Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2021

Open Access 01.12.2021 | Research

Stroke of antiplatelet and anticoagulant therapy in patients with coronary artery disease: a meta-analysis of randomized controlled trials

verfasst von: Qiao Yu Shao, Zhi Jian Wang, Xiao Teng Ma, Xu Ze Lin, Liu Pan, Yu Jie Zhou

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2021

Abstract

Background

We performed a meta-analysis sought to investigate the risk of stroke with antiplatelet and anticoagulant therapies among patients with coronary artery disease (CAD).

Methods

We searched PubMed, EMBASE, and Cochrane Library for randomized controlled trials from January 1995 to March 2020. Studies were retrieved if they reported data of stroke for patients with CAD and were randomized to receive intensive versus conservative antithrombotic therapies, including antiplatelet and oral anticoagulant (OAC). Analyses were pooled by random-effects modeling. A total of 42 studies with 301,547subjects were enrolled in this analysis.

Results

Intensive antithrombotic therapy significantly reduced risk of all stroke (RR 0.86, 95% CI 0.80–0.94) and ischemic stroke (RR 0.80, 95% CI 0.71–0.91), but increased risk of hemorrhagic stroke (RR 1.36, 95% CI 1.00–1.86) and intracranial hemorrhage (RR 1.46, 95% CI 1.17–1.81). Subgroup analyses indicated that OAC yields more benefit to all stroke than antiplatelet therapy (OAC: RR 0.73, 95% CI 0.58–0.92; Antiplatelet: RR 0.90, 95% CI 0.83–0.97; Between-group heterogeneity P value = 0.030). The benefit of antiplatelet therapy on all stroke and ischemic stroke were mainly driven by the studies comparing longer versus shorter duration of dual antiplatelet therapy (All stroke: RR 0.86, 95% CI 0.78–0.95; ischemic stroke: RR 0.84, 95% CI 0.75–0.94).

Conclusions

Among CAD patients who have already received antiplatelet therapy, either strengthening antiplatelet or anticoagulant treatments significantly reduced all stroke, mainly due to the reduction of ischemic stroke, although it increased the risk of hemorrhagic stroke and intracranial hemorrhage. OAC yields more benefit to all stroke than antiplatelet therapy.
Begleitmaterial
Additional file 1. Detailed search strategies; Tables S1. Cochrane risk of bias for the individual studies included; Table S2. Characteristics of included studies; Figure S1. Estimates of risk for intracranial hemorrhage between intensive antithrombotic therapy and conservative antithrombotic therapy; Figure S2. Estimates of risk for all stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S3. Estimates of risk for ischemic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S4. Estimates of risk for hemorrhagic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S5. Estimates of risk for intracranial hemorrhage between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S6. Estimates of risk for all stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS; Figure S7. Estimates of risk for ischemic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS; Figure S8. Estimates of risk for hemorrhagic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS; Figure S9. Estimates of risk for intracranial hemorrhage between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12872-021-02384-w.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACS
Acute coronary syndromes
AF
Atrial fibrillation
ATT
Antithrombotic therapy
CAD
Coronary artery disease
DAPT
Dual antiplatelet therapy
DES
Drug-eluting stents
HS
Hemorrhagic stroke
IS
Ischemic stroke
ICH
Intracranial hemorrhage
OAC
Oral anticoagulant
RCT
Randomized controlled trials

Background

Stroke is a devastating clinical event associated with substantial mortality and morbidity [1]. Patient with coronary artery disease (CAD) always have a high prevalence of stroke due to concomitant atherosclerotic disease of the cerebral vascular system or cardiogenic embolism [2, 3]. Nevertheless, the pathophysiology and causes of stroke are more diverse than those in ischemic coronary syndromes. Either ischemic or hemorrhagic stroke can cause more deterioration in the quality of life compared with other ischemic or bleeding events, even if patients who survive in the acute period [4]. Any type of stroke is thought to result in a life-long reduction in utility and have a much greater impact on the quality of life, regardless of the severity of stroke [59].
Antiplatelet and anticoagulant treatments play pivotal roles throughout the prevention of cardiovascular and cerebrovascular disease. Dual antiplatelet therapy (DAPT) has been recommended for patients with acute coronary syndromes (ACS) and those undergoing percutaneous coronary intervention given its benefit in the risk of stent-related and spontaneous recurrent ischemic events [10, 11]. However, considering the improved safety and efficacy of drug-eluting stents (DES) [12, 13] and advances in medical treatment [1416], the optimal duration of DAPT in patients with ACS remains controversial. While more powerful antithrombotic strategy might be beneficial to reduction of ischemic stroke (IS), it leads to a higher risk of hemorrhagic stroke (HS) or intracranial hemorrhage (ICH). Compared with spontaneous HS, oral anticoagulant (OAC) related intracerebral hemorrhage has a larger hematoma volume [17] and a worse prognosis [1820]. Therefore, it is essential to figure out the safety and efficacy of intensive antithrombotic therapy (ATT) for stroke of CAD populations. Additionally, clinical evidence supported antiplatelet for non-cardioembolic stroke prevention, while anticoagulant is more recommended for the prevention of most types of cardioembolic stroke [21]. However, whether antiplatelet therapy and OAC yield the same benefit in the risk of stroke among CAD population is not clear.
Therefore, we conducted a systematic review and meta-analysis to investigate whether escalation of ATT, including antiplatelet therapy and OAC, is beneficial in different types of the stroke among patients with CAD.

