Skip to main content
Erschienen in: Archives of Orthopaedic and Trauma Surgery 2/2024

Open Access 25.11.2023 | Trauma Surgery

Surprise positive culture rate in the treatment of presumed aseptic long-bone nonunion: a systematic review with meta-analysis of 2397 patients

verfasst von: Robert Kaspar Wagner, Clinton Hugo van Trikt, Caroline E. Visser, Stein J. Janssen, Peter Kloen

Erschienen in: Archives of Orthopaedic and Trauma Surgery | Ausgabe 2/2024

Abstract

Introduction

In pre-operatively presumed aseptic nonunions, the definitive diagnosis of infection relies on intraoperative cultures. Our primary objective was to determine (1) the rate of surprise positive intraoperative cultures in presumed aseptic long-bone nonunion (surprise positive culture nonunion), and (2) the rate of surprise positive cultures that represent infection vs. contamination. Secondary objectives were to determine the healing and secondary surgery rates and to identify cultured micro-organisms.

Materials and Methods

We performed a systematic literature search of PubMed, Embase and Cochrane Libraries from 1980 until December 2021. We included studies reporting on ≥ 10 adult patients with a presumed aseptic long-bone nonunion, treated with a single-stage surgical protocol, of which intraoperative cultures were reported. We performed a meta-analysis for: (1) the rates of surprise positive culture nonunion, surprise infected nonunion, and contaminated culture nonunion, and (2) healing and (3) secondary surgery rates for each culture result. Risk of bias was assessed using the QUADAS-2 tool.

Results

21 studies with 2,397 patients with a presumed aseptic nonunion were included. The rate of surprise positive culture nonunion was 16% (95%CI: 10–22%), of surprise infected nonunion 10% (95%CI: 5–16%), and of contaminated culture nonunion 3% (95%CI: 1–5%). The secondary surgery rate for surprise positive culture nonunion was 22% (95%CI: 9–38%), for surprise infected nonunion 14% (95%CI 6–22%), for contaminated culture nonunion 4% (95%CI: 0–19%), and for negative culture nonunion 6% (95CI: 1–13%). The final healing rate was 98% to 100% for all culture results. Coagulase-negative staphylococci accounted for 59% of cultured micro-organisms.

Conclusion

These results suggest that surprise positive cultures play a role in the clinical course of a nonunion and that culturing is important in determining the etiology of nonunion, even if the pre-operative suspicion for infection is low. High healing rates can be achieved in presumed aseptic nonunions, regardless of the definitive intraoperative culture result.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Presence of infection is an important factor in the treatment of long-bone nonunions [1]. Infected nonunions are often managed with staged surgical treatment, whereas presumed aseptic nonunions are treated in a single stage [2, 3]. Infection can be confirmed pre- or intraoperatively in the presence of signs such as a fistula or sinus, wound breakdown, and purulent drainage or presence of pus [4]. Other factors considered are elevated serum inflammatory markers, radiological signs and suggestive local and systemic signs of infection such as erythema or fever. However, these factors are merely suggestive as they lack accuracy, specifically in detecting low-grade infections [57]. Consequently, if clinical signs of infection are absent, a nonunion is often presumed aseptic and in these cases, the definitive diagnosis of infection relies on intraoperative cultures from the nonunion site.
Several studies have reported on the rate and outcomes of nonunions that exhibit no clinical and/or laboratory signs of infection but reveal positive intraoperative cultures (referred to as “surprise” positive cultures) [810]. However, amongst these studies the definitions of presumed aseptic nonunions vary, as do local protocols for detection and treatment of positive cultures.
Therefore, our primary objective was to determine (1) the rate of “surprise” positive intraoperative cultures in presumed aseptic long-bone nonunion (surprise positive culture nonunion), and (2) the rate of “surprise” positive cultures that represent an infection (surprise infected nonunion) vs. a contamination (contaminated culture nonunion). Our secondary objectives were to determine the healing and secondary surgery rate for each culture result and to identify the cultured micro-organisms.

Materials and methods

Eligibility criteria

We included studies that reported on a (1) prospective or retrospective cohort of (2) ≥ 10 adult patients with a (3) presumed aseptic long-bone (clavicle, humerus, ulna, radius, femur or tibia) nonunion based on at least a clinical assessment, (4) treated with a single-stage surgical protocol, and (5) of which intraoperative cultures were reported. We excluded (1) review articles, (2) letters to the editor, (3) meeting abstracts, (4) technique papers, (5) studies not published in English, and (6) laboratory, cadaveric or animal studies.
We searched MEDLINE (PubMed), Embase (OVID) and the Cochrane Database of Systematic Reviews and Central Register of Controlled Trials from 1980 until December 2021. The search syntax was based on terms including “nonunion”, “surgery”, and “infection” (Appendix 1). References of included studies were checked for publications missed by our search.

Selection of studies

After duplicate removal, two reviewers (RW and CT) independently screened title and abstracts of the search results using the Rayyan web Application [11]. The same researchers independently assessed all full texts to confirm eligibility. Disagreements were resolved by consensus. If no consensus was reached, a third author (SJ) was consulted.

