschler GF, Huber B, Ullman T, Barth R, Easley K, Otis JO, Lane JM: Evaluation of bone-grafting materials in a new canine segmental spinal fusion model. J Orthop Res 1993,11(4):514–524. 10.1002/jor.1100110406PubMedCrossRef Muschler GF, Huber B, Ullman T, Barth R, Easley K, Otis JO, Lane JM: Evaluation of bone-grafting materials in a new canine segmental spinal fusion model. J Orthop Res 1993,11(4):514–524. 10.1002/jor.1100110406PubMedCrossRef
5.
Zurück zum Zitat Gronthos S, Simmons PJ: The biology and application of human bone marrow stromal cell precursors. J Hematother 1996,5(1):15–23. 10.1089/scd.1.1996.5.15PubMedCrossRef Gronthos S, Simmons PJ: The biology and application of human bone marrow stromal cell precursors. J Hematother 1996,5(1):15–23. 10.1089/scd.1.1996.5.15PubMedCrossRef
6.
Zurück zum Zitat Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997,64(2):295–312. 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-IPubMedCrossRef Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997,64(2):295–312. 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-IPubMedCrossRef
7.
Zurück zum Zitat Aubin JE: Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999,72(3):396–410. 10.1002/(SICI)1097-4644(19990301)72:3<396::AID-JCB9>3.0.CO;2-6PubMedCrossRef Aubin JE: Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999,72(3):396–410. 10.1002/(SICI)1097-4644(19990301)72:3<396::AID-JCB9>3.0.CO;2-6PubMedCrossRef
8.
Zurück zum Zitat Haynesworth SE, Goshima J, Goldberg VM, Caplan AI: Characterization of cells with osteogenic potential from human marrow. Bone 1992,13(1):81–88. 10.1016/8756-3282(92)90364-3PubMedCrossRef Haynesworth SE, Goshima J, Goldberg VM, Caplan AI: Characterization of cells with osteogenic potential from human marrow. Bone 1992,13(1):81–88. 10.1016/8756-3282(92)90364-3PubMedCrossRef
9.
Zurück zum Zitat Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG: Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997,36(1):17–28. 10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-OPubMedCrossRef Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG: Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997,36(1):17–28. 10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-OPubMedCrossRef
10.
Zurück zum Zitat van den Dolder J, Farber E, Spauwen PH, Jansen JA: Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 2003,24(10):1745–1750. 10.1016/S0142-9612(02)00537-9PubMedCrossRef van den Dolder J, Farber E, Spauwen PH, Jansen JA: Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 2003,24(10):1745–1750. 10.1016/S0142-9612(02)00537-9PubMedCrossRef
11.
Zurück zum Zitat Ohgushi H, Caplan AI: Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 1999,48(6):913–927. 10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0PubMedCrossRef Ohgushi H, Caplan AI: Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 1999,48(6):913–927. 10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0PubMedCrossRef
12.
Zurück zum Zitat Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG: Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998,19(15):1405–1412. 10.1016/S0142-9612(98)00021-0PubMedCrossRef Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG: Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998,19(15):1405–1412. 10.1016/S0142-9612(98)00021-0PubMedCrossRef
13.
Zurück zum Zitat Freed L, Vunjak-Novacovic G: Tissue engineering bioreactors. In Principles of Tissue Engineering. 2nd edition. Edited by: Lanza R, Langer R, Vacanti J. San Diego, CA: Academic Press; 2000:143–56.CrossRef Freed L, Vunjak-Novacovic G: Tissue engineering bioreactors. In Principles of Tissue Engineering. 2nd edition. Edited by: Lanza R, Langer R, Vacanti J. San Diego, CA: Academic Press; 2000:143–56.CrossRef
14.
Zurück zum Zitat Wang TW, Wu HC, Wang HY, Lin FH, Sun JS: Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems. J Biomed Mater Res A 2008. Wang TW, Wu HC, Wang HY, Lin FH, Sun JS: Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems. J Biomed Mater Res A 2008.
