Skip to main content
Erschienen in: Clinical Epileptology 4/2023

Open Access 14.08.2023 | Originalien

Study protocol: value of 7-T MRI with prospective motion correction and postprocessing for patients with nonlesional epilepsy

verfasst von: O. Kukhlenko, R. Kukhlenko, C. Tempelmann, O. Speck, H. Hinrichs, H.-J. Heinze, M. Heers, P. M. House, F. G. Woermann, S. Knake, H. Urbach, H.-J. Huppertz, A. Haghikia, F. C. Schmitt

Erschienen in: Clinical Epileptology | Ausgabe 4/2023

Abstract

The diagnostic yield of magnetic resonance imaging (MRI) postprocessing using 7‑T data for patients with nonlesional epilepsy has been rarely evaluated, but has shown acceptable diagnostic outcomes. However, to date there have been no prospective clinical studies comparing MP2RAGE sequences in 3‑T and 7‑T MRI in parallel using the same protocol for morphometric analysis. We present a study protocol developed to address the hypothesis that application of 7‑T structural MRI increases the rate of detection of structural lesions with morphometric analysis when compared with parallel coherent study protocols in 3‑T MRI. The 7‑T MRI study protocol is designed to supply data showing the clinical practicability and proof of principle for increasing the detection rate of subtle epileptogenic lesions.
Hinweise
Scan QR code & read article online

Introduction

A well-defined lesion on magnetic resonance imaging (MRI) that corresponds with electrographic findings is a good prognostic factor for postsurgical seizure outcome [9, 30]. Nonlesional (also known as MRI-negative) epilepsies often require invasive intracranial electroencephalography (EEG) and have poorer seizure outcomes after epilepsy surgery [9, 18, 31]. Thus, the absence of a structural lesion on MRI represents a challenge for surgical management of epilepsy [32].
Improved lesion visualization and detailed characterization of the lesion have been the main aims of any structural MRI study of patients with focal epilepsy [46]. It was shown that identification of epileptogenic lesions is 2.5 times more likely with 3‑T MRI than with 1.5‑T MRI [26]. The ictal semiology, interictal and ictal scalp EEG, and additional investigations such as magnetoencephalography (MEG), positron emission tomography (PET), or single-photon emission computed tomography (SPECT) support the presence of undetected lesions in conventional 3‑T MRI.
The improved signal-to-noise ratio (SNR) in 7‑T MRI can potentially lead to better depiction of the cortex and therefore increase the sensitivity for detection of malformations of cortical development and other potentially epileptogenic pathologies. A task force consensus on the use of 7‑T MRI [23] in clinical management of patients with drug-resistant focal epilepsy revealed four main indications for 7‑T MRI referral: (1) 3‑T MRI-negative patients; (2) patients with known or suspected lesion in conventional 3‑T MRI; (3) improved visualization of potential epileptogenic lesions for planning of intracranial electrode positioning; (4) mapping of the eloquent areas using stimulation 7‑T fMRI [14, 42].
The diagnostic yield of MRI postprocessing using 7‑T data for patients with nonlesional epilepsy (nlE) has been evaluated only in a few studies [10, 34, 44, 45]. It was shown that patients with nlE had an acceptable MRI-positive diagnostic outcome in 7‑T imaging. These patients are therefore candidates for a better postsurgical seizure outcome. In addition, 7‑T MRI has been useful in identifying hippocampal architecture and sclerosis, cortical dysplasia, and vascular malformations as well as improved visualization of the amygdalo-hippocampal border as well as polymicrogyria (PMG; [10, 20, 34]).
According to a meta-analysis [25], which included 160 patients from nine studies with 7‑T MRI investigations and 152 patients from eight studies with 3‑T investigations, the overall detection rate of 7‑T MRI was 65% while that of 3‑T MRI was 22%. The 7‑T-positive and 3‑T-negative epileptogenic lesions include bilateral PMG, focal cortical dysplasia (FCD), and hippocampal abnormalities (for details, see Table 1). Additionally, T2*-weighted sequences such as susceptibility weighted imaging (SWI) demonstrated leptomeningeal venous abnormalities or the “intracortical black line sign” both associated with overlying FCD [2, 11].
Table 1
7‑T MRI sequences used in clinical studies of nonlesional focal epilepsy
Sequence
Isotropic voxel size (mm, in-plane spatial resolution median range)
Diagnostic advantages
Studies
3D T1w
MPRAGE
0.60–0.90
Visual diagnosis of FCD and polymicrogyria
Visualization of the internal architecture disruption in HS
Small isotropic voxel size, which enables better morphometric analysis
[5]
[40]
[41]
[10]
[44]
MP2RAGE
0.60–0.80
T2/FLAIR
3D FLAIR
0.70–1.00
Visualization of tuberous sclerosis complex
[1]
[27]
[37]
FLAIR TSE
0.50–0.80
Visualization of long-term epilepsy-associated tumors (gangliogliomas, DNET)
[1]
[27]
[37]
T2*w
2D GRE/3D SWAN/​SWI/QSM
0.25–0.80
Leptomeningeal venous abnormalities
Intracortical “black line signs,” which is associated with FCD
Small cavernous cortical hemangioma
Vascular hippocampal abnormalities
[6]
[40]
[2]
[11]
Others
DWI/DTI
3D DIR
Increased connectivity of certain ipsilateral subfields in left temporal lobe epilepsy
[28]
DNET dysembryoplastic neuroepithelial tumors, FCD focal cortical dysplasia, HS hippocampal sclerosis
Ultra-high-field (UHF) MRI provides a significant increase in SNR and gains in contrast weighting in several functional and structural acquisitions. It was shown that an increase in field strength also induces nonuniformities in the transmit field (B1+) that can compromise image contrast nonuniformly. T1-weighted (T1w) image acquisitions for structural imaging provide excellent contrast between gray and white matter and are widely used for brain segmentation. At 7 T, the signal nonuniformities tend to complicate this and, therefore, the self-bias-field corrected MP2RAGE is often used there. In the MP2RAGE sequence even very low local B1+ can cause a loss of SNR and contrast, usually in the cerebellum and temporal lobes [21]. If not adequately addressed, these nonuniformities can compromise the image quality, or even provide incorrect segmentation, inappropriate diagnostic information, or poor co-registration [21].