Data collection

We extracted patient numbers for (1) presumed aseptic nonunions, (2) surprise positive culture nonunions, (3) surprise infected nonunions, (4) contaminated culture nonunions, and (5) negative culture nonunions. A surprise positive culture nonunion is defined as a presumed aseptic nonunion that reveals at least one surprise positive culture (regardless of representing an infection or contamination). A surprise infected nonunion is a presumed aseptic nonunion with a positive culture that represents an infection based on local study definitions (e.g., at least two cultures were positive) or has received treatment accordingly (e.g., long-term antibiotics). A contaminated culture nonunion is a presumed aseptic nonunion with a surprise positive culture that represents a contamination based on local study definitions and has therefore not received any treatment for infection.
For each culture result, we extracted the number of healed nonunions (at final follow-up) and nonunions requiring secondary surgeries (surgeries performed after the index procedure and before healing occurred). We collected numbers and types of cultured micro-organisms. We identified local protocols to differentiate between presumed septic and aseptic nonunion pre-operatively (with fracture-related infection [12] criteria as reference), and surprise infected nonunion and contaminated culture nonunion postoperatively. We also extracted culture and antimicrobial treatment strategies. Other data collected were: year of publication, study design, age and sex of included subjects, and anatomic region of the nonunions. Two reviewers (RK and CT) extracted data in Excel version 16.53 (Microsoft Corp., Redmond, WA, USA). Data extracted by one reviewer were checked by the other reviewer. Disagreement was resolved by consensus.

Risk of bias assessment

Two reviewers (RK and CT) independently determined the risk of bias using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2 [13]). We modified the tool to fit the purpose of our study (Appendix 2), and used four domains: (1) patient selection, (2) index test (pre-operative assessment of infection), (3) reference standard (culture protocol), and (4) flow and timing. Two or more criteria were established for each domain. Each criterium was scored “yes”, “no”, or “unclear” and each domain was then scored as having a “high”, “low” or “unclear” risk of bias. No overall judgement of risk of bias was performed. Discrepancies were discussed until consensus was reached or by consulting a third reviewer (SJ).

Synthesis methods

We performed a meta-analysis for: (1) rate of surprise positive culture nonunion, surprise infected nonunion and contaminated culture nonunion, and (2) healing and (3) secondary surgery rates for each culture result. Pooling of studies was performed in case ≥ 3 studies reported on the same outcome. An inverse variance, random effects model (DerSimonian and Laird method) was used for this purpose. This means that studies were weighted in inverse proportion to their variance to minimize the imprecision of the pooled effect estimate and that studies were allowed to have other factors (i.e. different populations, designs) contribute to the effect estimate [14]. To include effect estimates close to 0 or 100% the Freeman–Tukey double arcsine transformation was used [15]. The pooled effect estimates is presented as a percentage with a 95% confidence interval (CI). Stata version 17.0 (StataCorp., College Station, TX, USA) was used for meta-analyses and the accompanying forest plots and heterogeneity test (I2).

Results

Our search yielded 14,729 articles and after duplicate removal 9354 articles remained. The full texts of 384 studies were reviewed for inclusion. A total of 21 studies were included (Fig. 1).

