Skip to main content
Erschienen in: Inflammation 1/2023

01.09.2022 | Review

Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein

verfasst von: Yi-Yang Pan, Ying Deng, Shuai Su, Jiu-Heng Yin, Yi-Hui Chen, Liu-Can Wang, Li-Hua Sun, Wei-Dong Xiao, Guang-Sheng Du

Erschienen in: Inflammation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.
Literatur
1.
Zurück zum Zitat Oshima, T., and H. Miwa. 2016. Gastrointestinal mucosal barrier function and diseases. Journal of Gastroenterology 51: 768–778.PubMedCrossRef Oshima, T., and H. Miwa. 2016. Gastrointestinal mucosal barrier function and diseases. Journal of Gastroenterology 51: 768–778.PubMedCrossRef
2.
Zurück zum Zitat Günzel, D., and M. Fromm. 2012. Claudins and other tight junction proteins. Comprehensive Physiology 2: 1819–1852.PubMedCrossRef Günzel, D., and M. Fromm. 2012. Claudins and other tight junction proteins. Comprehensive Physiology 2: 1819–1852.PubMedCrossRef
4.
Zurück zum Zitat Tsukita, S., H. Tanaka, and A. Tamura. 2019. The Claudins: from tight junctions to biological systems. Trends in Biochemical Sciences 44: 141–152.PubMedCrossRef Tsukita, S., H. Tanaka, and A. Tamura. 2019. The Claudins: from tight junctions to biological systems. Trends in Biochemical Sciences 44: 141–152.PubMedCrossRef
5.
Zurück zum Zitat Hering, N.A., M. Fromm, and J.D. Schulzke. 2012. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. The Journal of Physiology 590: 1035–1044.PubMedPubMedCentralCrossRef Hering, N.A., M. Fromm, and J.D. Schulzke. 2012. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. The Journal of Physiology 590: 1035–1044.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Capaldo, C.T., and A. Nusrat. 2015. Claudin switching: physiological plasticity of the tight junction. Seminars in Cell & Developmental Biology 42: 22–29.CrossRef Capaldo, C.T., and A. Nusrat. 2015. Claudin switching: physiological plasticity of the tight junction. Seminars in Cell & Developmental Biology 42: 22–29.CrossRef
7.
Zurück zum Zitat Garcia-Hernandez, V., M. Quiros, and A. Nusrat. 2017. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation: intestinal epithelial claudins. Annals of the New York Academy of Sciences 1397: 66–79.PubMedPubMedCentralCrossRef Garcia-Hernandez, V., M. Quiros, and A. Nusrat. 2017. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation: intestinal epithelial claudins. Annals of the New York Academy of Sciences 1397: 66–79.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Mineta, K., Y. Yamamoto, Y. Yamazaki, et al. 2011. Predicted expansion of the claudin multigene family. FEBS Letters 585: 606–612.PubMedCrossRef Mineta, K., Y. Yamamoto, Y. Yamazaki, et al. 2011. Predicted expansion of the claudin multigene family. FEBS Letters 585: 606–612.PubMedCrossRef
9.
Zurück zum Zitat Fromm, M., J. Piontek, R. Rosenthal, et al. 2017. Tight junctions of the proximal tubule and their channel proteins. Pflugers Archiv: European Journal of Physiology 469: 877–887.PubMedCrossRef Fromm, M., J. Piontek, R. Rosenthal, et al. 2017. Tight junctions of the proximal tubule and their channel proteins. Pflugers Archiv: European Journal of Physiology 469: 877–887.PubMedCrossRef
10.
Zurück zum Zitat Wittchen, E.S., J. Haskins, and B.R. Stevenson. 1999. Protein interactions at the tight junction. Journal of Biological Chemistry 274: 35179–35185.PubMedCrossRef Wittchen, E.S., J. Haskins, and B.R. Stevenson. 1999. Protein interactions at the tight junction. Journal of Biological Chemistry 274: 35179–35185.PubMedCrossRef
11.
Zurück zum Zitat Krug, S.M., S. Amasheh, J.F. Richter, et al. 2009. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Molecular Biology of the Cell 20: 3713–3724.PubMedPubMedCentralCrossRef Krug, S.M., S. Amasheh, J.F. Richter, et al. 2009. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Molecular Biology of the Cell 20: 3713–3724.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Al-Sadi, R., K. Khatib, S. Guo, et al. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology 300: G1054-1064.PubMedPubMedCentralCrossRef Al-Sadi, R., K. Khatib, S. Guo, et al. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology 300: G1054-1064.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Raleigh, D.R., A.M. Marchiando, Y. Zhang, et al. 2010. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell 21: 1200–1213.PubMedPubMedCentralCrossRef Raleigh, D.R., A.M. Marchiando, Y. Zhang, et al. 2010. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell 21: 1200–1213.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Steed, E., A. Elbediwy, B. Vacca, et al. 2014. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. Journal of Cell Biology 204: 821–838.PubMedPubMedCentralCrossRef Steed, E., A. Elbediwy, B. Vacca, et al. 2014. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. Journal of Cell Biology 204: 821–838.PubMedPubMedCentralCrossRef
15.