7 T in potentially epileptogenic lesions

Focal cortical dysplasia

Detection of FCDs type 1 and 2 is generally more difficult than other types of epileptogenic lesions. The advantage of 7 T for the detection of FCDs can mainly be explained by improved gray–white delineation for the cortical convexity in 3D T1-weighted images. Colon et al. reported a comparison between 7‑T and 3‑T MRI for eight patients with suspected FCD, showing that 7‑T MRI scored significantly better for lesion conspicuity and demarcation. To differentiate between types of FCD, typical radiological characteristics of FCD were rated separately in this study. Significant characteristics were features such as gray–white matter blurring, abnormal internal structure, and transition to normal cortex [4].
In SWI sequences, visualization of intracortical signal changes (“black line sign”) can improve subtyping of FCD type 2 [2]. Three-dimensional T1-weighted (MPRAGE and MP2RAGE) sequences were shown to be most helpful for the detection of FCD when used with quantitative morphological analysis due to high image contrast at 7 T [7, 39, 44].

Polymicrogyria

A study of ten patients with polymicrogyria previously diagnosed with 3‑T MRI demonstrated improved visualization with 7‑T MRI [6]. Special diagnostic landmarks were dilated superficial veins associated with the polymicrogyria revealed in SWI angiography. Furthermore, 3D T1-weighted sequences (MP2RAGE or MPRAGE) are important because they enable clear delineation of the lesion extent, which can guide surgical resection. Three-dimensional T1-weighted sequences can be used to screen the whole brain for polymicrogyria. In addition, 3D T2*-weighted images enable visualization of small pial vessels, seen as thin hypointense lines in the malformed cortex and sulci with an arboriform distribution as an additional identifying feature; the cortex itself appears extra hyperintense in these sequences.

Tuberous sclerosis complex

It was shown that better SNR in 7‑T MRI and increased spatial resolution in T1-weigted (MPRAGE and MP2RAGE) and T2*-weighted sequences improve detection of cerebral lesions in tuberous sclerosis complex such as cortical and subependymal tubers. Moreover, a new finding first identified at 7 T is the presence of tortuous veins associated with subependymal tubers, frequently encountered but clearly visible in SWI sequences [27, 37].

Long-term epilepsy-associated tumors

Gangliogliomas and dysembryoplastic neuroepithelial tumors consist of a composition of mature neuronal cells and glial cells [35]. Radiological characteristics include a solid and/or cystic component and perifocal edema. With 7‑T MRI, 3D T1-weighted (MP2RAGE or MPRAGE) images better delineate the solid component because of increased image contrast. In addition, 7‑T 3D T2-weighted sequences meliorate the depiction of the walls between and around the solid/cystic components, and the extent of any associated edema is more precisely delineated. Both factors are important when planning the resection margin for surgical intervention.

Hippocampal sclerosis

Classic MRI features of hippocampal sclerosis are hippocampal atrophy, increased T2-weighted/FLAIR signal intensity, and loss of normal morphology. 7‑T MRI data show hippocampal morphology, including internal structure and surface features. Two-dimensional coronal TSE T2-weighted and 3D T1-weighted/FLAIR sequences are particularly suitable for this [33, 48]. Hippocampal subfields can be more precisely delineated with training based on landmarks and surface features at 7‑T MRI, including automated segmentation methods. On coronal 3‑T images, prominent infolding can cause the dark band to appear obscured because of partial volume effects, and high-resolution images at 7 T help to avoid this pitfall. The absence of digitations along the hippocampal head is another sensitive and specific finding for hippocampal sclerosis that is considerably more apparent on 7‑T images.
Furthermore, 7‑T MRI and automated subfield volumetry have enabled detection of hippocampal pathology also in subfield volumes of the CA1, CA2/3, CA4/DG, and the subiculum [11]. Specifically, among patients with unilateral mesial temporal lobe epilepsy (mTLE) with longer disease durations, volume loss was observed in the ipsilateral CA1 and CA2/3 subfields and contralateral CA1. There were no differences in subfield volumes in patients with neocortical epilepsy compared to controls [11].