15.
Zurück zum Zitat Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW: Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 2000,18(9):954–958. 10.1038/79439PubMedCrossRef Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW: Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 2000,18(9):954–958. 10.1038/79439PubMedCrossRef
16.
Zurück zum Zitat Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999,17(1):130–138. 10.1002/jor.1100170119PubMedCrossRef Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999,17(1):130–138. 10.1002/jor.1100170119PubMedCrossRef
17.
Zurück zum Zitat Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001,22(11):1279–1288. 10.1016/S0142-9612(00)00280-5PubMedCrossRef Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001,22(11):1279–1288. 10.1016/S0142-9612(00)00280-5PubMedCrossRef
18.
Zurück zum Zitat Sikavitsas VI, Bancroft GN, Mikos AG: Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 2002,62(1):136–148. 10.1002/jbm.10150PubMedCrossRef Sikavitsas VI, Bancroft GN, Mikos AG: Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 2002,62(1):136–148. 10.1002/jbm.10150PubMedCrossRef
19.
Zurück zum Zitat Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G: Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 2004,32(1):112–122.PubMedCrossRef Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G: Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 2004,32(1):112–122.PubMedCrossRef
20.
Zurück zum Zitat Long MW: Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 2001,27(3):677–690. 10.1006/bcmd.2001.0431PubMedCrossRef Long MW: Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 2001,27(3):677–690. 10.1006/bcmd.2001.0431PubMedCrossRef
21.
Zurück zum Zitat Wang TW, Wu HC, Huang YC, Sun JS, Lin FH: Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering. Artif Organs 2006,30(3):141–149. 10.1111/j.1525-1594.2006.00200.xPubMedCrossRef Wang TW, Wu HC, Huang YC, Sun JS, Lin FH: Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering. Artif Organs 2006,30(3):141–149. 10.1111/j.1525-1594.2006.00200.xPubMedCrossRef
22.
Zurück zum Zitat Schwarz RP, Goodwin TJ, Wolf DA: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 1992,14(2):51–57. 10.1007/BF01404744PubMedCrossRef Schwarz RP, Goodwin TJ, Wolf DA: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 1992,14(2):51–57. 10.1007/BF01404744PubMedCrossRef
23.
Zurück zum Zitat Qiu QQ, Ducheyne P, Ayyaswamy PS: Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials 1999,20(11):989–1001. 10.1016/S0142-9612(98)00183-5PubMedCrossRef Qiu QQ, Ducheyne P, Ayyaswamy PS: Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials 1999,20(11):989–1001. 10.1016/S0142-9612(98)00183-5PubMedCrossRef
24.
Zurück zum Zitat Botchwey EA, Pollack SR, Levine EM, Laurencin CT: Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res 2001,55(2):242–253. 10.1002/1097-4636(200105)55:2<242::AID-JBM1011>3.0.CO;2-DPubMedCentralPubMedCrossRef Botchwey EA, Pollack SR, Levine EM, Laurencin CT: Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res 2001,55(2):242–253. 10.1002/1097-4636(200105)55:2<242::AID-JBM1011>3.0.CO;2-DPubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 1998,14(2):193–202. 10.1021/bp970120jPubMedCrossRef Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 1998,14(2):193–202. 10.1021/bp970120jPubMedCrossRef
26.
Zurück zum Zitat Jager M, Feser T, Denck H, Krauspe R: Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Ann Biomed Eng 2005,33(10):1319–1332. 10.1007/s10439-005-5889-2PubMedCrossRef Jager M, Feser T, Denck H, Krauspe R: Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Ann Biomed Eng 2005,33(10):1319–1332. 10.1007/s10439-005-5889-2PubMedCrossRef
27.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Mar shak DR: Multilineage potential of adult human mesen chymal stem cells. Science 1999,284(5411):143–147. 10.1126/science.284.5411.143PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Mar shak DR: Multilineage potential of adult human mesen chymal stem cells. Science 1999,284(5411):143–147. 10.1126/science.284.5411.143PubMedCrossRef
28.