Study characteristics

The 21 studies included a total of 2397 patients (median: 49, range: 12–898) with a presumed aseptic nonunion (Table 1). Sex distribution was 62% males and 38% females based on 13 (61%) studies. Average ages ranged from 35 [16] to 50 [17] years. The most common anatomic location of presumed aseptic nonunions were the tibia (43%) and femur (40%).
Table 1
Individual study characteristics
Author
Year
Title
Design
Country
Total number of patients
Male (%)
Female (%)
Average age (range)
Tibia
Fibula
Tibia/fibula
Femur
Clavicle
Humerus
Radius/ulna
Other
only non-operative treatment (%)
infection history (%)
open fracture (%)
Amorosa et al. [9]
2013
A Single-Stage Treatment Protocol for Presumptive Aseptic Diaphyseal Nonunions: A Review of Outcomes
retrospective
United States
104
50
(14–96)
38
0
0
35
3
24
4
0
no
no
yes (25%)
Arsoy et al. [10]
2018
Outomes of Presumed Aseptic Long-Bone Nonunions With Positive Intraoperative Cultures Through a Single-Stage Surgical Protocol
retrospective
United States
898
no
yes (unknown %)
Bilgili et al. [24]
2020
Acute correction and intramedullary nailing of aseptic oligotrophic and atrophic tibial nonunions with deformity
retrospective
Turkey
17
12 (71)
5 (29)
36
(19–49)
17
0
0
0
0
0
0
0
no
no
yes (82%)
Fragomen et al. [25]
2019
The PRECICE magnetic IM compression nail for long bone nonunions:
a preliminary report
retrospective
United States
14
9 (64)
5 (36)
49
5
0
0
9
0
0
0
0
no
yes (35%)
yes (43%)
Gille et al. [20]
2012
Is non-union of tibial shaft fractures due to nonculturable bacterial pathogens? A clinical investigation using PCR and culture techniques
retrospective
Germany
23
15 (65)
8 (35)
47
(20–82)
23
0
0
0
0
0
0
0
yes (36%)
Hackl et al. [26]
2021
The role of low-grade infection in the pathogenesis of apparently aseptic tibial shaft nonunion
retrospective
Germany
88
69 (78)
19 (22)
46
(18–81)
88
0
0
0
0
0
0
0
no
no
yes (42%)
Kim et al. [27]
2014
Indolent infection in nonunion of the distal femur
retrospective
Republic of Korea
22
12 (55)
10 (45)
44
(17–67)
0
0
0
22
0
0
0
0
no
no
yes (45%)
Mills et al. [18]
2016
The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection
retrospective
United Kingdom
75a
yes (unknown %)
yes (11%)
yes (unknown %)
Moghaddam et al. [29]
2017
Treatment of atrophic femoral non-unions according to the diamond concept: Results of one- and two-step surgical procedure
retrospective
Germany
41b
22 (54)
19 (46)
44
(19–76)
0
0
0
41
0
0
0
0
no
yes (20%)
Moghaddam et al. [3]
2015
Treatment of atrophic tibia non-unions according to 'diamond concept': Results of one- and two-step treatment
retrospective
Germany
49b
32 (65)
17 (35)
46
(15–76)
49
0
0
0
0
0
0
0
yes (2%)
yes (33%)
Hierholzer et al. [19]
2006
Plate Fixation of Ununited Humeral Shaft Fractures: Effect of Type of Bone Graft on Healing
retrospective
United States
78
27 (35)
51 (65)
0
0
0
0
0
78
0
0
yes (51%)
yes (5%)
yes (unknown %)
Morgenstern et al. [21]
2018
The value of quantitative histology in the diagnosis of fracture-related infection
unclear
United Kingdom
114c
yes (unknown %)
yes (unknown %)
Mittal et al. [28]
2021
Management of Refractory Aseptic Subtrochanteric Non-union by Dual Plating
retrospective
India
12
6 (50)
6 (50)
43
(18–65)
0
0
0
12
0
0
0
0
no
Olszewski et al. [8]
2016
Fate of Patients With a "Surprise" Positive Culture After Nonunion Surgery
retrospective
United States
453
yes (unknown %)
yes (unknown %)
yes (unknown %)
Otchwemah et al. [30]
2020
High prevalence of bacteria in clinically aseptic non-unions of the tibia and the femur in tissue biopsies
retrospective
Germany
18
44
11
0
0
7
0
0
0
0
no
yes (50%)
Schulz et al. [32]
2009
Is the Wave Plate Still a Salvage Procedure for Femoral Non-union? Results of 75 Cases Treated with a Locked Wave Plate
retrospective
Germany
75
57 (76)
18 (24)
44
(17–81)
0
0
0
75
0
0
0
0
no
yes (35%)
Tanner et al. [22]
2021
The Influence of an Occult Infection on the Outcome of Autologous Bone Grafting During Surgical Bone Reconstruction: A Large Single-Center Case–Control Study
retrospective
Germany
109b
no
yes (unknown %)
Shin et al. [31]
2021
Is open bone graft always necessary when treating aseptic subtrochanteric nonunion with a reamed intramedullary nail?
retrospective
Republic of Korea
37
22 (59)
15 (41)
0
0
0
37
0
0
0
0
no
no
no
Tosounidis et al. [23]
2021
Can CRP Levels Predict Infection in Presumptive Aseptic Long Bone Non-Unions? A Prospective Cohort Study
prospective
United Kingdom
105
59 (56)
46 (44)
47
(16–92)
37
0
0
56
0
0
0
12
no
Wenter et al. [17]
2016
[18F] FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation
retrospective
Germany
25d
50
17
4
2
7
0
1
0
4
yes (25%)
Zelle et al. [16]
2003
Exchange Reamed Nailing for Aseptic Nonunion of the Tibia
retrospective
United States
40
30 (75)
10 (25)
35.1
40
0
0
0
0
0
0
0
no
no
yes (68%)
Total
2397
62%
38%
325
4
2
301
3
103
4
16
awe included all patients without active ongoing infection. This included patients with previous treatment for infection who were considered to be free of infection
bwe only included patients that received single stage treatment
cwe only included patients of which infection was not confirmed by clinical appearance
dwe only included patients of which tissue cultures were taken
–: missing / not reported
Four (19%) studies [3, 8, 18, 19] included patients that had not been treated surgically prior to the index procedure. Six (29%) studies [10, 17, 2023] did not provide this information. In the remaining 11 studies [9, 16, 2432] patients had undergone at least one prior surgical procedure.
Six (29%) studies [8, 1719, 21, 25] included patients with a history of infection (range of patients with prior infection: 5% [19] to 36% [25]). Six (29%) studies [3, 20, 2830, 32] did not report on infection history. In the nine remaining studies patients with history of infection were not included [9, 10, 16, 2224, 26, 27, 31].
Seventeen (81%) studies [3, 810, 16, 1822, 2427, 29, 30, 32] included patients with initially open fractures (range of patients with open fracture: 20% [29] to 82% [24]). Three  studies [17, 23, 28] did not report this and one study [31] only included patients with closed fractures.

Risk of bias

For each of the four domains, less than 25% of studies had a high risk of bias. The lowest risk of bias was found for the index test (pre-operative assessment of infection) with 75% of studies having a low risk of bias (Fig. 2 and appendix 3). Although the clinical assessment generally lacked a detailed description, for most studies it was clear if infection was ruled out based on suggestive (e.g., laboratory values) and confirmatory signs, or only on confirmatory signs. An unclear risk of bias was found for the reference standard (cultures from the nonunion site), with 71% of studies having an unclear risk of bias. In general, there was a low concern that studies were not applicable for patient selection and the index test. The concern for applicability was high in 48% of studies for the reference standard.