16.
Zurück zum Zitat Bazzoni, G., O.M. Martinez-Estrada, F. Orsenigo, et al. 2000. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. Journal of Biological Chemistry 275: 20520–20526.PubMedCrossRef Bazzoni, G., O.M. Martinez-Estrada, F. Orsenigo, et al. 2000. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. Journal of Biological Chemistry 275: 20520–20526.PubMedCrossRef
17.
Zurück zum Zitat Otani, T., T.P. Nguyen, S. Tokuda, et al. 2019. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. Journal of Cell Biology 218: 3372–3396.PubMedPubMedCentralCrossRef Otani, T., T.P. Nguyen, S. Tokuda, et al. 2019. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. Journal of Cell Biology 218: 3372–3396.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Monteiro, A.C., R. Sumagin, C.R. Rankin, et al. 2013. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Molecular Biology of the Cell 24: 2849–2860.PubMedPubMedCentralCrossRef Monteiro, A.C., R. Sumagin, C.R. Rankin, et al. 2013. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Molecular Biology of the Cell 24: 2849–2860.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Umeda, K., J. Ikenouchi, S. Katahira-Tayama, et al. 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126: 741–754.PubMedCrossRef Umeda, K., J. Ikenouchi, S. Katahira-Tayama, et al. 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126: 741–754.PubMedCrossRef
20.
Zurück zum Zitat Hamazaki, Y., M. Itoh, H. Sasaki, et al. 2002. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. Journal of Biological Chemistry 277: 455–461.PubMedCrossRef Hamazaki, Y., M. Itoh, H. Sasaki, et al. 2002. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. Journal of Biological Chemistry 277: 455–461.PubMedCrossRef
21.
Zurück zum Zitat Chen, Y., D.C. Gershlick, S.Y. Park, et al. 2017. Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. Journal of Cell Biology 216: 4141–4151.PubMedPubMedCentralCrossRef Chen, Y., D.C. Gershlick, S.Y. Park, et al. 2017. Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. Journal of Cell Biology 216: 4141–4151.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Keller, P., D. Toomre, E. Díaz, et al. 2001. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature cell biology 3: 140–149.PubMedCrossRef Keller, P., D. Toomre, E. Díaz, et al. 2001. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature cell biology 3: 140–149.PubMedCrossRef
23.
Zurück zum Zitat Stalder, D., and D.C. Gershlick. 2020. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Seminars in Cell & Developmental Biology 107: 112–125.CrossRef Stalder, D., and D.C. Gershlick. 2020. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Seminars in Cell & Developmental Biology 107: 112–125.CrossRef
24.
25.
Zurück zum Zitat Robinson, M.S. 2015. Forty years of clathrin-coated vesicles: Forty years of clathrin-coated vesicles. Traffic 16: 1210–1238.PubMedCrossRef Robinson, M.S. 2015. Forty years of clathrin-coated vesicles: Forty years of clathrin-coated vesicles. Traffic 16: 1210–1238.PubMedCrossRef
26.
Zurück zum Zitat Aguilar-Aragon, M., G. Fletcher, and B.J. Thompson. 2020. The cytoskeletal motor proteins dynein and MyoV direct apical transport of crumbs. Developmental Biology 459: 126–137.PubMedCrossRef Aguilar-Aragon, M., G. Fletcher, and B.J. Thompson. 2020. The cytoskeletal motor proteins dynein and MyoV direct apical transport of crumbs. Developmental Biology 459: 126–137.PubMedCrossRef
28.
Zurück zum Zitat Makowski, S.L., R.S. Kuna, and S.J. Field. 2020. Induction of membrane curvature by proteins involved in Golgi trafficking. Advances in Biological Regulation 75: 100661.PubMedCrossRef Makowski, S.L., R.S. Kuna, and S.J. Field. 2020. Induction of membrane curvature by proteins involved in Golgi trafficking. Advances in Biological Regulation 75: 100661.PubMedCrossRef
29.