Zurück zum Zitat Riddle RC, Donahue HJ: From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 2009,27(2):143–149. 10.1002/jor.20723PubMedCrossRef Riddle RC, Donahue HJ: From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 2009,27(2):143–149. 10.1002/jor.20723PubMedCrossRef
29.
Zurück zum Zitat Spray DC, Ye ZC, Ransom BR: Functional connexin "hemichannels": a critical appraisal. Glia 2006,54(7):758–773. 10.1002/glia.20429PubMedCrossRef Spray DC, Ye ZC, Ransom BR: Functional connexin "hemichannels": a critical appraisal. Glia 2006,54(7):758–773. 10.1002/glia.20429PubMedCrossRef
30.
Zurück zum Zitat Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ: Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 2007,212(1):207–214. 10.1002/jcp.21021PubMedCentralPubMedCrossRef Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ: Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 2007,212(1):207–214. 10.1002/jcp.21021PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Jiang JX, Cherian PP: Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. Cell Commun Adhes 2003,10(4–6):259–264. 10.1080/cac.10.4-6.259.264PubMedCrossRef Jiang JX, Cherian PP: Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. Cell Commun Adhes 2003,10(4–6):259–264. 10.1080/cac.10.4-6.259.264PubMedCrossRef
32.
Zurück zum Zitat Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX: Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005,16(7):3100–3106. 10.1091/mbc.E04-10-0912PubMedCentralPubMedCrossRef Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX: Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005,16(7):3100–3106. 10.1091/mbc.E04-10-0912PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Ziambaras K, Lecanda F, Steinberg TH, Civitelli R: Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 1998,13(2):218–228. 10.1359/jbmr.1998.13.2.218PubMedCrossRef Ziambaras K, Lecanda F, Steinberg TH, Civitelli R: Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 1998,13(2):218–228. 10.1359/jbmr.1998.13.2.218PubMedCrossRef
34.
Zurück zum Zitat McAllister TN, Frangos JA: Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 1999,14(6):930–936. 10.1359/jbmr.1999.14.6.930PubMedCrossRef McAllister TN, Frangos JA: Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 1999,14(6):930–936. 10.1359/jbmr.1999.14.6.930PubMedCrossRef
35.
Zurück zum Zitat Ponik SM, Triplett JW, Pavalko FM: Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J Cell Biochem 2007,100(3):794–807. 10.1002/jcb.21089PubMedCrossRef Ponik SM, Triplett JW, Pavalko FM: Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J Cell Biochem 2007,100(3):794–807. 10.1002/jcb.21089PubMedCrossRef
36.
Zurück zum Zitat Li YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR: Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 2004,22(6):1283–1289. 10.1016/j.orthres.2004.04.002PubMedCrossRef Li YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR: Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 2004,22(6):1283–1289. 10.1016/j.orthres.2004.04.002PubMedCrossRef
37.
Zurück zum Zitat Riddle RC, Taylor AF, Genetos DC, Donahue HJ: MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 2006,290(3):C776-C784.PubMedCrossRef Riddle RC, Taylor AF, Genetos DC, Donahue HJ: MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 2006,290(3):C776-C784.PubMedCrossRef
38.
Zurück zum Zitat Grodzinsky A, Kamm R, Lauffenburger D: Quantitative aspects of tissue engineering: Basic issues in kinetics, transport, and mechanics. In Principles of Tissue Engineering. San Diego: Academic Press; 2000:195–206.CrossRef Grodzinsky A, Kamm R, Lauffenburger D: Quantitative aspects of tissue engineering: Basic issues in kinetics, transport, and mechanics. In Principles of Tissue Engineering. San Diego: Academic Press; 2000:195–206.CrossRef
39.