Pros and cons of different sequences in 7-T imaging

In the task force consensus recommendations on the use of 7‑T MRI in clinical practice for epilepsy, the eight8 most useful sequences were identified in a survey from 19 7‑T MRI centers experienced in examining patients with epilepsy for research and/or diagnostic purposes. Nevertheless, there is no uniform acquisition protocol among clinical centers, especially concerning those studies focused on morphometric analysis [23].
A number of other indirect signs for epilepsy-associated changes were described in several 7‑T MRI pilot studies with different postprocessing methods (Table 2).
Table 2
Potential imaging biomarkers for focal epilepsies on 7‑T MRI
Imaging biomarker
Studies
Selectively greater ipsilateral hippocampus atrophy
[15]
CA1 and CA4+dentate gyrus atrophy
[29]
Lower u‑fiber counts ipsilateral to the electrophysiological focus
[22]
Increased connectivity of certain ipsilateral subfields in left temporal lobe epilepsy
[28]
Asymmetric distribution of perivascular spaces with maximum asymmetry in the region of the suspected seizure-onset zone
[12]
Change in N-acetyl aspartate/creatinine ration and glutamate in MR spectroscopy in patients with malformations of cortical development and epilepsy
[24]
There are only few studies with relative homogeneous patient groups and concordant parallel analysis of 3‑T and 7‑T MRI data [38, 41, 44]. In the study by Wang et al. [44], the morphometric analysis of 3‑T MPRAGE sequences was compared with the same analysis on the 7‑T MP2RAGE sequence. The general diagnostic yield of 7‑T MRI with morphometric analysis was 43% (29 of 67 patients). The study was designed to best utilize 7‑T sequences for subtle lesion detection in a clinical setting, rather than to compare the two sequences at different field strengths. However, MP2RAGE sequences are of special importance in the visualization of MCD not only in 7‑T images but also in 3‑T images. In MP2RAGE sequences, the inhomogeneity effect can be largely canceled out by combining image data from the first and second readouts; T2* and B1 inhomogeneity effects can be largely canceled out, resulting in a strongly T1-weighted image with superior gray matter to white matter contrast than available with MPRAGE sequences. As noted by Demerath et al. [8], the study used only MP2RAGE imaging in their 7‑T MRI, so that the high detection rate was possibly due to this sequence and not due to the higher field strength.
To date, there have been no prospective clinical studies comparing MP2RAGE sequences in 3‑T and 7‑T MRI in parallel with the same acquisition protocol for morphometric analysis.

Motion correction technique

The main technical challenges for data acquisition under UHF in 7‑T MRI are to produce a strong, homogeneous transverse field and high-quality images. Different approaches are used to minimize the influence of nonuniformities caused by interferences at UHFs and to accelerate and increase the yield regarding the time spent for acquisition and the quality of the image achieved. Motion artifacts represent a substantial limiting factor for very high-resolution imaging, since they reduce the resolution and isotropy of voxel-based imaging and therefore influence the results of analyses and calculations, such as segmentation or gray matter volume and thickness estimates [13]. Motion correction techniques can be used to correct for motion either in real time (prospectively) or offline after the data have been collected (retrospectively). Spin history effects caused by through-plane motion are not corrected by retrospective correction. In contrast to retrospective techniques, prospective motion correction (PMC) ensures that the k‑space sampling density stays approximately homogeneous [13].
One of the PMC techniques with an external tracking device was suggested in 2015 by Stucht and colleagues [36]. This technology allows for high-precision tracking of out-of-plane rotations, by deriving pose information from changes in a moiré pattern visible on a 15-mm marker. Moreover, through an external optical tracking system and image processing, the image resolution in 7‑T MRI can be substantially increased and therefore is suitable for visualization of very fine structures such as cortical layers [13, 19].

Prospective study protocol

We present a study protocol developed in the Department of Neurology of the University Hospital Magdeburg in collaboration with the Epilepsy Centre Freiburg, Epileptologicum Hamburg, Epilepsy Centre Hessen, University Marburg/Giessen, and Epilepsy Centre Bielefeld-Bethel to address the hypothesis that 7‑T structural MRI increases the rate of detection of structural lesions with the application of morphometric analysis when compared with a parallel coherent study protocol in 3‑T MRI. The clinical feasibility of performing this study was presented in 2020 at the German Branch of the ILAE meeting in Freiburg. The study will be supported by the Otfrid Förster grant of the German Society for Epileptology e. V.
The aim of the study is to investigate the clinical value of 7‑T MRI with postprocessing and PMC for patients with nlE (in 3‑T MRI with epilepsy conventional protocol and MP2RAGE sequences).
Primary outcomes will be the rate of detected epileptogenic lesions in standardized UHF in 7‑T MRI compared to presurgical 3‑T MRI according to a standardized presurgical evaluation with comparable acquisition sequences for both 3‑T and 7‑T MRI examinations (Fig. 1):
  • Via blinded visual inspection
  • Via inspection of postprocessing data resulting from analysis with the Morphometric Analysis Program v2018 (MAP18)

Study design

Prospective, multi-center study of presurgically assessed patients with previous 3‑T MRI and a diagnosis of focal epilepsy regarded as nonlesional and with a clear seizure-onset hypothesis that meets the following two criteria:
1.
Clinical and semiological hypothesis concerning lateralization and affected lobe
 
2.
Ictal EEG is in line with criterion 1
 
Or:
3.
Magnetic source imaging or electric source imaging is in line with criterion 1.
 
Patients with temporal and extratemporal drug-resistant epilepsy will be included. According to electroclinical and semiological analysis, a selection of patients will be made oriented toward a search for “expected” malformations of cortical development.
The 3‑T MRI for the identification of the nonlesional patients should match basic standards of the use of structural MRI in the care of patients with epilepsy [3, 47].