Method

Study design

Eligible studies for this meta-analysis were randomized controlled trials (RCT) of patients with CAD treated with OAC or antiplatelet therapy and provided at least 1 endpoint of any type of stroke. Studies were included if they compared the treatment effects of intensive versus conservative ATT, specifically including long-term versus short-term, novel P2Y12 inhibitor (ticagrelor or prasugrel) versus clopidogrel, combined (DAPT or OAC combine antiplatelet therapy) versus alone, (all above are in the order of intensive therapy versus conservative therapy). Besides, the studies were excluded if they met any of the following criteria: (1) Individualized ATT based on platelet function or genetic monitoring; (2) Patients with atrial fibrillation (AF) or other diseases that need to receive long-term OAC treatment; (3) The total number of participants was less than 1000 or follow-up duration was shorter than 6 months; (4) Phase I and phase II clinical trials; (5) Patients were not randomly assigned at the time of receiving ATT.

Search strategy

We retrieved RCT through PubMed, EMBASE, and Cochrane Library using the keywords relating to ATT (“platelet aggregation inhibitors”, “anticoagulants”, “antithrombotic”, “NOAC”, “clopidogrel”, “aspirin”, “thienopyridine”) and CAD (“acute coronary syndrome”, “percutaneous coronary intervention”). Detailed search strategies are demonstrated in Additional file 1. To minimize heterogeneity due to rapidly advancing treatment strategies, we only included studies published from 1 January 1995 to 12 March 2020. Only articles written or published in English were included.

Trial selection and data extraction

Two investigators (Q.Y.S. and X.T.M.) independently screened the titles, abstracts, and full text to authenticate whether they met the inclusion criteria, and categorized ATT to OAC or antiplatelet therapy among each trial as recommended in the guidelines [10]. Antiplatelet therapies were also subdivided into long-term versus short-term DAPT (also including DAPT vs. monotherapy), novel P2Y12 inhibitor versus clopidogrel, and others (Orbofiban, Cilostazol, Vorapaxar) versus placebo. Data recorded included first author, journal, year of publication, study name, study population, baseline clinical characteristics, interventions, and outcomes of all types of the stroke. The authors were contacted via email when the data remained unclear or needed access to additional data. The filtering process is shown in the flowchart (Fig. 1). If there were several articles from the same group of subjects, we chose the one with the longest follow-up data. Conflicts between investigators were resolved by consensus and consulting a third investigator (Z.J.W.). The methodological quality of RCT was assessed by Cochrane’s Collaboration tool for evaluating the risk of bias (Additional file 1: Table S1).

Endpoints and definitions

The primary endpoint of interest was all stroke. We also extracted and analyzed IS, HS, and ICH. We excluded those studies in which the study population overlapped completely or partially unless the original study could be clearly abstract information from different populations and endpoints. The principal analyses were performed in the intention-to-treat populations.

Statistical analysis

Individual study’s baseline characteristics, risk estimates, and raw outcome data were extracted from each RCT. Data for all endpoints were pooled and analyzed using DerSimonian and Laird random-effects models [22]. The percentage of variability across studies caused by heterogeneity beyond chance was evaluated with the Cochrane test and calculated with I2 statistic. Values < 25% indicating low, 25–50% indicating moderate, and > 50% indicating high heterogeneity [23]. Given the potential difference in the treatment effects between antiplatelet therapy and OAC, we planned pre-specified subgroup analysis according to types of ATT for all the endpoints. P values for between-group heterogeneity were all from meta-regression. Meta-regression analysis was performed to explore pre-defined sources of heterogeneity of stroke. The pre-defined covariates included study sample size, follow-up time, mean age, the proportion of women, smokers, and diabetes. Sensitivity analyses were examined by excluding one study at a time. Publication bias was assessed by Egger’s linear regression test [24], Begg’s test, and visual inspection of funnel plots. If the results between bias tools are different, we used the trim-and-fill method to further evaluate and adjust publication bias. Statistical analysis was performed using Stata 12.0 (Stata Corp). The results were regarded as statistically significant at 2-tailed P < 0.05.