Outcomes

Rate of surprise positive cultures, surprise infected nonunions and contaminated cultures

The rate of surprise positive cultures was 16% (10–22%, Fig. 3a, 19 studies and 2183 patients) (Table 2). The rate of surprise infected nonunions was 10% (5–16% Fig. 3b, 17 studies and 2160 patients). The rate of contaminated culture nonunions was 3% (1–5% Fig. 3c, 15 studies and 1964 patients). Note that due to underlying data the cumulative percentage of surprise infected nonunions and contaminated culture nonunions is not the same as the total number of surprise positive culture nonunions (i.e., some studies did not differentiate between infection vs. contamination whereas others only provided the rate of surprise infected nonunions, see Table 2).
Table 2
Individual study results
Study
Culture results
Final union rate
Secondary surgery rates for persistent nonunion
Author
Year
Culture positive nonunion
Infected nonunion
Contaminated culture nonunion
Culture positive nonunion
Infected nonunion
Contaminated culture nonunion
Culture negative nonunion
Culture positive nonunion
Infected nonunion
Contaminated culture nonunion
Culture negative nonunion
Amorosa et al. [9]
2013
28%
24%
4%
100%
100%
100%
28%
33%
0%
6%
Arsoy et al. [10]
2018
9%
6%
3%
99%
100%
96%
18%
22%
12%
Bilgili et al. [24]
2020
18%
0%
18%
100%
100%
100%
33%
33%
21%
Fragomen et al. [25]
2019
14%
14%
0%
100%
100%
92%
0%
0%
17%
Gille et al. [20]
2012
0%
0%
0%
Hackl et al. [26]
2021
42%
97%
100%
57%
29%
Kim et al. [27]
2014
14%
9%
5%
100%
100%
100%
100%
33%
50%
0%
0%
Mills et al. [18]
2016
19%
17%
1%
Moghaddam et al. [29]
2017
15%
5%
10%
100%
100%
100%
94%
Moghaddam et al. [3]
2015
18%
56%
90%
Hierholzer et al. [19]
2006
1%
1%
0%
100%
100%
99%
0%
0%
1%
Morgenstern et al. [21]
2018
42%
25%
13%
Mittal et al. [28]
2021
0%
0%
0%
100%
0%
Olszewski et al. [8]
2016
20%
18%
2%
92%
95%
63%
100%
22%
20%
4%
Otchwemah et al. [30]
2020
44%
11%
33%
Schulz et al. [32]
2009
16%
100%
100%
Tanner et al. [22]
2021
27%
86%
Shin et al. [31]
2021
0%
0%
0%
89%
Tosounidis et al. [23]
2021
37%
100%
Wenter et al. [17]
2016
48%
Zelle et al. [16]
2003
3%
3%
0%
100%
100%
95%
0%
0%
3%
For studies that did not provide an explicit differentiation between contaminated cultures and infected nonunions we considered cases with a surprise positive culture that were treated for infection as infected (e.g., long-term antibiotics)
–: missing / not reported

Secondary surgery rate for persistent nonunion

The rate of secondary surgery for nonunions with a surprise positive culture was 22% (9–38%, Fig. 4a, 9 studies and 240 patients), for surprise infected nonunions 14% (6–22%, Fig. 4b, 7 studies and 161 patients), for contaminated culture nonunions 4% (0–19% Fig. 4c, 4 studies and 34 patients), and for negative culture nonunions 6% (1–13%, Fig. 4d, 9 studies and 648 patients).

Final healing rate

For nonunions with a surprise positive culture, the final healing rate was 100% (98–100%, Fig. 5a), based on 12 studies and 267 patients. For surprise infected nonunions, this was 100% (100–100%, Fig. 5b), based on 10 studies and 231 patients. For contaminated culture nonunions, this was 98% (87–100%, Fig. 5c), based on six studies and 46 patients. For negative culture nonunions, this was 98% (95–100%, Fig. 5d), based on 12 studies and 761 patients.

Cultured micro-organisms

We did not differentiate the identified micro-organisms between those found in definitive “surprise” infected nonunions and in contaminated cultures. Fifteen (71%) studies described the numbers of micro-organisms that were cultured [3, 810, 16, 17, 19, 21, 23, 24, 26, 27, 29, 30, 32]. The most common genus cultured was Staphylococcus (72%), followed by Cutibacterium (15%) (Table 3 and Fig. 6). Coagulase-negative staphylococci (CoNS) accounted for 59% of all cultured micro-organisms.
Table 3
Cultured micro-organisms
Species (in case not specified, the genus is displayed)
% of surprise positive culture nonunions with the micro-organism
Coagulase-negative staphylococci (unspecified)
38.1%
Staphylococcus epidermidis
12.7%
Methicillin-sensitive Staphylococcus aureus
10.1%
Cutibacterium acnesa
9.3%
Cutibacterium (unspecified)b
6.0%
Staphylococcus capitis
4.2%
Enterococcus (faecalis & faecum combined)
2.8%
Methicillin-resistant Staphylococcus aureus
2.6%
Pseudomonas (unspecified)
2.3%
Bacillus
1.5%
Staphylococcus (unspecified)
1.0%
Staphylococcus hominis
1.0%
Peptostreptococcus (unspecified)
1.0%
Streptococcus viridans
0.9%
Clostridium (unspecified)
0.7%
Enterobacter cloacae
0.7%
Streptococcus agalactiae
0.6%
Staphylococcus haemolyticus
0.8%
Staphylococcus lugdunensis
0.5%
Candida (unspecified)
0.3%
Fungi: Aspergillus (unspecified)
0.3%
Escherichia coli
0.3%
Staphylococcus simulans
0.3%
Staphylococcus oralis
0.3%
Staphylococcus cohnii
0.3%
Staphylococcus caprae
0.3%
Serratia (unspecified)
0.3%
Prevotella buccae
0.3%
Peptostreptococcus prevotii
0.2%
Total
100%
aIncludes micro-organisms described as the formerly known Propionibacterium acnes[47]
bIncludes micro-organisms described as Propionibacterium without further specification, assuming that unspecified Propionibacterium would consist mostly of cutaneous species, that are now classified as Cutibacterium[47]