Exclusion criteria

The exclusion criteria for investigation of patients in a 7‑T MRI scanner are according to the 7‑T MRI information sheet (supplemental information), i.e., metal objects in their body, patients with claustrophobia or other psychiatric conditions, those who cannot stay in an appropriate position/keep still during the investigation, patients under the age of 14 years, and obese patients with body weight over 140 kg.

MRI data

All patients will be examined in a 3‑T MRI scanner (Siemens Magnetom Prisma, Siemens Medical Solutions, Erlangen, Germany) and in a 7‑T MRI scanner (Siemens Magnetom Terra). The acquisition protocol for 3‑T MRI measurements (Table 3) will be designed according to Demerah et al. [7] and the 7‑T MRI acquisition will be as close as practicable to the 3‑T acquisition protocol.
Table 3
Imaging protocol for 3‑T and 7‑T MRI measurements
3 T
7 T
Sagittal 3D MPRAGE
1.0 × 1.0 × 1.0 mm
Sagittal 3D MPRAGE
0.7 × 0.7 × 0.7 mm
Sagittal 3D MP2RAGE
1.0 × 1.0 × 1.0 mm
Sagittal 3D MP2RAGE
0.7 × 0.7 × 0.7 mm
Sagittal 3D FLAIR
1.0 × 1.0 × 1.0 mm
Sagittal 3D FLAIR
0.7 × 0.7 × 0.7 mm
Axial 2D T2 TSE
0.4 × 0.4 × 3.0 mm
R2T2*
0.7 × 0.7 × 0.7 mm
Coronal 2D T2 STIR
0.4 × 0.4 × 2.0 mm
3D SWI (QSM)
0.7 × 0.7 × 0.7 mm
DWI EPI
0.6 × 0.6 × 5.0 mm
T2TSE
0.4 × 0.4 × 2mm
Time of acquisition ca. 40 min
Time of acquisition ca. 60 min
For systematic reasons, implementing artifact reduction in 7‑T image acquisition asks for a direct comparison of this technique with the 3‑T imaging. However, the current literature supports the impact of movement artifacts on SNR during examination in 3‑T MRI to be insignificant. Additionally, its correction burdens the examination technically [43], and thus we decided for practical reasons to omit this point; especially since studies of 7‑T MRI at the same time have shown that it often plays a key role in the quality of the images obtained. The PMC techniques for the 7‑T study will be used according to Stucht and colleagues [36] and the morphometric analysis according to Huppertz [16, 17]. A dataset of a control group from the same 7‑T MRI scanner and with the same investigation will be used as a normal database for the morphometric analysis. The control group data for comparison of MP2RAGE measurements of 3‑T MR images were obtained with an MRI scanner of the same model (Siemens Magnetom Prisma) with an identical measurement protocol that will be used in the clinical group of probands. In each case, results will be reviewed via expert visual inspection by two neuroradiologist/epileptologists, with expertise in epilepsy imaging, who are blinded to the seizure-onset zone . The control dataset will be integrated and used for the SPM12-based MAP18 Toolbox analysis. For MAP analysis, z‑scores and probability maps will be used according to the well-known method of Huppertz et al. [17].
Our study protocol is designed to make a larger study after the current small pilot study possible. It places emphasis on the feasibility of the use of 7‑T imaging in a clinical study. Since all patients will undergo either subsequent invasive presurgical evaluation or a surgical intervention, if indicated, we will ask for pathology results and outcomes as they are of exceptional clinical importance. A retrospective analysis of the current small study with these patients and outcome parameters is planned.

Discussion and conclusion

Epilepsy, in particular, stands to benefit from the sensitivity gains in the detection of subtle imaging features. The greater sensitivity and resolution provided by UHF imaging have translated into promising results concerning the detection rate of potentially epileptogenic lesions, resulting in direct clinical benefit. However, UHF imaging still faces challenges, particularly those related to reliable image quality such as B1 field inhomogeneity. Therefore, standardization and clinical comparison of current 7‑T MRI sequences sensitive to the visualization of main epileptogenic lesion types are of high clinical importance. A cohort study with prospective design and comparable sequences is mandatory.
The suggested prospective study protocol involves conducting a consequent comparison of 3‑T and 7‑T imaging data and morphometric analysis of patients with nlE. In the future we hope to supply data that will show the clinical practicability and proof of principle of a 7‑T MRI protocol for increasing the detection rate of subtle epileptogenic lesions.

Funding

This study is supported by the Otfrid Förster grant from the German Society for Epileptology.

Declarations

Conflict of interest

The scholarship holder is O. Kukhlenko. R. Kukhlenko, C. Tempelmann, O. Speck, H. Hinrichs, H.-J. Heinze, M. Heers, P.M. House, F.G. Woermann, S. Knake, H. Urbach, H.-J. Huppertz, A. Haghikia and F.C. Schmitt declare that they have no competing interests.
All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Clinical Epileptology

