Skip to main content
Erschienen in: Immunologic Research 1-3/2009

01.03.2009

Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage

verfasst von: Janet Mans, Li Zhi, Maria Jamela R. Revilleza, Lee Smith, Alec Redwood, Kannan Natarajan, David H. Margulies

Erschienen in: Immunologic Research | Ausgabe 1-3/2009

Einloggen, um Zugang zu erhalten

Abstract

The mouse cytomegalovirus (CMV), a β-herpesvirus, exploits its large (~230 kb) double-stranded DNA genome for both essential and non-essential functions. Among the non-essential functions are those that offer the virus a selective advantage in eluding both the innate and adaptive immune responses of the host. Several non-essential genes of MCMV are thought to encode MHC-I-like genes and to function as immunoevasins. To understand further the evolution and function of these viral MHC-I (MHC-Iv) molecules, X-ray structures of several of them have been determined, not only confirming the overall MHC-I-like structure, but also elucidating features unique to this family. Future efforts promise to clarify the nature of the molecular ligands of these molecules, their evolution in the context of the adapting immune response of the murine host, and by analogy the evolution of the host response to human CMV as well.
Literatur
1.
Zurück zum Zitat Mans J. Characterization of mouse cytomegalovirus MHC-I homologs. Johannesburg: University of the Witwatersrand; 2008. Mans J. Characterization of mouse cytomegalovirus MHC-I homologs. Johannesburg: University of the Witwatersrand; 2008.
2.
Zurück zum Zitat Steiner I, Spivack JG, Deshmane SL, Ace CI, Preston CM, Fraser NW. A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol. 1990;64:1630–8.PubMed Steiner I, Spivack JG, Deshmane SL, Ace CI, Preston CM, Fraser NW. A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol. 1990;64:1630–8.PubMed
3.
Zurück zum Zitat Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124:767–82.PubMedCrossRef Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124:767–82.PubMedCrossRef
4.
Zurück zum Zitat Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. Viral subversion of the immune system. Annu Rev Immunol. 2000;18:861–926.PubMedCrossRef Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. Viral subversion of the immune system. Annu Rev Immunol. 2000;18:861–926.PubMedCrossRef
5.
Zurück zum Zitat Stern-Ginossar N, et al. Host immune system gene targeting by a viral miRNA. Science. 2007;317:376–81.PubMedCrossRef Stern-Ginossar N, et al. Host immune system gene targeting by a viral miRNA. Science. 2007;317:376–81.PubMedCrossRef
6.
Zurück zum Zitat Stern-Ginossar N, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol. 2008;9:1065–73.PubMedCrossRef Stern-Ginossar N, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol. 2008;9:1065–73.PubMedCrossRef
7.
Zurück zum Zitat Sissons JG, Carmichael AJ, McKinney N, Sinclair JH, Wills MR. Human cytomegalovirus and immunopathology. Springer Semin Immunopathol. 2002;24:169–85.PubMedCrossRef Sissons JG, Carmichael AJ, McKinney N, Sinclair JH, Wills MR. Human cytomegalovirus and immunopathology. Springer Semin Immunopathol. 2002;24:169–85.PubMedCrossRef
8.
9.
Zurück zum Zitat Rawlinson WD, Farrell HE, Barrell BG. Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol. 1996;70:8833–49.PubMed Rawlinson WD, Farrell HE, Barrell BG. Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol. 1996;70:8833–49.PubMed
10.
Zurück zum Zitat Cretney E, Degli-Esposti MA, Densley EH, Farrell HE, Davis-Poynter NJ, Smyth MJ. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J Exp Med. 1999;190:435–44.PubMedCrossRef Cretney E, Degli-Esposti MA, Densley EH, Farrell HE, Davis-Poynter NJ, Smyth MJ. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J Exp Med. 1999;190:435–44.PubMedCrossRef
11.
Zurück zum Zitat Vink C, Beuken E, Bruggeman CA. Complete DNA sequence of the rat cytomegalovirus genome. J Virol. 2000;74:7656–65.PubMedCrossRef Vink C, Beuken E, Bruggeman CA. Complete DNA sequence of the rat cytomegalovirus genome. J Virol. 2000;74:7656–65.PubMedCrossRef