Results

A total of 8259 articles were retrieved after duplication removal, of which 264 articles warranted full-text review for detail. We finally identified 42 studies (301,547 enrolled patients) that met the inclusion criteria and provided at least 1 endpoint of interest (Fig. 1). Among 42 RCT involved patients referred for CAD, 15 studies (153,856 enrolled patients) were randomized after diagnosis of ACS, which combined unstable angina, Non-ST-elevation myocardial infarction, and ST-elevation myocardial infarction; 2 studies (37,498 enrolled patients) were about stable CAD; 23 studies (89,569 enrolled patients) were patients with ACS or stable CAD undergoing percutaneous coronary intervention, including 18 with DES, 1 with bare-metal stent [25], 3 with DES or bare-metal stent [2628], and 1 was unreported [29]. The remaining 2 studies incorporated 1 specifically for CAD accompany heart failure (HF) [30], 1 for cardiovascular disease or multiple risk factors [31]. One study enrolled only veterans [32]. The quality assessment and characteristics of included studies are presented in Additional file 1: Tables S1 and S2.
Compared with conservative ATT, intensive ATT was associated with a significantly lower risk of all stroke (RR 0.86, 95% CI 0.80–0.94; P = 0.001) (Fig. 2). There was a high between-study heterogeneity within OAC group (I2 = 59.1%, P = 0.023), but no heterogeneity within antiplatelet group (I2 = 0.0%, P = 0.571). Intensive ATT also reduced the risk of IS (RR 0.80, 95% CI 0.71–0.91; P = 0.001) (Fig. 3), but increased the risk of HS (RR 1.36, 95% CI 1.00–1.86; P = 0.051) (Fig. 3) and ICH (RR 1.46, 95% CI 1.17–1.81, P = 0.001) (Additional file 1: Fig. S1). Subgroup analyses found that OAC yielded more benefit in all stroke than antiplatelet therapy (OAC: RR 0.73, 95% CI 0.58–0.92, P = 0.006; Antiplatelet therapy: RR 0.90, 95% CI 0.83–0.97, P = 0.004; P value for between-group heterogeneity = 0.030). There was no significant difference in the treatment effect of IS, HS, or ICH between antiplatelet and OAC subgroups (Table 1).
Table 1
Subgroup analyses of antiplatelet and anticoagulant treatments for the stroke outcomes
Variable
No. of studies
Estimates and 95% CI
P value
I2 (%)
P value for within-group heterogeneity
P value for between-group heterogeneitya
All stroke
39
0.86 (0.80, 0.94)
0.001
25.1
0.083
0.030
 OAC
7
0.73 (0.58, 0.92)
0.006
59.1
0.023
 
 Antiplatelet
32
0.90 (0.83, 0.97)
0.004
0.0
0.571
 
 Long-term versus short-term DAPT
24
0.86 (0.78, 0.95)
0.002
0.0
0.672
 
 Novel P2Y12 inhibitor
4
1.03 (0.87, 1.22)
0.701
0.0
0.584
 
 Othersb
4
0.88 (0.71, 1.08)
0.219
25.3
0.260
 
Ischemic stroke
21
0.80 (0.71, 0.91)
0.001
48.8
0.007
0.298
 OAC
7
0.73 (0.53, 1.01)
0.059
72.6
0.001
 
 Antiplatelet
14
0.83 (0.76, 0.92)
< 0.001
4.1
0.406
 
 Long-term versus short-term DAPT
10
0.84 (0.75, 0.94)
0.002
0.0
0.479
 
 Novel P2Y12 inhibitor
2
1.00 (0.77, 1.30)
0.981
0.0
0.432
 
 Othersb
2
0.72 (0.58, 0.90)
0.003
0.0
0.388
 
Hemorrhagic stroke
12
1.36 (1.00, 1.86)
0.051
6.9
0.378
0.782
 OAC
3
1.51 (0.80, 2.88)
0.204
2.0
0.360
 
 Antiplatelet
9
1.32 (0.90, 1.94)
0.160
17.2
0.290
 
 Long-term versus short-term DAPT
7
0.96 (0.62, 1.49)
0.858
0.0
0.709
 
 Novel P2Y12 inhibitor
1
1.76 (0.89, 3.47)
0.103
NA
NA
 
 Othersb
1
2.75 (1.22, 6.17)
0.014
NA
NA
 
Intracranial hemorrhage
19
1.46 (1.17, 1.81)
0.001
37.7
0.050
0.465
 OAC
5
2.01 (1.00, 4.02)
0.049
63.4
0.027
 