Print-Titel

• Übersichten, Originalarbeiten, Kasuistiken

• Aktuelles aus der epileptologischen Diagnostik und Therapie  


e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Barkovich A, Guerrini R, Kuzniecky R, Jackson G, Dobyns W (2012) A developmental and genetic classification for malformations of cortical development: update. Brain 135:1348–1369PubMedPubMedCentral Barkovich A, Guerrini R, Kuzniecky R, Jackson G, Dobyns W (2012) A developmental and genetic classification for malformations of cortical development: update. Brain 135:1348–1369PubMedPubMedCentral
2.
Zurück zum Zitat Bartolini E, Cosottini M, Costagli M, Barba C, Tassi L, Spreafico R, Garbelli R, Biagi L, Buccoliero A, Giordano F, Guerrini R (2019) Ultra-high-field targeted imaging of focal cortical dysplasia: the Intracortical black line sign in type IIb. AJNR Am J Neuroradiol 40(12):2137–2142PubMedPubMedCentral Bartolini E, Cosottini M, Costagli M, Barba C, Tassi L, Spreafico R, Garbelli R, Biagi L, Buccoliero A, Giordano F, Guerrini R (2019) Ultra-high-field targeted imaging of focal cortical dysplasia: the Intracortical black line sign in type IIb. AJNR Am J Neuroradiol 40(12):2137–2142PubMedPubMedCentral
3.
Zurück zum Zitat Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE et al (2019) Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force. Epilepsia 60(6):1054–1068PubMed Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE et al (2019) Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force. Epilepsia 60(6):1054–1068PubMed
4.
Zurück zum Zitat Colon A, van Osch M, Buijs M, Grond J, Boon P, van Buchem MA (2016) Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurol Belg 116:259–269PubMedPubMedCentral Colon A, van Osch M, Buijs M, Grond J, Boon P, van Buchem MA (2016) Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurol Belg 116:259–269PubMedPubMedCentral
5.
Zurück zum Zitat De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, Bramerio M, Bartolini E, Biagi L, Cossu M, Pelliccia V, Symms M, Guerrini R (2016) 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57:10 De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, Bramerio M, Bartolini E, Biagi L, Cossu M, Pelliccia V, Symms M, Guerrini R (2016) 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57:10
6.
Zurück zum Zitat De Ciantis A et al (2015) Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol 36(2):309–316PubMedCentral De Ciantis A et al (2015) Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol 36(2):309–316PubMedCentral
7.
Zurück zum Zitat Demerath T, Rubensdörfer L, Schwarzwald R, Schulze-Bonhage A, Altenmüller D‑M, Kaller C, Kober T, Huppertz H‑J, Urbach H (2020) Morphometric MRI analysis: improved detection of focal cortical dysplasia using the MP2RAGE sequence. Am J Neuroradiol 41(6):1009–1014PubMedPubMedCentral Demerath T, Rubensdörfer L, Schwarzwald R, Schulze-Bonhage A, Altenmüller D‑M, Kaller C, Kober T, Huppertz H‑J, Urbach H (2020) Morphometric MRI analysis: improved detection of focal cortical dysplasia using the MP2RAGE sequence. Am J Neuroradiol 41(6):1009–1014PubMedPubMedCentral
8.
Zurück zum Zitat Demerath T, Urbach H (2021) Apples and oranges. Letter to editor. Epilepsia 62:279–280PubMed Demerath T, Urbach H (2021) Apples and oranges. Letter to editor. Epilepsia 62:279–280PubMed
10.
Zurück zum Zitat Feldman R, Delman B, Pawha P, Dyvorne H, Rutland J, Yoo J, Fields M, Marcuse L, Balchandani P (2019) 7T MRI in epilepsy patients with previously normal clinical MRI exams compared against healthy controls. PLoS ONE 14(3):e213642PubMedPubMedCentral Feldman R, Delman B, Pawha P, Dyvorne H, Rutland J, Yoo J, Fields M, Marcuse L, Balchandani P (2019) 7T MRI in epilepsy patients with previously normal clinical MRI exams compared against healthy controls. PLoS ONE 14(3):e213642PubMedPubMedCentral
11.
Zurück zum Zitat Feldman R, Marcuse L, Verma G, Brown S, Rus A, Rutland J (2020) Seven-tesla susceptibility-weighted analysis of hippocampal venous structures: application to magnetic-resonance-normal focal epilepsy. Epilepsia 61:287–296PubMedPubMedCentral Feldman R, Marcuse L, Verma G, Brown S, Rus A, Rutland J (2020) Seven-tesla susceptibility-weighted analysis of hippocampal venous structures: application to magnetic-resonance-normal focal epilepsy. Epilepsia 61:287–296PubMedPubMedCentral
12.
Zurück zum Zitat Feldman R, Rutland J, Fields M, Marcuse L, Pawha P, Delman B (2018) Quantification of perivascular spaces at 7T: A potential MRI biomarker for epilepsy. Seizure 54:11–18PubMed Feldman R, Rutland J, Fields M, Marcuse L, Pawha P, Delman B (2018) Quantification of perivascular spaces at 7T: A potential MRI biomarker for epilepsy. Seizure 54:11–18PubMed
13.