12.
Zurück zum Zitat Smith HR, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA. 2002;99:8826–31.PubMed Smith HR, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA. 2002;99:8826–31.PubMed
13.
Zurück zum Zitat Lodoen MB, Lanier LL. Viral modulation of NK cell immunity. Nat Rev Microbiol. 2005;3:59–69.PubMedCrossRef Lodoen MB, Lanier LL. Viral modulation of NK cell immunity. Nat Rev Microbiol. 2005;3:59–69.PubMedCrossRef
14.
Zurück zum Zitat Pinto AK, Hill AB. Viral interference with antigen presentation to CD8+T cells: lessons from cytomegalovirus. Viral Immunol. 2005;18:434–44.PubMedCrossRef Pinto AK, Hill AB. Viral interference with antigen presentation to CD8+T cells: lessons from cytomegalovirus. Viral Immunol. 2005;18:434–44.PubMedCrossRef
15.
Zurück zum Zitat Farrell HE, et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature. 1997;386:510–4.PubMedCrossRef Farrell HE, et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature. 1997;386:510–4.PubMedCrossRef
16.
Zurück zum Zitat Kubota A, Kubota S, Farrell HE, Davis-Poynter N, Takei F. Inhibition of NK cells by murine CMV-encoded class I MHC homologue m144. Cell Immunol. 1999;191:145–51.PubMedCrossRef Kubota A, Kubota S, Farrell HE, Davis-Poynter N, Takei F. Inhibition of NK cells by murine CMV-encoded class I MHC homologue m144. Cell Immunol. 1999;191:145–51.PubMedCrossRef
17.
Zurück zum Zitat Hasan M, et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol. 2005;79:2920–30.PubMedCrossRef Hasan M, et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol. 2005;79:2920–30.PubMedCrossRef
18.
Zurück zum Zitat Krmpotic A, et al. NK cell activation through the NKG2D ligand MULT–1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med. 2005;201:211–20.PubMedCrossRef Krmpotic A, et al. NK cell activation through the NKG2D ligand MULT–1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med. 2005;201:211–20.PubMedCrossRef
19.
Zurück zum Zitat Lodoen MB, Abenes G, Umamoto S, Houchins JP, Liu F, Lanier LL. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med. 2004;200:1075–81.PubMedCrossRef Lodoen MB, Abenes G, Umamoto S, Houchins JP, Liu F, Lanier LL. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med. 2004;200:1075–81.PubMedCrossRef
20.
Zurück zum Zitat Lodoen M, et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med. 2003;197:1245–53.PubMedCrossRef Lodoen M, et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med. 2003;197:1245–53.PubMedCrossRef
21.
Zurück zum Zitat Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science. 2002;296:1323–6.PubMedCrossRef Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science. 2002;296:1323–6.PubMedCrossRef
22.
Zurück zum Zitat Cerwenka A, Lanier LL. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens. 2003;61:335–43.PubMedCrossRef Cerwenka A, Lanier LL. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens. 2003;61:335–43.PubMedCrossRef
23.
Zurück zum Zitat Li P, McDermott G, Strong RK. Crystal structures of RAE–1beta and its complex with the activating immunoreceptor NKG2D. Immunity. 2002;16:77–86.PubMedCrossRef Li P, McDermott G, Strong RK. Crystal structures of RAE–1beta and its complex with the activating immunoreceptor NKG2D. Immunity. 2002;16:77–86.PubMedCrossRef
24.
Zurück zum Zitat Lenac T, et al. The herpesviral Fc receptor fcr–1 down-regulates the NKG2D ligands MULT-1 and H60. J Exp Med. 2006;203:1843–50.PubMedCrossRef Lenac T, et al. The herpesviral Fc receptor fcr–1 down-regulates the NKG2D ligands MULT-1 and H60. J Exp Med. 2006;203:1843–50.PubMedCrossRef
25.
Zurück zum Zitat Voigt V, et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci USA. 2003;100:13483–8.PubMedCrossRef Voigt V, et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci USA. 2003;100:13483–8.PubMedCrossRef
26.
Zurück zum Zitat Kleijnen MF, et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 1997;16:685–94.PubMedCrossRef Kleijnen MF, et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 1997;16:685–94.PubMedCrossRef
27.