 Antiplatelet
14
1.39 (1.12, 1.74)
0.003
27.8
0.157
 
 Long-term versus short-term DAPT
7
1.37 (1.08, 1.75)
0.011
0.0
0.654
 
 Novel P2Y12 inhibitor
4
1.15 (0.78, 1.71)
0.475
18.4
0.298
 
 Othersb
3
1.64 (0.77, 3.47)
0.197
73.4
0.023
 
All estimates and P values were analyzed using the random effects model
OAC oral anticoagulant
aP value for between-group heterogeneity refers to the heterogeneity between OAC and Antiplatelet groups
bOthers subgroup including 1 study for Orbofiban, 1 study for Cilostazol, 2 study for Vorapaxar
Subgroup analyses showed that the effects of antiplatelet therapy were mainly driven by long-term DAPT. Long-term DAPT was of obvious benefit on all stroke (RR 0.86, 95% CI 0.78–0.95; P = 0.002) and IS (RR 0.84, 95% CI 0.75–0.94; P = 0.002), but had no advantage over HS (RR 0.96, 95% CI 0.62–1.49; P = 0.858) and even increased the risk of ICH (RR 1.37, 95% CI 1.08–1.75; P = 0.011) compared with short-term DAPT (Table 1). Novel P2Y12 inhibitor did not show a significant benefit to any type of stroke. Pre-defined subgroup analysis based on the type of CAD showed that intensive ATT significantly reduced all stroke in both ACS (RR 0.89, 95% CI 0.79–0.99; P = 0.033) and non-ACS (RR 0.73, 95% CI 0.63–0.85; P < 0.001) populations, and there is no heterogeneity between two groups (P value for between-group heterogeneity = 0.066) (Table 2). Meta-regression found no study-level covariates which explained the variability of all stroke, IS or HS. No apparent systematic bias was found, and no individual study unduly influenced the effects estimates in the sensitivity analyses.
Table 2
Subgroup analyses of ACS and non-ACS population for the stroke outcomes
Variable
No. of studies
Estimates and 95% CI
P value
I2 (%)
P value for within-group heterogeneity
P value for between-group heterogeneitya
All stroke
20
0.84 (0.76, 0.92)
< 0.001
41.7
0.027
0.066
 ACS
16
0.89 (0.79, 0.99)
0.033
32.3
0.104
 
 Non-ACS
4
0.73 (0.63, 0.85)
< 0.001
35.0
0.202
 
Ischemic stroke
14
0.78 (0.67, 0.89)
< 0.001
55.8
0.006
0.440
 ACS
11
0.81 (0.68, 0.96)
0.015
52.3
0.021
 
 Non-ACS
3
0.70 (0.54, 0.91)
0.008
71.5
0.030
 
Hemorrhagic stroke
7
1.51 (1.00, 2.27)
0.048
22.8
0.255
0.999
 ACS
6
1.49 (0.90, 2.48)
0.123
35.6
0.170
 
 Non-ACS
1
1.50 (0.67, 3.33)
0.324
 
Intracranial hemorrhage
15
1.41 (1.11, 1.79)
0.005
48.1
0.019
0.517
 ACS
12
1.51 (1.10, 2.09)
0.012
54.9
0.011
 
 Non-ACS
3
1.27 (0.98, 1.66)
0.076
0.60
0.366
 
aP value for between-group heterogeneity refers to the heterogeneity between OAC and Antiplatelet groups

Discussion

We presented a meta-analysis of all published RCT evaluating the stroke outcomes of intensive versus conservative ATT involving 301,547 CAD patients, with an average follow-up of 20.6 months. We found that among patients with CAD who have already received antiplatelet therapy, intensive ATT, either escalation of antiplatelet therapy or addition of OAC, significantly reduced the risk of all stroke and IS, but increased the risk of HS and ICH compared with conservative ATT. OAC was more effective than antiplatelet therapy in the prevention of all stroke.
Stroke has a profound impact on mortality and morbidity given its high risk of death and irreversible sequelae which explicitly decrease the quality of life. Furthermore, brain–heart interactions leading to post-stroke cardiac injury called “stroke-heart syndrome” (SHS) including acute MI, HF, AF, and sudden cardiac death [33]. Therefore, while it is a rare event, small absolute differences in stroke are clinically significant. In this analysis, we found that among CAD patients who have already received antiplatelet therapy, the escalation of either OAC or antiplatelet therapy significantly reduced the risk of IS, but was accompanied by an increase of HS and ICH. It is not surprising that more intensive ATT results in a lower risk of ischemia and a higher risk of bleeding.
Although it has been well established that OAC is more effective than antiplatelet therapy in the prevention of stroke among patients with AF [34, 35], the relative benefit of OAC versus antiplatelet in stroke among CAD patients is not yet clear. In a Cochrane review analysis, there was no difference between vitamin K antagonists versus antiplatelet therapy in the outcome of any recurrent stroke among patients with presumed arterial origin [36]. Similarly, in the two recent trials, neither rivaroxaban nor dabigatran was found to be superior to aspirin in preventing recurrent stroke after embolic stroke of undermined source [37, 38]. In our study, we found that among CAD patients who have already received antiplatelet therapy, although both OAC and enhanced antiplatelet therapy significantly reduced the risk of all stroke, OAC reduced an extra 17% occurrence of stroke events compared with antiplatelet therapy. The reason for this difference between OAC and antiplatelet therapy is not known. It has been well-established that OAC effectively prevents ‘red’ fibrin clots in areas of reduced or stagnant blood flow, such as the fibrillating left atrium, whereas antiplatelet drugs are effective in preventing ‘white’ platelet clots in areas of high shear stress, such as arterial atherosclerosis thromboembolism [39]. According to the constituent ratio of TOAST classification of stroke, cardioembolic stroke accounted for 21% which is more than large-artery atherosclerosis stroke accounted for 18% [40]. Although we excluded studies that exclusively enrolled patients with AF or other diseases who need to receive long-term OAC treatment, not all the studies completely excluded patients with AF. Golwala et al. [41] claimed in meta-analysis that dual (DATT) and triple antithrombotic therapy (TATT) are equivalent in preventing cardiovascular events with DATT being safer by approximately halving bleeding risk. While Gragnano et al. [42] did not concur with the conclusive statement since the heterogeneity between the duration of TATT in AF population. Therefore, whether the variety in the proportion of patients with AF as well as stroke sources can explain our finding warrants further study.
With the introduction and widespread adoption in the clinical practice of novel P2Y12 inhibitors, it has been speculated that clopidogrel may yield less additional inhibition of platelet aggregation and clinical benefit compared with more potent novel P2Y12 receptor inhibitors. In a post-hoc analysis of Assessment of Dual Antiplatelet Therapy with Drug-Eluting Stents (ADAPT-DES) trial, high platelet reactivity, indicated by clopidogrel responsiveness, was independently predicted increased risk for IS [43]. The magnitude of increase in the risk of IS was greater per lesser degrees of residual P2Y12 receptor inhibition, which implies that more potent inhibitors of platelet aggregation and activation would reduce the frequency of stroke. However, this assumption has not been supported by clinical evidence. In our subgroup analysis, neither prasugrel nor ticagrelor was found superior to clopidogrel for preventing any type of stroke. Therefore, further research is warranted to determine the optimal antiplatelet regimen for the prevention of stroke in patients with CAD. Additionally, subgroup analysis also demonstrated that the efficacy of antiplatelet therapy was mainly driven by long-term DAPT subgroup, which reduced all stroke by 14% and reduced IS by 16%. And we failed to find significant heterogeneity between ACS and non-ACS patients in any endpoint.