Differentiation between presumed septic and aseptic nonunion pre-operatively

Eight (38%) studies [3, 9, 10, 17, 21, 27, 29, 30] described explicit clinical criteria in the pre-operative assessment of infection (Table 4). Of these, Morgenstern et al. [21] only used confirmatory clinical criteria rule out infection. The remaining seven studies (also) used suggestive clinical criteria (i.e., erythema, fever, hyperthermia). Of these seven studies, four studies [3, 27, 29, 30] described only suggestive criteria, however it is to assume that in these studies patients with confirmatory clinical signs of infection would not have been presumed aseptic.
Table 4
Differentiation between presumed septic and aseptic nonunion pre-operatively
 
Confirmatory criteria
Suggestive criteria
 
Author
Year
Description of clinical assessment
Fistula/sinus
Wound breakdown
Purulent drainage / presence of pus
Pain
Erythema
Swelling
Local hyperthermia
Fever
Non-purulent drainage
Radiological signs
Laboratory values
Amorosa et al. [9]
2013
Surrounding erythema over the scar, fluctuence, drainage or sinus
yes
yes
yes
yes
Arsoy et al. [10]
2018
Fever, draining wound, and sinus
yes
yes
yes
Bilgili et al. [24]
2020
Clinical evidence for infection
  
yes
Fragomen et al. [25]
2019
Active infection
  
yes
Gille et al. [20]
2012
Clinical signs of infection
  
Hackl et al. [26]
2021
Clinical evidence for local infection
  
Kim et al. [27]
2014
Physical signs of erythema or local heat around the scar
yes
-
yes
yes
Mills et al. [18]
2016
Clinical suspicion for infection
    
yes
Moghaddam et al. [29]
2017
Clinical signs of infection (warmth, swelling and redness)
yes
yes
yes
Moghaddam et al. [3]
2015
Clinical signs of infection (warmth, swelling and redness)
yes
yes
yes
Hierholzer et al. [19]
2006
Clinical evidence of infection
  
yes
yes
Morgenstern et al. [21]
2018
Fracture related infection confirmatory criteria: fistula, sinus, wound breakdown, purulent drainage or the presence of pus
yes
yes
yes
Mittal et al. [28]
2021
Clinical examination
  
yes
yes
Olszewski et al. [8]
2016
Clinical evidence for infection
   
yes
Otchwemah et al. [30]
2020
Local hyperaemia, warmth, swelling, and pain on palpation
yes
yes
yes
yes
Schulz et al. [32]
2009
Clinical signs of infection
  
Tanner et al. [22]
2021
Soft tissue, mechanical stability and function
  
yes
Shin et al. [31]
2021
Clinical examination
  
yes
Tosounidis et al. [23]
2021
Local and/or systemic signs of infection
  
Wenter et al. [17]
2016
Local fistulas or pyrophoric wounds, erythema, and/or hyperthermia
yes
yes
yes
Zelle et al. [16]
2003
Clinical markers
  
yes
Variables are based on recently published fracture-related infection (FRI) consensus criteria
Names of individual FRI criteria are shortened for presentation purposes
Yes: explicitly described in assessment
–: not described in assessment
Blank: no detailed description of clinical criteria provided
The 13 (62%) remaining studies did not explicitly describe the clinical criteria used in the assessment (i.e., presumed aseptic nonunion defined by the absence of “clinical signs of infection” or “active infection”). Ten (48%) studies [8, 16, 18, 19, 22, 24, 25, 27, 28, 31] described the use of laboratory values and two (10%) studies [19, 28] the use of radiological findings to rule out infection pre-operatively.

Local culture strategy

Eleven (52%) of studies provided information on culture protocols (Table 5). Four (19%) studies [9, 10, 22, 23] reported taking at least five cultures. Five (24%) studies [18, 20, 22, 26, 30] described culturing for at least 14 days. In two studies [26, 27] antibiotics were administered before cultures were taken. One study used sonication as a separate culture result [21].
Table 5
Local culture protocols, and differentiation and treatment for surprise infected nonunions 
  