Zurück zum Zitat Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med. 1999;190:1285–96.PubMedCrossRef Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med. 1999;190:1285–96.PubMedCrossRef
28.
Zurück zum Zitat Del Val M, Munch K, Reddehase MJ, Koszinowski UH. Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell. 1989;58:305–15.PubMedCrossRef Del Val M, Munch K, Reddehase MJ, Koszinowski UH. Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell. 1989;58:305–15.PubMedCrossRef
29.
Zurück zum Zitat Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature. 1989;337:651–3.PubMedCrossRef Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature. 1989;337:651–3.PubMedCrossRef
30.
Zurück zum Zitat del Val M, et al. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med. 1992;176:729–38.PubMedCrossRef del Val M, et al. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med. 1992;176:729–38.PubMedCrossRef
31.
Zurück zum Zitat Thale R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH. Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol. 1995;69:6098–105.PubMed Thale R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH. Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol. 1995;69:6098–105.PubMed
32.
Zurück zum Zitat Ziegler H, et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity. 1997;6:57–66.PubMedCrossRef Ziegler H, et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity. 1997;6:57–66.PubMedCrossRef
33.
Zurück zum Zitat Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J. 2000;19:870–81.PubMedCrossRef Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J. 2000;19:870–81.PubMedCrossRef
34.
Zurück zum Zitat Pinto AK, Munks MW, Koszinowski UH, Hill AB. Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol. 2006;177:3225–34.PubMed Pinto AK, Munks MW, Koszinowski UH, Hill AB. Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol. 2006;177:3225–34.PubMed
35.
Zurück zum Zitat Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med. 2001;194:967–78.PubMedCrossRef Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med. 2001;194:967–78.PubMedCrossRef
36.
Zurück zum Zitat Lilley BN, Ploegh HL. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev. 2005;207:126–44.PubMedCrossRef Lilley BN, Ploegh HL. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev. 2005;207:126–44.PubMedCrossRef
37.
Zurück zum Zitat Holtappels R, et al. Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol. 2006;80:7613–24.PubMedCrossRef Holtappels R, et al. Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol. 2006;80:7613–24.PubMedCrossRef
38.
Zurück zum Zitat Gold MC, et al. Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol. 2004;172:6944–53.PubMed Gold MC, et al. Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol. 2004;172:6944–53.PubMed
39.
Zurück zum Zitat Lu X, Pinto AK, Kelly AM, Cho KS, Hill AB. Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J Virol. 2006;80:4200–2.PubMedCrossRef Lu X, Pinto AK, Kelly AM, Cho KS, Hill AB. Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J Virol. 2006;80:4200–2.PubMedCrossRef
40.
Zurück zum Zitat Fleming P, et al. The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J Virol. 1999;73:6800–9.PubMed Fleming P, et al. The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J Virol. 1999;73:6800–9.PubMed
41.
Zurück zum Zitat Davis-Poynter NJ, et al. Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol. 1997;71:1521–9.PubMed Davis-Poynter NJ, et al. Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol. 1997;71:1521–9.PubMed
42.
Zurück zum Zitat Loewendorf A, Kruger C, Borst EM, Wagner M, Just U, Messerle M. Identification of a mouse cytomegalovirus gene selectively targeting CD86 expression on antigen-presenting cells. J Virol. 2004;78:13062–71.PubMedCrossRef Loewendorf A, Kruger C, Borst EM, Wagner M, Just U, Messerle M. Identification of a mouse cytomegalovirus gene selectively targeting CD86 expression on antigen-presenting cells. J Virol. 2004;78:13062–71.PubMedCrossRef
43.