Zurück zum Zitat Mueller SM, Mizuno S, Gerstenfeld LC, Glowacki J: Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponges. J Bone Miner Res 1999,14(12):2118–2126. 10.1359/jbmr.1999.14.12.2118PubMedCrossRef Mueller SM, Mizuno S, Gerstenfeld LC, Glowacki J: Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponges. J Bone Miner Res 1999,14(12):2118–2126. 10.1359/jbmr.1999.14.12.2118PubMedCrossRef
40.
Zurück zum Zitat Chen X, Xu H, Wan C, McCaigue M, Li G: Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 2006,24(9):2052–2059. 10.1634/stemcells.2005-0591PubMedCrossRef Chen X, Xu H, Wan C, McCaigue M, Li G: Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 2006,24(9):2052–2059. 10.1634/stemcells.2005-0591PubMedCrossRef
41.
Zurück zum Zitat Zhao F, Chella R, Ma T: Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnol Bioeng 2007,96(3):584–595. 10.1002/bit.21184PubMedCrossRef Zhao F, Chella R, Ma T: Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnol Bioeng 2007,96(3):584–595. 10.1002/bit.21184PubMedCrossRef
42.
Zurück zum Zitat Huang CY, Reuben PM, Cheung HS: Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 2005,23(8):1113–1121. 10.1634/stemcells.2004-0202PubMedCrossRef Huang CY, Reuben PM, Cheung HS: Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 2005,23(8):1113–1121. 10.1634/stemcells.2004-0202PubMedCrossRef
43.
Zurück zum Zitat Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME: Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 2007,25(3):655–663.PubMedCrossRef Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME: Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 2007,25(3):655–663.PubMedCrossRef
44.
Zurück zum Zitat Caplan AI: Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005,11(7–8):1198–1211. 10.1089/ten.2005.11.1198PubMedCrossRef Caplan AI: Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005,11(7–8):1198–1211. 10.1089/ten.2005.11.1198PubMedCrossRef
45.
Zurück zum Zitat Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S: Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 1998,355(Suppl):S247-S256.PubMedCrossRef Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S: Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 1998,355(Suppl):S247-S256.PubMedCrossRef
46.
Zurück zum Zitat Mauney JR, Volloch V, Kaplan DL: Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng 2005,11(5–6):787–802. 10.1089/ten.2005.11.787PubMedCrossRef Mauney JR, Volloch V, Kaplan DL: Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng 2005,11(5–6):787–802. 10.1089/ten.2005.11.787PubMedCrossRef
47.
Zurück zum Zitat Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004,36(4):568–584. 10.1016/j.biocel.2003.11.001PubMedCrossRef Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004,36(4):568–584. 10.1016/j.biocel.2003.11.001PubMedCrossRef
48.
Zurück zum Zitat da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesen chymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006,119(Pt 11):2204–2213.PubMedCrossRef da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesen chymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006,119(Pt 11):2204–2213.PubMedCrossRef
49.
Zurück zum Zitat Holtorf HL, Jansen JA, Mikos AG: Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexa methasone. J Biomed Mater Res A 2005,72(3):326–334.PubMedCrossRef Holtorf HL, Jansen JA, Mikos AG: Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexa methasone. J Biomed Mater Res A 2005,72(3):326–334.PubMedCrossRef
50.
Zurück zum Zitat Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ: Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003,61(1):94–100. 10.1053/joms.2003.50015PubMedCrossRef Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ: Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003,61(1):94–100. 10.1053/joms.2003.50015PubMedCrossRef
51.
Zurück zum Zitat Qiu Q, Ducheyne P, Gao H, Ayyaswamy P: Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng 1998,4(1):19–34. 10.1089/ten.1998.4.19PubMedCrossRef Qiu Q, Ducheyne P, Gao H, Ayyaswamy P: Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng 1998,4(1):19–34. 10.1089/ten.1998.4.19PubMedCrossRef
52.
