Skip to main content
Erschienen in: Breast Cancer Research and Treatment 2/2016

04.07.2016 | Preclinical study

Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1

verfasst von: Ming Yang, Wendi Teng, Yue Qu, Haiyong Wang, Qipeng Yuan

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) is a member of isothiocyanates, which is derived from radish seeds. It has shown that multiple isothiocyanates, such as sulforaphane, can effectively inhibit cancer cell proliferation in vitro and in vivo. However, it is still largely unknown if SFE could impact breast cancer. In this study, we investigated the anticancer effects of SFE on triple negative breast cancer (TNBC) via a series of in vitro and in vivo assays. We found that SFE can significantly inhibit cell proliferation in multiple TNBC cell lines through inducing G2/M phase arrest as well as cell apoptosis. Nude mice xenograft assays support the anti-TNBC role of SFE in vivo. Interestingly, SFE can repress expression of cyclinB1, Cdc2, and phosphorylated Cdc2, and, then, induced G2/M phase arrest of TNBC cells. To identify SFE target genes, we detected genome-wide gene expression changes through gene expression profiling and observed 27 upregulated and 18 downregulated genes in MDA-MB-453 cells treated with SFE. Among these genes, Egr1 was successfully validated as a consistently activated gene after SFE treatment in TNBC MDA-MB-453 and MDA-MB-436 cells. Egr1 overexpression inhibited proliferation of TNBC cells. However, Egr1 knockdown using siRNAs significantly promoted TNBC cell growth, indicating the tumor suppressor nature of Egr1. In sum, we for the first time found that SFE might be a potential anti-TNBC natural compound and its antiproliferation effects might be mediated by tumor suppressor Egr1.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. Cancer J Clin 65:5–29CrossRef Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. Cancer J Clin 65:5–29CrossRef
2.
Zurück zum Zitat Scalia-Wilbur J, Colins BL, Penson RT, Dizon DS (2016) Breast cancer risk assessment: moving beyond BRCA1 and 2. Semin Radiat Oncol 26:3–8CrossRefPubMed Scalia-Wilbur J, Colins BL, Penson RT, Dizon DS (2016) Breast cancer risk assessment: moving beyond BRCA1 and 2. Semin Radiat Oncol 26:3–8CrossRefPubMed
3.
Zurück zum Zitat Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application. J Clin Oncol 23:7350–7360CrossRefPubMed Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application. J Clin Oncol 23:7350–7360CrossRefPubMed
4.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61:69–90CrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61:69–90CrossRef
5.
Zurück zum Zitat Hsu YH, Yao J, Chan LC, Wu TJ, Hsu JL (2014) Definition of PKC-α, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Res 74:4822–4835CrossRefPubMedPubMedCentral Hsu YH, Yao J, Chan LC, Wu TJ, Hsu JL (2014) Definition of PKC-α, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Res 74:4822–4835CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat D’Amato NC, Rogers TJ, Gordon MA, Greene LI (2015) A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res 75:4651–4664CrossRefPubMedPubMedCentral D’Amato NC, Rogers TJ, Gordon MA, Greene LI (2015) A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res 75:4651–4664CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Witherby S, Rizack T, Sakr BJ, Legare RD, Sikov WM (2016) Advances in medical management of early stage and advanced breast cancer: 2015. Semin Radiat Oncol 26:59–70CrossRefPubMed Witherby S, Rizack T, Sakr BJ, Legare RD, Sikov WM (2016) Advances in medical management of early stage and advanced breast cancer: 2015. Semin Radiat Oncol 26:59–70CrossRefPubMed
8.
Zurück zum Zitat Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5:733–748 Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5:733–748
9.
Zurück zum Zitat Kuang P, Song D, Yuan Q, Yi R, Lv X, Liang H (2013) Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chem 136:342–347CrossRefPubMed Kuang P, Song D, Yuan Q, Yi R, Lv X, Liang H (2013) Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chem 136:342–347CrossRefPubMed
10.
Zurück zum Zitat Pocasap P, Weerapreeyakul N, Barusrux S (2013) Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). J Funct Food 5:1372–1381CrossRef Pocasap P, Weerapreeyakul N, Barusrux S (2013) Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). J Funct Food 5:1372–1381CrossRef
11.
Zurück zum Zitat Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J Agric Food Chem 56:875–883CrossRefPubMed Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J Agric Food Chem 56:875–883CrossRefPubMed
12.
Zurück zum Zitat Nastruzzi C, Cortesi R, Esposito E, Menegatti E, Leoni O, Iori R, Palmieri S (2000) In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. J Agric Food Chem 48:3572–3575CrossRefPubMed Nastruzzi C, Cortesi R, Esposito E, Menegatti E, Leoni O, Iori R, Palmieri S (2000) In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. J Agric Food Chem 48:3572–3575CrossRefPubMed
13.