Zurück zum Zitat Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R, Lüsebrink F, Schulze P, Speck O (2016) Motion correction in MRI of the brain. Phys Med Biol 61(5):R32–R56PubMedPubMedCentral Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R, Lüsebrink F, Schulze P, Speck O (2016) Motion correction in MRI of the brain. Phys Med Biol 61(5):R32–R56PubMedPubMedCentral
14.
Zurück zum Zitat Heide EC, Rampp S, van de Velden D et al (2023) EEG/MEG-Quellenrekonstruktion bei nichtläsioneller Epilepsie. Clin Epileptol 36:111–116 Heide EC, Rampp S, van de Velden D et al (2023) EEG/MEG-Quellenrekonstruktion bei nichtläsioneller Epilepsie. Clin Epileptol 36:111–116
15.
Zurück zum Zitat Henry T, Chupin M, Lehéricy S, Strupp J, Sikora M, Sha Z (2011) Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T. Radiology 261:199–209PubMedCentral Henry T, Chupin M, Lehéricy S, Strupp J, Sikora M, Sha Z (2011) Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T. Radiology 261:199–209PubMedCentral
16.
Zurück zum Zitat House PM, Lanz M, Holst B, Martens T, Stodieck S, Huppertz HJ (2013) Comparison of morphometric analysis based on T1- and T2-weighted MRI data for visualization of focal cortical dysplasia. Epilepsy Res 106:403–409PubMed House PM, Lanz M, Holst B, Martens T, Stodieck S, Huppertz HJ (2013) Comparison of morphometric analysis based on T1- and T2-weighted MRI data for visualization of focal cortical dysplasia. Epilepsy Res 106:403–409PubMed
17.
Zurück zum Zitat Huppertz HJ, Wellmer J, Staack AM, Altenmüller D‑M, Urbach H, Kröll J (2008) Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia. Epilepsia 49(5):772–785PubMed Huppertz HJ, Wellmer J, Staack AM, Altenmüller D‑M, Urbach H, Kröll J (2008) Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia. Epilepsia 49(5):772–785PubMed
18.
Zurück zum Zitat Jobst BC, Cascino GD (2015) Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 313(3):285–293PubMed Jobst BC, Cascino GD (2015) Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 313(3):285–293PubMed
19.
Zurück zum Zitat Lüsebrink F, Wollrab A, Speck O (2013) Cortical thickness determination of the human brain using high resolution 3T and 7 T MRI data. Neuroimage 70:122–131PubMed Lüsebrink F, Wollrab A, Speck O (2013) Cortical thickness determination of the human brain using high resolution 3T and 7 T MRI data. Neuroimage 70:122–131PubMed
20.
Zurück zum Zitat Martin P, Bender B (2023) Klinisches und Hochfeld-MRT bei MRT-negativer Epilepsie. Clin Epileptol 36:98–103 Martin P, Bender B (2023) Klinisches und Hochfeld-MRT bei MRT-negativer Epilepsie. Clin Epileptol 36:98–103
21.
Zurück zum Zitat O’Brien KR, Kober T, Hagmann P, Maeder P, Marques J, Lazeyras F, Krueger G, Roche A, Brien KRO, Kober T, Hagmann P, Maeder P, Lazeyras F, Krueger G, Roche A (2014) Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE. Plos One 9:e99676PubMedPubMedCentral O’Brien KR, Kober T, Hagmann P, Maeder P, Marques J, Lazeyras F, Krueger G, Roche A, Brien KRO, Kober T, Hagmann P, Maeder P, Lazeyras F, Krueger G, Roche A (2014) Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE. Plos One 9:e99676PubMedPubMedCentral
22.
Zurück zum Zitat O’Halloran R, Feldman R, Marcuse L, Fields M, Delman B, Frangou S (2017) A method for u‑fiber quantification from 7 T diffusion-weighted MRI data tested in patients with nonlesional focal epilepsy. Neuroreport 28:457–461PubMedPubMedCentral O’Halloran R, Feldman R, Marcuse L, Fields M, Delman B, Frangou S (2017) A method for u‑fiber quantification from 7 T diffusion-weighted MRI data tested in patients with nonlesional focal epilepsy. Neuroreport 28:457–461PubMedPubMedCentral
23.
Zurück zum Zitat Opheim G, van der Kolk A, Markenroth Bloch K, Colon AJ, Davis KA, Henry TR, Jansen JFA, Jones SE, Pan JW, Rössler K, Stein JM et al (2021) 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology 96(7):327–341PubMedPubMedCentral Opheim G, van der Kolk A, Markenroth Bloch K, Colon AJ, Davis KA, Henry TR, Jansen JFA, Jones SE, Pan JW, Rössler K, Stein JM et al (2021) 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology 96(7):327–341PubMedPubMedCentral
24.
Zurück zum Zitat Pan JW, Duckrow RB, Gerrard J, Ong C, Hirsch LJ, Resor SR Jr et al (2013) 7T MR spectroscopic imaging in the localization of surgical epilepsy. Epilepsia 54:1668–1678PubMedPubMedCentral Pan JW, Duckrow RB, Gerrard J, Ong C, Hirsch LJ, Resor SR Jr et al (2013) 7T MR spectroscopic imaging in the localization of surgical epilepsy. Epilepsia 54:1668–1678PubMedPubMedCentral
25.
Zurück zum Zitat Park JE, Cheong EN, Jung DE, Shim WH, Lee JS (2021) Utility of 7 tesla magnetic resonance imaging in patients with epilepsy: a systematic review and meta-analysis. Front Neurol 12:621936PubMedPubMedCentral Park JE, Cheong EN, Jung DE, Shim WH, Lee JS (2021) Utility of 7 tesla magnetic resonance imaging in patients with epilepsy: a systematic review and meta-analysis. Front Neurol 12:621936PubMedPubMedCentral