Study limitations

There are certain limitations to this study. First, pooling data of our meta-analysis were based on heterogeneous patient cohorts, designs, as well as diagnostic modalities, although pre-defined subgroup analyses and meta-regression were performed to explore the source of heterogeneity, these results of ATT escalation just explain study-level values but not individual patients. Second, the definition of intensive ATT varied among trials, including long-term DAPT versus short-term DAPT, novel P2Y12 inhibitor versus clopidogrel, etc. However, although the included antiplatelet regimens and participants were mixed, the heterogeneity of antiplatelet was 0%, and the total heterogeneity was also not significant, indicating that diverse regiments did not lead to significant heterogeneity.

Conclusion

In conclusion, among CAD patients who have already received antiplatelet therapy, either enhanced antiplatelet or anticoagulant treatments significantly reduced all stroke. The therapeutic effect of OAC for all stroke was more obvious than antiplatelet. Whether this extra benefit of OAC versus antiplatelet therapy is consistent between patients with and without AF warrants further study.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

We declare that we have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Additional file 1. Detailed search strategies; Tables S1. Cochrane risk of bias for the individual studies included; Table S2. Characteristics of included studies; Figure S1. Estimates of risk for intracranial hemorrhage between intensive antithrombotic therapy and conservative antithrombotic therapy; Figure S2. Estimates of risk for all stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S3. Estimates of risk for ischemic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S4. Estimates of risk for hemorrhagic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S5. Estimates of risk for intracranial hemorrhage between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of antiplatelet; Figure S6. Estimates of risk for all stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS; Figure S7. Estimates of risk for ischemic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS; Figure S8. Estimates of risk for hemorrhagic stroke between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS; Figure S9. Estimates of risk for intracranial hemorrhage between intensive antithrombotic therapy and conservative antithrombotic therapy for subgroup of ACS.
Literatur
1.
Zurück zum Zitat Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals frcom the American Heart Association/American Stroke Association. Stroke. 2014;45:2160–236 (Epub 2014/05/03).PubMed Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals frcom the American Heart Association/American Stroke Association. Stroke. 2014;45:2160–236 (Epub 2014/05/03).PubMed
2.
Zurück zum Zitat Viles-Gonzalez JF, Fuster V, Badimon JJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J. 2004;25:1197–207.PubMed Viles-Gonzalez JF, Fuster V, Badimon JJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J. 2004;25:1197–207.PubMed
3.
Zurück zum Zitat Amarenco P, Steg PG. Stroke is a coronary heart disease risk equivalent: implications for future clinical trials in secondary stroke prevention. Eur Heart J. 2008;29:1605–7.PubMed Amarenco P, Steg PG. Stroke is a coronary heart disease risk equivalent: implications for future clinical trials in secondary stroke prevention. Eur Heart J. 2008;29:1605–7.PubMed
4.
Zurück zum Zitat Greving JP, Buskens E, Koffijberg H, Algra A. Cost-effectiveness of aspirin treatment in the primary prevention of cardiovascular disease events in subgroups based on age, gender, and varying cardiovascular risk. Circulation. 2008;117:2875–83.PubMed Greving JP, Buskens E, Koffijberg H, Algra A. Cost-effectiveness of aspirin treatment in the primary prevention of cardiovascular disease events in subgroups based on age, gender, and varying cardiovascular risk. Circulation. 2008;117:2875–83.PubMed
5.
Zurück zum Zitat Augustovski FA, Cantor SB, Thach CT, Spann SJ. Aspirin for primary prevention of cardiovascular events. J Gen Intern Med. 1998;13:824–35.PubMedPubMedCentral Augustovski FA, Cantor SB, Thach CT, Spann SJ. Aspirin for primary prevention of cardiovascular events. J Gen Intern Med. 1998;13:824–35.PubMedPubMedCentral
6.
Zurück zum Zitat Pignone M, Earnshaw S, Tice JA, Pletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med. 2006;144:326–36.PubMed Pignone M, Earnshaw S, Tice JA, Pletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med. 2006;144:326–36.PubMed