Zurück zum Zitat Kaksonen, M., and A. Roux. 2018. Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology 19: 313–326.PubMedCrossRef Kaksonen, M., and A. Roux. 2018. Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology 19: 313–326.PubMedCrossRef
30.
Zurück zum Zitat Beacham, G.M., E.A. Partlow, and G. Hollopeter. 2019. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 20: 741–751.PubMedPubMedCentralCrossRef Beacham, G.M., E.A. Partlow, and G. Hollopeter. 2019. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 20: 741–751.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Gravotta, D., J.M. Carvajal-Gonzalez, R. Mattera, et al. 2012. The clathrin adaptor AP-1A mediates basolateral polarity. Developmental Cell 22: 811–823.PubMedPubMedCentralCrossRef Gravotta, D., J.M. Carvajal-Gonzalez, R. Mattera, et al. 2012. The clathrin adaptor AP-1A mediates basolateral polarity. Developmental Cell 22: 811–823.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kural, C., S.K. Tacheva-Grigorova, S. Boulant, et al. 2012. Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. Cell Reports 2: 1111–1119.PubMedCrossRef Kural, C., S.K. Tacheva-Grigorova, S. Boulant, et al. 2012. Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. Cell Reports 2: 1111–1119.PubMedCrossRef
33.
Zurück zum Zitat Traub, L.M. 2005. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochimica et Biophysica Acta 1744: 415–437.PubMedCrossRef Traub, L.M. 2005. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochimica et Biophysica Acta 1744: 415–437.PubMedCrossRef
35.
Zurück zum Zitat Guna, A., and R.S. Hegde. 2018. Transmembrane domain recognition during membrane protein biogenesis and quality control. Current Biology 28: R498–R511.PubMedCrossRef Guna, A., and R.S. Hegde. 2018. Transmembrane domain recognition during membrane protein biogenesis and quality control. Current Biology 28: R498–R511.PubMedCrossRef
36.
Zurück zum Zitat Glotfelty, L.G., A. Zahs, C. Iancu, et al. 2014. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. American Journal of Physiology-Cell Physiology 307: C245-254.PubMedPubMedCentralCrossRef Glotfelty, L.G., A. Zahs, C. Iancu, et al. 2014. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. American Journal of Physiology-Cell Physiology 307: C245-254.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Carter, A.P., A.G. Diamant, and L. Urnavicius. 2016. How dynein and dynactin transport cargos: a structural perspective. Current Opinion in Structural Biology 37: 62–70.PubMedCrossRef Carter, A.P., A.G. Diamant, and L. Urnavicius. 2016. How dynein and dynactin transport cargos: a structural perspective. Current Opinion in Structural Biology 37: 62–70.PubMedCrossRef
38.
Zurück zum Zitat Vaughan, K.T. 2005. Microtubule plus ends, motors, and traffic of Golgi membranes. Biochimica et Biophysica Acta 1744: 316–324.PubMedCrossRef Vaughan, K.T. 2005. Microtubule plus ends, motors, and traffic of Golgi membranes. Biochimica et Biophysica Acta 1744: 316–324.PubMedCrossRef
39.
Zurück zum Zitat Short, B., C. Preisinger, J. Schaletzky, et al. 2002. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Current Biology 12: 1792–1795.PubMedCrossRef Short, B., C. Preisinger, J. Schaletzky, et al. 2002. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Current Biology 12: 1792–1795.PubMedCrossRef
40.
Zurück zum Zitat Splinter, D., D.S. Razafsky, M.A. Schlager, et al. 2012. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular Biology of the Cell 23: 4226–4241.PubMedPubMedCentralCrossRef Splinter, D., D.S. Razafsky, M.A. Schlager, et al. 2012. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular Biology of the Cell 23: 4226–4241.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Duellberg, C., M. Trokter, R. Jha, et al. 2014. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nature Cell Biology 16: 804–811.PubMedCrossRef Duellberg, C., M. Trokter, R. Jha, et al. 2014. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nature Cell Biology 16: 804–811.PubMedCrossRef
42.
Zurück zum Zitat Chen, Y., P. Wang, and K.C. Slep. 2019. Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex. Journal of Biological Chemistry 294: 918–931.PubMedCrossRef Chen, Y., P. Wang, and K.C. Slep. 2019. Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex. Journal of Biological Chemistry 294: 918–931.PubMedCrossRef
43.
Zurück zum Zitat Cui, H., M.Y. Ali, P. Goyal, et al. 2020. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 21: 463–478.PubMedPubMedCentralCrossRef Cui, H., M.Y. Ali, P. Goyal, et al. 2020. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 21: 463–478.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zurzolo, C., and K. Simons. 2016. Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858: 632–639.PubMedCrossRef Zurzolo, C., and K. Simons. 2016. Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858: 632–639.PubMedCrossRef
45.