Zurück zum Zitat Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 2002,99(20):12600–12605. 10.1073/pnas.202296599PubMedCentralPubMedCrossRef Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 2002,99(20):12600–12605. 10.1073/pnas.202296599PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG: Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA 2003,100(25):14683–14688. 10.1073/pnas.2434367100PubMedCentralPubMedCrossRef Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG: Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA 2003,100(25):14683–14688. 10.1073/pnas.2434367100PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Chou YF, Dunn JC, Wu BM: In vitro response of MC3T3-E1 pre-osteoblasts within three-dimensional apatite-coated PLGA scaffolds. J Biomed Mater Res B Appl Biomater 2005,75(1):81–90.PubMedCrossRef Chou YF, Dunn JC, Wu BM: In vitro response of MC3T3-E1 pre-osteoblasts within three-dimensional apatite-coated PLGA scaffolds. J Biomed Mater Res B Appl Biomater 2005,75(1):81–90.PubMedCrossRef
55.
Zurück zum Zitat Rucci N, Migliaccio S, Zani BM, Taranta A, Teti A: Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). J Cell Biochem 2002,85(1):167–179. 10.1002/jcb.10120PubMedCrossRef Rucci N, Migliaccio S, Zani BM, Taranta A, Teti A: Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). J Cell Biochem 2002,85(1):167–179. 10.1002/jcb.10120PubMedCrossRef
56.
Zurück zum Zitat Reich KM, McAllister TN, Gudi S, Frangos JA: Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 1997,138(3):1014–1018. 10.1210/en.138.3.1014PubMedCrossRef Reich KM, McAllister TN, Gudi S, Frangos JA: Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 1997,138(3):1014–1018. 10.1210/en.138.3.1014PubMedCrossRef
57.
Zurück zum Zitat Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD: Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol 2001,90(5):1849–1854.PubMed Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD: Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol 2001,90(5):1849–1854.PubMed
58.
Zurück zum Zitat Bakker AD, Soejima K, Klein-Nulend J, Burger EH: The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 2001,34(5):671–677. 10.1016/S0021-9290(00)00231-1PubMedCrossRef Bakker AD, Soejima K, Klein-Nulend J, Burger EH: The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 2001,34(5):671–677. 10.1016/S0021-9290(00)00231-1PubMedCrossRef
59.
Zurück zum Zitat Iqbal J, Zaidi M: Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 2005,328(3):751–755. 10.1016/j.bbrc.2004.12.087PubMedCrossRef Iqbal J, Zaidi M: Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 2005,328(3):751–755. 10.1016/j.bbrc.2004.12.087PubMedCrossRef
60.
Zurück zum Zitat Vance J, Galley S, Liu DF, Donahue SW: Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Tissue Eng 2005,11(11–12):1832–1839. 10.1089/ten.2005.11.1832PubMedCrossRef Vance J, Galley S, Liu DF, Donahue SW: Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Tissue Eng 2005,11(11–12):1832–1839. 10.1089/ten.2005.11.1832PubMedCrossRef
61.
Zurück zum Zitat Roughley PJ, Lee ER: Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 1994,28(5):385–397. 10.1002/jemt.1070280505PubMedCrossRef Roughley PJ, Lee ER: Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 1994,28(5):385–397. 10.1002/jemt.1070280505PubMedCrossRef
Metadaten
Titel
Spinning around or stagnation - what do osteoblasts and chondroblasts really like?
verfasst von
C Zilkens
T Lögters
B Bittersohl
R Krauspe
S Lensing-Höhn
M Jäger
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
European Journal of Medical Research / Ausgabe 1/2010
Elektronische ISSN: 2047-783X
DOI
https://doi.org/10.1186/2047-783X-15-1-35

Weitere Artikel der Ausgabe 1/2010

European Journal of Medical Research 1/2010 Zur Ausgabe