7.
Zurück zum Zitat Naglie IG, Detsky AS. Treatment of chronic nonvalvular atrial fibrillation in the elderly: a decision analysis. Med Decis Mak. 1992;12:239–49. Naglie IG, Detsky AS. Treatment of chronic nonvalvular atrial fibrillation in the elderly: a decision analysis. Med Decis Mak. 1992;12:239–49.
8.
Zurück zum Zitat Post PN, Stiggelbout AM, Wakker PP. The utility of health states after stroke: a systematic review of the literature. Stroke. 2001;32:1425–9.PubMed Post PN, Stiggelbout AM, Wakker PP. The utility of health states after stroke: a systematic review of the literature. Stroke. 2001;32:1425–9.PubMed
9.
Zurück zum Zitat Gage BF, Cardinalli AB, Albers GW, Owens DK. Cost-effectiveness of warfarin and aspirin for prophylaxis of stroke in patients with nonvalvular atrial fibrillation. JAMA. 1995;274:1839–45.PubMed Gage BF, Cardinalli AB, Albers GW, Owens DK. Cost-effectiveness of warfarin and aspirin for prophylaxis of stroke in patients with nonvalvular atrial fibrillation. JAMA. 1995;274:1839–45.PubMed
10.
Zurück zum Zitat Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165 (Epub 2018/08/31).PubMed Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165 (Epub 2018/08/31).PubMed
11.
Zurück zum Zitat Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2018;39:213–60 (Epub 2017/09/10).PubMed Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2018;39:213–60 (Epub 2017/09/10).PubMed
12.
Zurück zum Zitat Sabaté M, Räber L, Heg D, Brugaletta S, Kelbaek H, Cequier A, et al. Comparison of newer-generation drug-eluting with bare-metal stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of the EXAMINATION (clinical Evaluation of the Xience-V stent in acute myocardial INfArcTION) and COMFORTABLE-AMI (comparison of biolimus eluted from an erodible stent coating with bare metal stents in acute ST-elevation myocardial infarction) trials. JACC Cardiovasc Interv. 2014;7:55–63.PubMed Sabaté M, Räber L, Heg D, Brugaletta S, Kelbaek H, Cequier A, et al. Comparison of newer-generation drug-eluting with bare-metal stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of the EXAMINATION (clinical Evaluation of the Xience-V stent in acute myocardial INfArcTION) and COMFORTABLE-AMI (comparison of biolimus eluted from an erodible stent coating with bare metal stents in acute ST-elevation myocardial infarction) trials. JACC Cardiovasc Interv. 2014;7:55–63.PubMed
13.
Zurück zum Zitat Palmerini T, Benedetto U, Biondi-Zoccai G, Della Riva D, Bacchi-Reggiani L, Smits PC, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.PubMed Palmerini T, Benedetto U, Biondi-Zoccai G, Della Riva D, Bacchi-Reggiani L, Smits PC, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.PubMed
14.
Zurück zum Zitat Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet (London, England). 2001;357:1385–90. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet (London, England). 2001;357:1385–90.
15.
Zurück zum Zitat Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.PubMed Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.PubMed
16.
Zurück zum Zitat Yang JH, Hahn J-Y, Song YB, Choi S-H, Choi J-H, Lee SH, et al. Angiotensin receptor blocker in patients with ST segment elevation myocardial infarction with preserved left ventricular systolic function: prospective cohort study. BMJ (Clin Res ed). 2014;349:g6650. Yang JH, Hahn J-Y, Song YB, Choi S-H, Choi J-H, Lee SH, et al. Angiotensin receptor blocker in patients with ST segment elevation myocardial infarction with preserved left ventricular systolic function: prospective cohort study. BMJ (Clin Res ed). 2014;349:g6650.
17.
Zurück zum Zitat Flaherty ML, Tao H, Haverbusch M, Sekar P, Kleindorfer D, Kissela B, et al. Warfarin use leads to larger intracerebral hematomas. Neurology. 2008;71:1084–9.PubMedPubMedCentral Flaherty ML, Tao H, Haverbusch M, Sekar P, Kleindorfer D, Kissela B, et al. Warfarin use leads to larger intracerebral hematomas. Neurology. 2008;71:1084–9.PubMedPubMedCentral
18.
Zurück zum Zitat Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63:1059–64.PubMed Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63:1059–64.PubMed
19.
Zurück zum Zitat Zubkov AY, Mandrekar JN, Claassen DO, Manno EM, Wijdicks EFM, Rabinstein AA. Predictors of outcome in warfarin-related intracerebral hemorrhage. Arch Neurol. 2008;65:1320–5.PubMed Zubkov AY, Mandrekar JN, Claassen DO, Manno EM, Wijdicks EFM, Rabinstein AA. Predictors of outcome in warfarin-related intracerebral hemorrhage. Arch Neurol. 2008;65:1320–5.PubMed
20.