Zurück zum Zitat Miyagawa-Yamaguchi, A., N. Kotani, and K. Honke. 2015. Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal. Glycoconjugate Journal 32: 531–540.PubMedCrossRef Miyagawa-Yamaguchi, A., N. Kotani, and K. Honke. 2015. Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal. Glycoconjugate Journal 32: 531–540.PubMedCrossRef
46.
Zurück zum Zitat Boncompain, G., and A.V. Weigel. 2018. Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo. Current Opinion in Cell Biology 50: 94–101.PubMedCrossRef Boncompain, G., and A.V. Weigel. 2018. Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo. Current Opinion in Cell Biology 50: 94–101.PubMedCrossRef
47.
Zurück zum Zitat Pakdel, M., and J. von Blume. 2018. Exploring new routes for secretory protein export from the trans -Golgi network. Molecular Biology of the Cell 29: 235–240.PubMedPubMedCentralCrossRef Pakdel, M., and J. von Blume. 2018. Exploring new routes for secretory protein export from the trans -Golgi network. Molecular Biology of the Cell 29: 235–240.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Toya, M., and M. Takeichi. 2016. Organization of non-centrosomal microtubules in epithelial cells. Cell Structure and Function 41: 127–135.PubMedCrossRef Toya, M., and M. Takeichi. 2016. Organization of non-centrosomal microtubules in epithelial cells. Cell Structure and Function 41: 127–135.PubMedCrossRef
49.
Zurück zum Zitat Müsch, A. 2004. Microtubule organization and function in epithelial cells: Microtubules in epithelial cells. Traffic 5: 1–9.PubMedCrossRef Müsch, A. 2004. Microtubule organization and function in epithelial cells: Microtubules in epithelial cells. Traffic 5: 1–9.PubMedCrossRef
50.
51.
Zurück zum Zitat Bhabha, G., G.T. Johnson, C.M. Schroeder, et al. 2016. How dynein moves along microtubules. Trends in Biochemical Sciences 41: 94–105.PubMedCrossRef Bhabha, G., G.T. Johnson, C.M. Schroeder, et al. 2016. How dynein moves along microtubules. Trends in Biochemical Sciences 41: 94–105.PubMedCrossRef
52.
Zurück zum Zitat Jin, M., M. Yamada, Y. Arai, et al. 2014. Arl3 and LC8 regulate dissociation of dynactin from dynein. Nature Communications 5: 5295.PubMedCrossRef Jin, M., M. Yamada, Y. Arai, et al. 2014. Arl3 and LC8 regulate dissociation of dynactin from dynein. Nature Communications 5: 5295.PubMedCrossRef
53.
Zurück zum Zitat Jun, Y.W., J.A. Lee, and D.J. Jang. 2019. Novel GFP-fused protein probes for detecting phosphatidylinositol-4-phosphate in the plasma membrane. Animal Cells and Systems 23: 164–169.PubMedPubMedCentralCrossRef Jun, Y.W., J.A. Lee, and D.J. Jang. 2019. Novel GFP-fused protein probes for detecting phosphatidylinositol-4-phosphate in the plasma membrane. Animal Cells and Systems 23: 164–169.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Liu, J.-J. 2017. Regulation of dynein-dynactin-driven vesicular transport: LIU. Traffic 18: 336–347.PubMedCrossRef Liu, J.-J. 2017. Regulation of dynein-dynactin-driven vesicular transport: LIU. Traffic 18: 336–347.PubMedCrossRef
55.
56.
Zurück zum Zitat Bocking, T., S. Upadhyayula, I. Rapoport, et al. 2018. Reconstitution of Clathrin coat disassembly for fluorescence microscopy and single-molecule analysis. Methods in Molecular Biology 1847: 121–146.PubMedCrossRef Bocking, T., S. Upadhyayula, I. Rapoport, et al. 2018. Reconstitution of Clathrin coat disassembly for fluorescence microscopy and single-molecule analysis. Methods in Molecular Biology 1847: 121–146.PubMedCrossRef
57.
Zurück zum Zitat Xing, Y., T. Böcking, M. Wolf, N. Grigorieff, T. Kirchhausen, and S.C. Harrison. 2010. Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. The EMBO Journal 29 (3): 655–65. Xing, Y., T. Böcking, M. Wolf, N. Grigorieff, T. Kirchhausen, and S.C. Harrison. 2010. Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. The EMBO Journal 29 (3): 655–65.
58.