Culture protocol
Differention between infection and contamination
Treatment
Author
Year
Antibiotics administered before culture samples are taken?
Number of culture samples taken during surgery
Minimal duration of culturing (days)
Definition of contamination vs infection provided
Consultation with infectious disease specialist
Differentiation based on number of positive cultures
Treatment for surprise infected nonunions without clinical signs of infection
Amorosa et al. [9]
2013
no
5
yes
yes
yes
 ≥ 2 = infected
Antibiotics
Arsoy et al. [10]
2018
no
 ≥ 5
yes
yes
yes
2 = contaminated or infected
3 = infected
Antibiotics
Bilgili et al. [24]
2020
no
Fragomen et al. [25]
2019
no
Antibiotics
Gille et al. [20]
2012
no
 ≥ 3
14
no
Hackl et al. [26]
2021
yes
4
 ≥ 14
yes
no
yes, ≥ 2 = infected
Antibiotics
Kim et al. [27]
2014
yes
3–5
yes
yes
yes, ≥ 2 = infected
Antibiotics
Mills et al. [18]
2016
no
 ≥ 3
14
yes
no
yes, ≥ 2 = infected
Moghaddam et al. [29]
2017
no
Antibiotics
Moghaddam et al. [3]
2015
no
Hierholzer et al. [19]
2006
no
Antibiotics
Morgenstern et al. [21]
2018
no
3–5a
yes
no
yes, ≥ 2 = infected
Mittal et al. [28]
2021
no
Olszewski et al. [8]
2016
 ≥ 3
 ≥ 5
yes
yes
no
Antibiotics
Otchwemah et al. [30]
2020
no
multiple
14
yes
no
yes
 ≥ 2 = infected
Schulz et al. [32]
2009
no
Tanner et al. [22]
2021
no
 ≥ 5
14
yes
yes
yes
 ≥ 2 = infected
Shin et al. [31]
2021
no
no
Tosounidis et al. [23]
2021
no
 ≥ 5
yes
yes
unclear
Antibiotics
Wenter et al. [17]
2016
no
Zelle et al. [16]
2003
no
Antibiotics
asonication results were considered a separate culture result
Blank: missing/not reported

Differentiation between infection and contamination

Ten studies (48%) explicitly provided a differentiating definition for infection and contamination (Table 5), of which eight studies [9, 10, 18, 21, 22, 26, 27, 30]  required at least two cultures to be positive to deem a nonunion as infected and six studies [810, 22, 23, 27] described consultation with an infectious disease specialist.

Antimicrobial therapy

None of the studies reported on the use of empirical antibiotics beyond the perioperative period whilst awaiting culture results. Ten (48%) studies [810, 16, 19, 23, 2527, 29] reported treating patients with a surprise infection primarily with antibiotics, if clinical signs of infection remained absent. This information was not provided by the remaining studies (Table 5).