Zurück zum Zitat Cucchiara B, Messe S, Sansing L, Kasner S, Lyden P. Hematoma growth in oral anticoagulant related intracerebral hemorrhage. Stroke. 2008;39:2993–6.PubMed Cucchiara B, Messe S, Sansing L, Kasner S, Lyden P. Hematoma growth in oral anticoagulant related intracerebral hemorrhage. Stroke. 2008;39:2993–6.PubMed
21.
Zurück zum Zitat Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;2018:49. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;2018:49.
22.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Controll Clin Trials. 1986;7:177–88 (Epub 1986/09/01). DerSimonian R, Laird N. Meta-analysis in clinical trials. Controll Clin Trials. 1986;7:177–88 (Epub 1986/09/01).
23.
Zurück zum Zitat Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60 (Epub 2003/09/06).PubMedPubMedCentral Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60 (Epub 2003/09/06).PubMedPubMedCentral
24.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34 (Epub 1997/10/06).PubMedPubMedCentral Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34 (Epub 1997/10/06).PubMedPubMedCentral
25.
Zurück zum Zitat Kereiakes DJ, Yeh RW, Massaro JM, Driscoll-Shempp P, Cutlip DE, Steg PG, et al. Antiplatelet therapy duration following bare metal or drug-eluting coronary stents: the dual antiplatelet therapy randomized clinical trial. JAMA. 2015;313:1113–21.PubMedPubMedCentral Kereiakes DJ, Yeh RW, Massaro JM, Driscoll-Shempp P, Cutlip DE, Steg PG, et al. Antiplatelet therapy duration following bare metal or drug-eluting coronary stents: the dual antiplatelet therapy randomized clinical trial. JAMA. 2015;313:1113–21.PubMedPubMedCentral
26.
Zurück zum Zitat Valgimigli M, Campo G, Monti M, Vranckx P, Percoco G, Tumscitz C, et al. Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting: a randomized multicenter trial. Circulation. 2012;125:2015–26.PubMed Valgimigli M, Campo G, Monti M, Vranckx P, Percoco G, Tumscitz C, et al. Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting: a randomized multicenter trial. Circulation. 2012;125:2015–26.PubMed
27.
Zurück zum Zitat Han Y, Li Y, Wang S, Jing Q, Wang Z, Wang D, Shu Q, Tang X. Cilostazol in addition to aspirin and clopidogrel improves long-term outcomes after percutaneous coronary intervention in patients with acute coronary syndromes: a randomized, controlled study. Am Heart J. 2009;157:733–9.PubMed Han Y, Li Y, Wang S, Jing Q, Wang Z, Wang D, Shu Q, Tang X. Cilostazol in addition to aspirin and clopidogrel improves long-term outcomes after percutaneous coronary intervention in patients with acute coronary syndromes: a randomized, controlled study. Am Heart J. 2009;157:733–9.PubMed
28.
Zurück zum Zitat Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15 (Epub 2007/11/06).PubMed Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15 (Epub 2007/11/06).PubMed
29.
Zurück zum Zitat Steinhubl SR, Berger PB, Mann JT, Fry ET, DeLago A, Wilmer C, Topol EJ. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002;288:2411–20.PubMed Steinhubl SR, Berger PB, Mann JT, Fry ET, DeLago A, Wilmer C, Topol EJ. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002;288:2411–20.PubMed
30.
Zurück zum Zitat Zannad F, Anker SD, Byra WM, Cleland JGF, Fu M, Gheorghiade M, et al. Rivaroxaban in patients with heart failure, sinus rhythm, and coronary disease. N Engl J Med. 2018;379:1332–42.PubMed Zannad F, Anker SD, Byra WM, Cleland JGF, Fu M, Gheorghiade M, et al. Rivaroxaban in patients with heart failure, sinus rhythm, and coronary disease. N Engl J Med. 2018;379:1332–42.PubMed
31.
Zurück zum Zitat Bhatt DL, Fox KA, Hacke W, Berger PB, Black HR, Boden WE, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354:1706–17 (Epub 2006/03/15).PubMed Bhatt DL, Fox KA, Hacke W, Berger PB, Black HR, Boden WE, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354:1706–17 (Epub 2006/03/15).PubMed
32.
Zurück zum Zitat Fiore LD, Ezekowitz MD, Brophy MT, Lu D, Sacco J, Peduzzi P. Department of veterans affairs cooperative studies program clinical trial comparing combined warfarin and aspirin with aspirin alone in survivors of acute myocardial infarction: primary results of the CHAMP study. Circulation. 2002;105:557–63.PubMed Fiore LD, Ezekowitz MD, Brophy MT, Lu D, Sacco J, Peduzzi P. Department of veterans affairs cooperative studies program clinical trial comparing combined warfarin and aspirin with aspirin alone in survivors of acute myocardial infarction: primary results of the CHAMP study. Circulation. 2002;105:557–63.PubMed
33.