26.
Zurück zum Zitat Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3‑T and 1.5‑T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191(3):890–895PubMed Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3‑T and 1.5‑T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191(3):890–895PubMed
27.
Zurück zum Zitat Pittau F, Baud MO, Jorge J et al (2018) MP2RAGE and susceptibility-weighted imaging in lesional epilepsy at 7T. J Neuroimaging 28:365–369 Pittau F, Baud MO, Jorge J et al (2018) MP2RAGE and susceptibility-weighted imaging in lesional epilepsy at 7T. J Neuroimaging 28:365–369
28.
Zurück zum Zitat Rutland JW, Feldman RE, Delman BN, Panov F, Fields MC, Marcuse LV et al (2018) Subfield-specific tractography of the hippocampus in epilepsy patients at 7 Tesla. Seizure 62:3–10PubMedCentral Rutland JW, Feldman RE, Delman BN, Panov F, Fields MC, Marcuse LV et al (2018) Subfield-specific tractography of the hippocampus in epilepsy patients at 7 Tesla. Seizure 62:3–10PubMedCentral
29.
Zurück zum Zitat Santyr BG, Goubran M, Lau JC, Kwan BYM, Salehi F, Lee DH et al (2017) Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7T. J Magn Reson Imaging 45:1359–1370PubMed Santyr BG, Goubran M, Lau JC, Kwan BYM, Salehi F, Lee DH et al (2017) Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7T. J Magn Reson Imaging 45:1359–1370PubMed
30.
Zurück zum Zitat Schmitt FC (2020a) Epilepsien unbekannter Ätiologie. In: Schmitt FC, Stefan H, Holtkamp M (eds) Epileptische Anfälle und Epilepsien im Erwachsenenalter. Springer, Heidelberg, pp 203–207 Schmitt FC (2020a) Epilepsien unbekannter Ätiologie. In: Schmitt FC, Stefan H, Holtkamp M (eds) Epileptische Anfälle und Epilepsien im Erwachsenenalter. Springer, Heidelberg, pp 203–207
31.
Zurück zum Zitat Schmitt FC, Meencke HJ (2020b) Factors predicting 10-year seizure freedom after temporal lobe resection. Z Epileptol 33:50–61 Schmitt FC, Meencke HJ (2020b) Factors predicting 10-year seizure freedom after temporal lobe resection. Z Epileptol 33:50–61
32.
Zurück zum Zitat Schmitt FC, Huppertz HJ, Tempelmann C, Heers M, Lanz M, Kaufmann J, Stodieck S, Schulze-Bonhage A, Speck O, Heinze HJ, Hinrichs H, House P (2020c) Morphometrische 7‑Tesla MRT Analyse für nicht-läsionelle, fokale Epilepsien- proof-of-principle mit prospektiver motorischer Artefaktunterdrückung. presented at the German Branch of the ILAE conference, Freiburg Schmitt FC, Huppertz HJ, Tempelmann C, Heers M, Lanz M, Kaufmann J, Stodieck S, Schulze-Bonhage A, Speck O, Heinze HJ, Hinrichs H, House P (2020c) Morphometrische 7‑Tesla MRT Analyse für nicht-läsionelle, fokale Epilepsien- proof-of-principle mit prospektiver motorischer Artefaktunterdrückung. presented at the German Branch of the ILAE conference, Freiburg
33.
Zurück zum Zitat Shah P, Bassett DS, Wisse LEM et al (2019) Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: a 7T MRI study. Hum Brain Mapp 40:2390–2398PubMedPubMedCentral Shah P, Bassett DS, Wisse LEM et al (2019) Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: a 7T MRI study. Hum Brain Mapp 40:2390–2398PubMedPubMedCentral
34.
Zurück zum Zitat Sharma HK, Feldman R, Delman B, Rutland J, Marcuse LV, Fields MC, Ghatan S, Panov F, Singh A, Balchandani P (2021) Utility of 7 tesla MRI brain in 16 “MRI Negative” epilepsy patients and their surgical outcomes. Epilepsy Behav Rep 15:100424PubMedPubMedCentral Sharma HK, Feldman R, Delman B, Rutland J, Marcuse LV, Fields MC, Ghatan S, Panov F, Singh A, Balchandani P (2021) Utility of 7 tesla MRI brain in 16 “MRI Negative” epilepsy patients and their surgical outcomes. Epilepsy Behav Rep 15:100424PubMedPubMedCentral
35.
Zurück zum Zitat Slegers RJ, Blumcke I (2020) Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol Commun 8:27PubMedPubMedCentral Slegers RJ, Blumcke I (2020) Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol Commun 8:27PubMedPubMedCentral
36.
Zurück zum Zitat Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS ONE 10(7):e133921PubMedPubMedCentral Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS ONE 10(7):e133921PubMedPubMedCentral
37.
Zurück zum Zitat Sun K, Cui J, Wang B et al (2018) Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T. Neuroradiology 60:785–794 Sun K, Cui J, Wang B et al (2018) Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T. Neuroradiology 60:785–794
38.