Zurück zum Zitat Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138PubMed Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138PubMed
14.
Zurück zum Zitat Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986PubMed Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986PubMed
15.
Zurück zum Zitat Terry P, Wolk A, Persson I, Magnusson C (2001) Brassica vegetables and breast cancer risk. J Am Med Assoc 285:2975–2977CrossRef Terry P, Wolk A, Persson I, Magnusson C (2001) Brassica vegetables and breast cancer risk. J Am Med Assoc 285:2975–2977CrossRef
16.
Zurück zum Zitat Zhao C, Yue B, Liu H, Sun C, Li W, Qu X (2012) SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine. Toxicol Appl Pharmacol 262:293–300CrossRefPubMed Zhao C, Yue B, Liu H, Sun C, Li W, Qu X (2012) SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine. Toxicol Appl Pharmacol 262:293–300CrossRefPubMed
17.
Zurück zum Zitat Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130PubMed Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130PubMed
18.
Zurück zum Zitat Choi S, Lew KL, Xiao H, Herman-Antosiewicz A (2007) D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28:151–162CrossRefPubMed Choi S, Lew KL, Xiao H, Herman-Antosiewicz A (2007) D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28:151–162CrossRefPubMed
19.
Zurück zum Zitat Gamet Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433PubMed Gamet Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433PubMed
20.
Zurück zum Zitat Hu K, Qi YJ, Zhao J, Jiang HF, Chen X, Ren J (2013) Synthesis and biological evaluation of sulforaphane derivatives as potential antitumor agents. Eur J Med Chem 64:529–539CrossRefPubMed Hu K, Qi YJ, Zhao J, Jiang HF, Chen X, Ren J (2013) Synthesis and biological evaluation of sulforaphane derivatives as potential antitumor agents. Eur J Med Chem 64:529–539CrossRefPubMed
21.
Zurück zum Zitat Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41CrossRefPubMedPubMedCentral Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, Lachel CM, VanderWoude EA, Pennington KL, Flood LA, Bynote KK et al (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168:2113–2125CrossRefPubMedPubMedCentral Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, Lachel CM, VanderWoude EA, Pennington KL, Flood LA, Bynote KK et al (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168:2113–2125CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Ruetz S, Fabbro D, Zimmermann J, Meyer T, Gray N (2003) Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors. Curr Med Chem Anti 3:1–14CrossRef Ruetz S, Fabbro D, Zimmermann J, Meyer T, Gray N (2003) Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors. Curr Med Chem Anti 3:1–14CrossRef
24.
25.
Zurück zum Zitat Choi YH, Yoo YH (2012) Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep 28:2163–2169PubMed Choi YH, Yoo YH (2012) Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep 28:2163–2169PubMed
26.
Zurück zum Zitat Han SJ, Conti M (2006) New pathways from PKA to the Cdc2/cyclin B complex in oocytes: wee1B as a potential PKA substrate. Cell Cycle 5:227–231CrossRefPubMed Han SJ, Conti M (2006) New pathways from PKA to the Cdc2/cyclin B complex in oocytes: wee1B as a potential PKA substrate. Cell Cycle 5:227–231CrossRefPubMed
27.
Zurück zum Zitat Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799CrossRefPubMed Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799CrossRefPubMed
28.
Zurück zum Zitat Bhattacharyya S, Fang F, Tourtellotte W, Varga J (2013) Egr1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). Am J Pathol 229:286–297CrossRef Bhattacharyya S, Fang F, Tourtellotte W, Varga J (2013) Egr1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). Am J Pathol 229:286–297CrossRef
29.
Zurück zum Zitat Rong Y, Hu F, Huang RP, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1 – independent mechanisms. Cancer Res 66:7067–7074CrossRefPubMedPubMedCentral Rong Y, Hu F, Huang RP, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1 – independent mechanisms. Cancer Res 66:7067–7074CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr1. J Cell Physiol 193:287–292CrossRefPubMed Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr1. J Cell Physiol 193:287–292CrossRefPubMed
31.
Zurück zum Zitat Redmond KL, Crawford NT, Farmer H, D’Costa ZC, O’Brien GJ, Buckley NE (2010) T-box 2 represses NDRG1 through an Egr1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene 29:3252–3262CrossRefPubMed Redmond KL, Crawford NT, Farmer H, D’Costa ZC, O’Brien GJ, Buckley NE (2010) T-box 2 represses NDRG1 through an Egr1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene 29:3252–3262CrossRefPubMed
Metadaten
Titel
Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1
verfasst von
Ming Yang
Wendi Teng
Yue Qu
Haiyong Wang
Qipeng Yuan
Publikationsdatum
04.07.2016
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 2/2016
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3888-7

Weitere Artikel der Ausgabe 2/2016

Breast Cancer Research and Treatment 2/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.