Zurück zum Zitat Sposato LA, Hilz MJ, Aspberg S, Murthy SB, Bahit MC, Hsieh CY, Sheppard MN, Scheitz JF, World Stroke Organisation B, Heart Task F. Post-stroke cardiovascular complications and neurogenic cardiac injury: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76:2768–85 (Epub 2020/12/05).PubMed Sposato LA, Hilz MJ, Aspberg S, Murthy SB, Bahit MC, Hsieh CY, Sheppard MN, Scheitz JF, World Stroke Organisation B, Heart Task F. Post-stroke cardiovascular complications and neurogenic cardiac injury: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76:2768–85 (Epub 2020/12/05).PubMed
34.
Zurück zum Zitat Connolly S, Pogue J, Hart R, Pfeffer M, Hohnloser S, Chrolavicius S, Pfeffer M, Hohnloser S, Yusuf S. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet. 2006;367:1903–12 (Epub 2006/06/13).PubMed Connolly S, Pogue J, Hart R, Pfeffer M, Hohnloser S, Chrolavicius S, Pfeffer M, Hohnloser S, Yusuf S. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet. 2006;367:1903–12 (Epub 2006/06/13).PubMed
35.
Zurück zum Zitat Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146:857–67.PubMed Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146:857–67.PubMed
37.
Zurück zum Zitat Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378:2191–201.PubMed Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378:2191–201.PubMed
38.
Zurück zum Zitat Diener H-C, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med. 2019;380:1906–17.PubMed Diener H-C, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med. 2019;380:1906–17.PubMed
39.
Zurück zum Zitat Turpie AGG, Esmon C. Venous and arterial thrombosis–pathogenesis and the rationale for anticoagulation. Thromb Haemost. 2011;105:586–96.PubMed Turpie AGG, Esmon C. Venous and arterial thrombosis–pathogenesis and the rationale for anticoagulation. Thromb Haemost. 2011;105:586–96.PubMed
40.
Zurück zum Zitat Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST Trial of Org 10172 in acute stroke treatment. Stroke. 1993;24:35–41 (Epub 1993/01/01).PubMed Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST Trial of Org 10172 in acute stroke treatment. Stroke. 1993;24:35–41 (Epub 1993/01/01).PubMed
41.
Zurück zum Zitat Golwala HB, Cannon CP, Steg PG, Doros G, Qamar A, Ellis SG, Oldgren J, Ten Berg JM, Kimura T, Hohnloser SH, et al. Safety and efficacy of dual vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2018;39(19):1726–36.PubMedPubMedCentral Golwala HB, Cannon CP, Steg PG, Doros G, Qamar A, Ellis SG, Oldgren J, Ten Berg JM, Kimura T, Hohnloser SH, et al. Safety and efficacy of dual vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2018;39(19):1726–36.PubMedPubMedCentral
42.
Zurück zum Zitat Gragnano F, Calabrò P, Valgimigli M. Is triple antithrombotic therapy, or rather its duration and composition, the true culprit for the excess of bleeding events observed in patients with atrial fibrillation undergoing coronary intervention? Eur Heart J. 2019;40(2):216–7.PubMed Gragnano F, Calabrò P, Valgimigli M. Is triple antithrombotic therapy, or rather its duration and composition, the true culprit for the excess of bleeding events observed in patients with atrial fibrillation undergoing coronary intervention? Eur Heart J. 2019;40(2):216–7.PubMed
43.
Zurück zum Zitat Giustino G, Redfors B, Kirtane AJ, Mehran R, Dangas GD, Witzenbichler B, et al. Platelet reactivity and risk of ischemic stroke after coronary drug-eluting stent implantation: from the ADAPT-DES study. JACC Cardiovasc Interv. 2018;11:1277–86.PubMed Giustino G, Redfors B, Kirtane AJ, Mehran R, Dangas GD, Witzenbichler B, et al. Platelet reactivity and risk of ischemic stroke after coronary drug-eluting stent implantation: from the ADAPT-DES study. JACC Cardiovasc Interv. 2018;11:1277–86.PubMed
Metadaten
Titel
Stroke of antiplatelet and anticoagulant therapy in patients with coronary artery disease: a meta-analysis of randomized controlled trials
verfasst von
Qiao Yu Shao
Zhi Jian Wang
Xiao Teng Ma
Xu Ze Lin
Liu Pan
Yu Jie Zhou
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2021
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02384-w

Weitere Artikel der Ausgabe 1/2021

BMC Cardiovascular Disorders 1/2021 Zur Ausgabe

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Dihydropyridin-Kalziumantagonisten können auf die Nieren gehen

30.04.2024 Hypertonie Nachrichten

Im Vergleich zu anderen Blutdrucksenkern sind Kalziumantagonisten vom Diyhdropyridin-Typ mit einem erhöhten Risiko für eine Mikroalbuminurie und in Abwesenheit eines RAS-Blockers auch für ein terminales Nierenversagen verbunden.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.