Zurück zum Zitat Tahry RE, Santos SF, Vrielynck P, de Tourtchaninoff M, Duprez T, Vaz G, Raftopoulos C, Choi Y, Wang I (2020) Additional clinical value of voxel-based morphometric MRI post-processing for MRI-negative epilepsies: a prospective study. Epileptic Disord 22(2):156–164PubMed Tahry RE, Santos SF, Vrielynck P, de Tourtchaninoff M, Duprez T, Vaz G, Raftopoulos C, Choi Y, Wang I (2020) Additional clinical value of voxel-based morphometric MRI post-processing for MRI-negative epilepsies: a prospective study. Epileptic Disord 22(2):156–164PubMed
39.
Zurück zum Zitat Urbach H, Kellner E, Kremers N, Blümcke I, Demerath T (2022) MRI of focal cortical dysplasia. Neuroradiology 64(3):443–452PubMed Urbach H, Kellner E, Kremers N, Blümcke I, Demerath T (2022) MRI of focal cortical dysplasia. Neuroradiology 64(3):443–452PubMed
40.
Zurück zum Zitat Veersema TJ, Ferrier CH, van Eijsden P et al (2017) Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy. Epilepsia Open 2:162–171PubMedPubMedCentral Veersema TJ, Ferrier CH, van Eijsden P et al (2017) Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy. Epilepsia Open 2:162–171PubMedPubMedCentral
41.
Zurück zum Zitat Voets NL, Hodgetts CJ, Sen A et al (2017) Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus. Sci Rep 7:16138PubMedPubMedCentral Voets NL, Hodgetts CJ, Sen A et al (2017) Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus. Sci Rep 7:16138PubMedPubMedCentral
42.
Zurück zum Zitat von Oertzen TJ, Gröppel G, Katletz S et al (2023) SPECT and PET in nonlesional epilepsy. Clin Epileptol 36:104–110 von Oertzen TJ, Gröppel G, Katletz S et al (2023) SPECT and PET in nonlesional epilepsy. Clin Epileptol 36:104–110
43.
Zurück zum Zitat Vos SB, Micallef C, Barkhof F, Hill A, Winston GP, Ourselin S, Duncan JS (2018) Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients. J Neuroradiol 45(6):368–373PubMedPubMedCentral Vos SB, Micallef C, Barkhof F, Hill A, Winston GP, Ourselin S, Duncan JS (2018) Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients. J Neuroradiol 45(6):368–373PubMedPubMedCentral
44.
Zurück zum Zitat Wang I, Oh S, Blümcke I, Coras R, Krishnan B, Kim S, McBride A, Grinenko O et al (2020) Value of 7T MRI and post-processing in patients with nonlesional 3T MRI undergoing epilepsy presurgical evaluation. Epilepsia 61(11):2509–2520PubMedPubMedCentral Wang I, Oh S, Blümcke I, Coras R, Krishnan B, Kim S, McBride A, Grinenko O et al (2020) Value of 7T MRI and post-processing in patients with nonlesional 3T MRI undergoing epilepsy presurgical evaluation. Epilepsia 61(11):2509–2520PubMedPubMedCentral
45.
Zurück zum Zitat Wang W, Lin Y, Wang S, Jones S, Prayson R, Moosa A et al (2019) Voxel-based morphometric magnetic resonance imaging postprocessing in non-lesional pediatric epilepsy patients using pediatric normal databases. Eur J Neurol 26(7):969–e71PubMed Wang W, Lin Y, Wang S, Jones S, Prayson R, Moosa A et al (2019) Voxel-based morphometric magnetic resonance imaging postprocessing in non-lesional pediatric epilepsy patients using pediatric normal databases. Eur J Neurol 26(7):969–e71PubMed
46.
Zurück zum Zitat Wellmer J, Knake S, Wörmann FG et al (2018) Eine Epileptologie ohne Bildgebung ist heute nicht mehr denkbar. Z Epileptol 31:85 Wellmer J, Knake S, Wörmann FG et al (2018) Eine Epileptologie ohne Bildgebung ist heute nicht mehr denkbar. Z Epileptol 31:85
47.
Zurück zum Zitat Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54(11):1977–1987 Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54(11):1977–1987
48.
Zurück zum Zitat Wisse LE, Kuijf HJ, Honingh AM et al (2016) Automated hippocampal subfield segmentation at 7T MRI. AJNR Am J Neuroradiol 37:1050–1057PubMedPubMedCentral Wisse LE, Kuijf HJ, Honingh AM et al (2016) Automated hippocampal subfield segmentation at 7T MRI. AJNR Am J Neuroradiol 37:1050–1057PubMedPubMedCentral
Metadaten
Titel
Study protocol: value of 7-T MRI with prospective motion correction and postprocessing for patients with nonlesional epilepsy
verfasst von
O. Kukhlenko
R. Kukhlenko
C. Tempelmann
O. Speck
H. Hinrichs
H.-J. Heinze
M. Heers
P. M. House
F. G. Woermann
S. Knake
H. Urbach
H.-J. Huppertz
A. Haghikia
F. C. Schmitt
Publikationsdatum
14.08.2023
Verlag
Springer Medizin
Erschienen in
Clinical Epileptology / Ausgabe 4/2023
Print ISSN: 2948-104X
Elektronische ISSN: 2948-1058
DOI
https://doi.org/10.1007/s10309-023-00618-9

Weitere Artikel der Ausgabe 4/2023

Clinical Epileptology 4/2023 Zur Ausgabe

Mitteilungen der Schweizerischen Epilepsie Liga

Mitteilungen der Schweizerischen Epilepsie Liga

Mitteilungen der Österreichischen Gesellschaft für Epileptologie

Mitteilungen der Österreichischen Gesellschaft für Epileptologie

Mitteilungen der Stiftung Michael

Mitteilungen der Stiftung Michael

Mitteilungen der Deutschen Gesellschaft für Epileptologie e. V.

Mitteilungen der Deutschen Gesellschaft für Epileptologie e. V.

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.