Zurück zum Zitat Nomura M, et al. Mechanism of host cell protection from complement in murine cytomegalovirus (CMV) infection: identification of a CMV-responsive element in the CD46 promoter region. Eur J Immunol. 2002;32:2954–64.PubMedCrossRef Nomura M, et al. Mechanism of host cell protection from complement in murine cytomegalovirus (CMV) infection: identification of a CMV-responsive element in the CD46 promoter region. Eur J Immunol. 2002;32:2954–64.PubMedCrossRef
44.
Zurück zum Zitat Menard C, et al. Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol. 2003;77:5557–70.PubMedCrossRef Menard C, et al. Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol. 2003;77:5557–70.PubMedCrossRef
45.
Zurück zum Zitat Natarajan K, et al. Crystal structure of the murine cytomegalovirus MHC-I homolog m144. J Mol Biol. 2006;358:157–71.PubMedCrossRef Natarajan K, et al. Crystal structure of the murine cytomegalovirus MHC-I homolog m144. J Mol Biol. 2006;358:157–71.PubMedCrossRef
46.
Zurück zum Zitat Mans J, et al. Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153. J Biol Chem. 2007;282:35247–58.PubMedCrossRef Mans J, et al. Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153. J Biol Chem. 2007;282:35247–58.PubMedCrossRef
47.
Zurück zum Zitat Adams EJ, et al. Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci USA. 2007;104:10128–33.PubMedCrossRef Adams EJ, et al. Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci USA. 2007;104:10128–33.PubMedCrossRef
48.
Zurück zum Zitat Yang Z, Bjorkman PJ. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci USA. 2008;105:10095–100.PubMedCrossRef Yang Z, Bjorkman PJ. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci USA. 2008;105:10095–100.PubMedCrossRef
49.
Zurück zum Zitat Allen H, Fraser J, Flyer D, Calvin S, Flavell R. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc Natl Acad Sci USA. 1986;83:7447–51.PubMedCrossRef Allen H, Fraser J, Flyer D, Calvin S, Flavell R. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc Natl Acad Sci USA. 1986;83:7447–51.PubMedCrossRef
50.
Zurück zum Zitat Dunker AK, Uversky VN. Signal transduction via unstructured protein conduits. Nat Chem Biol. 2008;4:229–30.PubMedCrossRef Dunker AK, Uversky VN. Signal transduction via unstructured protein conduits. Nat Chem Biol. 2008;4:229–30.PubMedCrossRef
51.
Zurück zum Zitat Khan AN, Lewis PN. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem. 2005;280:36073–8.PubMedCrossRef Khan AN, Lewis PN. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem. 2005;280:36073–8.PubMedCrossRef
52.
Zurück zum Zitat Verkhivker GM. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex. Proteins. 2005;58:706–16.PubMedCrossRef Verkhivker GM. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex. Proteins. 2005;58:706–16.PubMedCrossRef
53.
Zurück zum Zitat Chapman TL, Bjorkman PJ. Characterization of a murine cytomegalovirus class I major histocompatibility complex (MHC) homolog: comparison to MHC molecules and to the human cytomegalovirus MHC homolog. J Virol. 1998;72:460–6.PubMed Chapman TL, Bjorkman PJ. Characterization of a murine cytomegalovirus class I major histocompatibility complex (MHC) homolog: comparison to MHC molecules and to the human cytomegalovirus MHC homolog. J Virol. 1998;72:460–6.PubMed
54.
Zurück zum Zitat French AR, et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity. 2004;20:747–56.PubMedCrossRef French AR, et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity. 2004;20:747–56.PubMedCrossRef
55.
Zurück zum Zitat DeLano WL. The PyMOL molecular graphics system. San Carlos, CA, USA: DeLano Scientific LLC; 2002. DeLano WL. The PyMOL molecular graphics system. San Carlos, CA, USA: DeLano Scientific LLC; 2002.
Metadaten
Titel
Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage
verfasst von
Janet Mans
Li Zhi
Maria Jamela R. Revilleza
Lee Smith
Alec Redwood
Kannan Natarajan
David H. Margulies
Publikationsdatum
01.03.2009
Verlag
Humana Press Inc
Erschienen in
Immunologic Research / Ausgabe 1-3/2009
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-008-8081-6

Weitere Artikel der Ausgabe 1-3/2009

Immunologic Research 1-3/2009 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.