Zurück zum Zitat Sousa, R., H.S. Liao, J. Cuellar, et al. 2016. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Nature Structural & Molecular Biology 23: 821–829.CrossRef Sousa, R., H.S. Liao, J. Cuellar, et al. 2016. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Nature Structural & Molecular Biology 23: 821–829.CrossRef
59.
Zurück zum Zitat Waters, M.G., and F.M. Hughson. 2000. Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1: 588–597.PubMedCrossRef Waters, M.G., and F.M. Hughson. 2000. Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1: 588–597.PubMedCrossRef
60.
Zurück zum Zitat Witkos, T.M., and M. Lowe. 2017. Recognition and tethering of transport vesicles at the Golgi apparatus. Current Opinion in Cell Biology 47: 16–23.PubMedCrossRef Witkos, T.M., and M. Lowe. 2017. Recognition and tethering of transport vesicles at the Golgi apparatus. Current Opinion in Cell Biology 47: 16–23.PubMedCrossRef
61.
Zurück zum Zitat Yoon, T.-Y., and M. Munson. 2018. SNARE complex assembly and disassembly. Current Biology 28: R397–R401.PubMedCrossRef Yoon, T.-Y., and M. Munson. 2018. SNARE complex assembly and disassembly. Current Biology 28: R397–R401.PubMedCrossRef
63.
Zurück zum Zitat Wang, T., L. Li, and W. Hong. 2017. SNARE proteins in membrane trafficking. Traffic 18: 767–775.PubMedCrossRef Wang, T., L. Li, and W. Hong. 2017. SNARE proteins in membrane trafficking. Traffic 18: 767–775.PubMedCrossRef
65.
Zurück zum Zitat Urnavicius, L., K. Zhang, A.G. Diamant, et al. 2015. The structure of the dynactin complex and its interaction with dynein. Science 347: 1441–1446.PubMedPubMedCentralCrossRef Urnavicius, L., K. Zhang, A.G. Diamant, et al. 2015. The structure of the dynactin complex and its interaction with dynein. Science 347: 1441–1446.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Melkonian, K.A., et al. 2007. Mechanism of dynamitin-mediated disruption of dynactin. Journal of Biological Chemistry 282 (27): 19355–19364.PubMedCrossRef Melkonian, K.A., et al. 2007. Mechanism of dynamitin-mediated disruption of dynactin. Journal of Biological Chemistry 282 (27): 19355–19364.PubMedCrossRef
67.
Zurück zum Zitat Ayloo, S., J.E. Lazarus, A. Dodda, et al. 2014. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nature Communications 5: 4807.PubMedCrossRef Ayloo, S., J.E. Lazarus, A. Dodda, et al. 2014. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nature Communications 5: 4807.PubMedCrossRef
68.
Zurück zum Zitat Akhmanova, A., and M.O. Steinmetz. 2015. Control of microtubule organization and dynamics: two ends in the limelight. Nature Reviews Molecular Cell Biology 16: 711–726.PubMedCrossRef Akhmanova, A., and M.O. Steinmetz. 2015. Control of microtubule organization and dynamics: two ends in the limelight. Nature Reviews Molecular Cell Biology 16: 711–726.PubMedCrossRef
69.
Zurück zum Zitat Sanchez, A.D., and J.L. Feldman. 2017. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Current Opinion In Cell Biology 44: 93–101.PubMedCrossRef Sanchez, A.D., and J.L. Feldman. 2017. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Current Opinion In Cell Biology 44: 93–101.PubMedCrossRef
70.
Zurück zum Zitat Akhmanova, A., and C.C. Hoogenraad. 2015. Microtubule minus-end-targeting proteins. Current Biology 25: R162–R171.PubMedCrossRef Akhmanova, A., and C.C. Hoogenraad. 2015. Microtubule minus-end-targeting proteins. Current Biology 25: R162–R171.PubMedCrossRef
71.
Zurück zum Zitat Goldspink, D.A., C. Rookyard, B.J. Tyrrell, et al. 2017. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biology 7: 160274.PubMedPubMedCentralCrossRef Goldspink, D.A., C. Rookyard, B.J. Tyrrell, et al. 2017. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biology 7: 160274.PubMedPubMedCentralCrossRef
Metadaten
Titel
Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein
verfasst von
Yi-Yang Pan
Ying Deng
Shuai Su
Jiu-Heng Yin
Yi-Hui Chen
Liu-Can Wang
Li-Hua Sun
Wei-Dong Xiao
Guang-Sheng Du
Publikationsdatum
01.09.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01724-y

Weitere Artikel der Ausgabe 1/2023

Inflammation 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.