Discussion

The surgical treatment protocol for a long-bone nonunion largely depends on the absence or presence of infection. If confirmatory clinical signs of infection are absent, a nonunion is often presumed aseptic. We established that, in these cases, surprise positive cultures occur in approximately 1 in 6, and surprise infected nonunions in 1 in 10 patients. We found that 1 in 5 patients with a surprise positive culture nonunion and 1 in 7 patients with a surprise infected nonunion required secondary revision surgery, compared to 1 in 17 patients with a negative culture nonunion. It may be possible that revision surgery was performed only because a positive culture was found. However, studies primarily initiated antibiotic treatment specific to the identified micro-organisms in case of a surprise infected nonunion that remained without clinical signs of infection. The need for additional surgery may be explained by the fact that none of the studies reported an empiric antibiotic treatment protocol until cultures return. Staphylococci – which were the most cultured micro-organisms – are able to develop a biofilm within days, which can only be eradicated by removal or exchange of implants and biofilm active antibiotic therapy (e.g., rifampicin) [35, 36]. In addition, vascularity of nonunions may be compromised, which limits local penetration of systemic antibiotics. Consequently, initiating antibiotic treatment only after cultures return might be beyond the “window of opportunity”. For confirmed FRIs, it is therefore recommended that surgical debridement should be followed by empiric broad spectrum intravenous antimicrobial therapy [37, 38]. In this systematic review, we found that final healing rates are close to 100% for presumed aseptic nonunions regardless of the culture result, and despite none of the studies reporting empiric antibiotic treatment. This would suggest that the combination of antibiotics tailored to the micro-organism(s) found with additional revision surgery is effective and that empiric broad-spectrum antibiotics may not be necessary. This is important in the context of antibiotic stewardship, cost-reduction, and prevention of side-effects. Further studies have to assess the local epidemiology, antibiotic resistance rates, and patient characteristics of surprise infected nonunions to establish tailored protocols [38].
We aimed to compare the criteria to define a presumed aseptic nonunion against the FRI criteria [4]. However, over 60% of studies did not specify these criteria. This is problematic as these descriptions (e.g., “clinical signs of infection” or “active infection”) may reflect both confirmatory or suggestive clinical signs of infection and therefore do not represent a repeatable threshold. Of the studies that did specify the criteria, most excluded patients based on suggestive clinical signs for infection. In general, a limitation of the suggestive FRI criteria is that some criteria (e.g., pain, swelling, redness, bone lysis around implants) may also be a result of the nonunion itself. Half of studies used laboratory values to rule out infection pre-operatively. The accuracy of these diagnostic test remains debatable. The study of Tosounidis et al. found 26% surprise infected nonunions, even if CRP was normal [23]. Hackl et al. found no significant differences in laboratory values between surprise infected nonunion and negative culture nonunions [26]. Others have also confirmed that laboratory values are not accurate to diagnose low-grade infection [5]. These findings show that adequate pe-operative diagnosis of infection remains difficult if confirmatory signs of infection are absent. Nonunion may even be the only symptom of the infection in these cases.
Given these findings, the definitive diagnosis of infection still heavily relies on intraoperative cultures. We found that only half of the studies reported a culture strategy protocol, and these protocols often lacked detail. Consequently, the protocols did not meet current recommendations [1, 4, 39]. Inappropriate sampling may underestimate (e.g., inadequate or insufficient samples, or short culture duration) the rate of surprise infected nonunions. It is recommended to take at least five cultures from the bone-implant interface directly after the incision and incubate these for 10–14 days [4]. Only four studies reported taking five or more cultures and only five studies reported long-term culturing. Long-term culturing is important to detect slow growing micro-organisms, such as Cutibacterium species and Coagulase-negative staphylococci [4042]. Consequently, the prevalence of slow growing micro-organisms might be underestimated. Nevertheless, we found that over half of the identified micro-organisms were low virulent Coagulase-negative staphylococci [43]. Indeed, late (inherent to a nonunion) infections are most often caused by a low virulent micro-organism [35, 39]. Interestingly, 12% of infections were still caused by virulent Staphylococcus aureus. These micro-organisms may cause a low-grade infection when a low inoculum is introduced during the initial trauma or earlier surgery [35]. Although from the data of the present study it cannot be determined if a surprise infection truly causes nonunion, our findings do suggest that in order to adequately determine the etiology of a nonunion, prolonged culturing is necessary.
After cultures return positive, it is important to differentiate between contamination and infection as this has consequences for the treatment strategy. Only half of the studies explicitly reported criteria for such a differentiation. Most of these studies required two or more cultures to be positive to deem a nonunion as infected. This is in line with recent recommendations [4]. This is justifiable when comparing the secondary surgery rate for contaminated culture nonunions (4%, 95%CI 0–19%) and negative culture nonunions (6%, 95%CI: 1–13%).
Our study has several limitations. First, the major limitation of this study is that – although presented as single population – presumed aseptic nonunions are naturally a heterogenous group with varying characteristics; which is inherently demonstrated by our results. Accordingly, the included studies varied in patient history (e.g., infection or surgical history, open fractures), in definition of presumed aseptic nonunion, and in culture protocols. These differences may explain the substantial statistical heterogeneity we found in our meta-analysis of pooled rate [14]. Clinicians should therefore interpret these results in light of their own definitions for a presumed aseptic nonunion. Second, we excluded many studies because the authors did not report on intraoperative culture results. Reporting on intraoperative cultures may have been omitted if no positive cultures are found, which is considered publication bias. Similarly, publication bias may lead to an overestimation of the union rate as authors tend to publish successful treatment results. Third, we included studies that were published within a large timeframe (e.g., we also included studies published twenty years ago). Since then, treatment and diagnostic strategies have evolved and this may influence individual study results. Fourth, the majority of presumed aseptic nonunions affected the lower extremity. Upper extremity FRIs are often caused by different organisms (e.g., Cutibacterium acnes [44, 45]) and this limitation should be considered when extrapolating results to other anatomic regions. Last, we were unable to stratify the cultured micro-organisms into causative versus contaminant as this was not consistently reported by the individual studies.

Conclusion

We found that in presumed aseptic nonunion cases, surprise positive intraoperative cultures occur in approximately 1 in 6 patients and surprise infections in 1 in 10 patients. The cultured organisms are most often of low virulence and Coagulase-negative staphylococci account for 59% of all cultured micro-organisms. Patients with a surprise positive culture and surprise infection require secondary surgeries more often compared to patients with a negative culture nonunion, although final healing rates are comparably high. Combined, these findings suggest that surprise positive cultures play a role in the clinical course of a nonunion, that (long-term) culturing is important in determining the etiology of nonunion even if the pre-operative suspicion for infection is low, and that eventually high healing rates can be achieved in presumed aseptic nonunions, regardless of the definitive intraoperative culture result.

Other information

Protocol and registration

We use the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for designing and reporting systematic reviews [46]. We registered our protocol on PROSPERO (registration number: CRD42021251319) prior to study selection. We made one protocol deviation as we performed our meta-analysis with STATA and included a Freeman–Tukey double arcsine transformation to include studies in which proportions are equal to 0 or 100% [15].

Acknowledgements

We thankfully acknowledge the assistance of Faridi S. van Etten-Jamaludin in helping us with constructing and executing the search strategy.

Declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical approval

This study is a systematic review and ethical approval is therefore not required.
This study is a systematic review and informed consent is therefore not required.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Metsemakers WJ, Morgenstern M, Senneville E et al (2020) General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg 140(8):1013–1027PubMedCrossRef Metsemakers WJ, Morgenstern M, Senneville E et al (2020) General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg 140(8):1013–1027PubMedCrossRef
2.
Zurück zum Zitat Patzakis MJ, Zalavras CG (2005) Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. JAAOS - J Am Acad Orthop Surg 13(6):417–427PubMedCrossRef Patzakis MJ, Zalavras CG (2005) Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. JAAOS - J Am Acad Orthop Surg 13(6):417–427PubMedCrossRef
3.
Zurück zum Zitat Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G (2015) Treatment of atrophic tibia non-unions according to ‘diamond concept’: results of one- and two-step treatment. Injury 46:S39–S50PubMedCrossRef Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G (2015) Treatment of atrophic tibia non-unions according to ‘diamond concept’: results of one- and two-step treatment. Injury 46:S39–S50PubMedCrossRef
4.
Zurück zum Zitat Govaert GAM, Kuehl R, Atkins BL et al (2020) Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma 34(1):8–17PubMedCrossRef Govaert GAM, Kuehl R, Atkins BL et al (2020) Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma 34(1):8–17PubMedCrossRef
5.
Zurück zum Zitat Sigmund IK, Dudareva M, Watts D, Morgenstern M, Athanasou NA, McNally MA (2020) Limited diagnostic value of serum inflammatory biomarkers in the diagnosis of fracture-related infections. Bone Joint J 102-b(7):904–911PubMedCrossRef Sigmund IK, Dudareva M, Watts D, Morgenstern M, Athanasou NA, McNally MA (2020) Limited diagnostic value of serum inflammatory biomarkers in the diagnosis of fracture-related infections. Bone Joint J 102-b(7):904–911PubMedCrossRef
6.
Zurück zum Zitat Brinker MR, Macek J, Laughlin M, Dunn WR (2021) Utility of common biomarkers for diagnosing infection in nonunion. J Orthop Trauma 35(3):121–127PubMedCrossRef Brinker MR, Macek J, Laughlin M, Dunn WR (2021) Utility of common biomarkers for diagnosing infection in nonunion. J Orthop Trauma 35(3):121–127PubMedCrossRef
8.
Zurück zum Zitat Olszewski D, Streubel PN, Stucken C et al (2016) Fate of patients with a “Surprise” positive culture after nonunion surgery. J Orthop Trauma 30(1):e19-23PubMedCrossRef Olszewski D, Streubel PN, Stucken C et al (2016) Fate of patients with a “Surprise” positive culture after nonunion surgery. J Orthop Trauma 30(1):e19-23PubMedCrossRef
9.
Zurück zum Zitat Amorosa LF, Buirs LD, Bexkens R et al (2015) Single-stage treatment protocol for presumed aseptic diaphyseal nonunion. JBJS Essential Surg Tech 5(2):e8CrossRef Amorosa LF, Buirs LD, Bexkens R et al (2015) Single-stage treatment protocol for presumed aseptic diaphyseal nonunion. JBJS Essential Surg Tech 5(2):e8CrossRef
10.
Zurück zum Zitat Arsoy D, Donders JCE, Kleeblad LJ et al (2018) Outcomes of presumed aseptic long-bone nonunions with positive intraoperative cultures through a single-stage surgical protocol. J Orthop Trauma 32(Suppl 1):S35–S39 Arsoy D, Donders JCE, Kleeblad LJ et al (2018) Outcomes of presumed aseptic long-bone nonunions with positive intraoperative cultures through a single-stage surgical protocol. J Orthop Trauma 32(Suppl 1):S35–S39
12.
Zurück zum Zitat Metsemakers WJ, Morgenstern M, McNally MA et al (2018) Fracture-related infection: a consensus on definition from an international expert group. Injury 49(3):505–510PubMedCrossRef Metsemakers WJ, Morgenstern M, McNally MA et al (2018) Fracture-related infection: a consensus on definition from an international expert group. Injury 49(3):505–510PubMedCrossRef
13.
Zurück zum Zitat Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536PubMedCrossRef Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536PubMedCrossRef
14.
Zurück zum Zitat Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley, Chichester Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley, Chichester
15.
Zurück zum Zitat Nyaga VN, Arbyn M, Aerts M (2014) Metaprop: a stata command to perform meta-analysis of binomial data. Arc Public Health 72(1):39CrossRef Nyaga VN, Arbyn M, Aerts M (2014) Metaprop: a stata command to perform meta-analysis of binomial data. Arc Public Health 72(1):39CrossRef
16.
Zurück zum Zitat Zelle BA, Gruen GS, Klatt B, Haemmerle MJ, Rosenblum WJ, Prayson MJ (2004) Exchange reamed nailing for aseptic nonunion of the tibia. J Trauma 57(5):1053–1059PubMedCrossRef Zelle BA, Gruen GS, Klatt B, Haemmerle MJ, Rosenblum WJ, Prayson MJ (2004) Exchange reamed nailing for aseptic nonunion of the tibia. J Trauma 57(5):1053–1059PubMedCrossRef
17.
Zurück zum Zitat Wenter V, Albert NL, Brendel M et al (2017) [(18)F]FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation. Eur J Nucl Med Mol Imaging 44(3):432–440PubMedCrossRef Wenter V, Albert NL, Brendel M et al (2017) [(18)F]FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation. Eur J Nucl Med Mol Imaging 44(3):432–440PubMedCrossRef
18.
Zurück zum Zitat Mills L, Tsang J, Hopper G, Keenan G, Simpson AH (2016) The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res 5(10):512–519PubMedPubMedCentralCrossRef Mills L, Tsang J, Hopper G, Keenan G, Simpson AH (2016) The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res 5(10):512–519PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88(7):1442–1447PubMed Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88(7):1442–1447PubMed
20.
Zurück zum Zitat Gille J, Wallstabe S, Schulz AP, Paech A, Gerlach U (2012) Is non-union of tibial shaft fractures due to nonculturable bacterial pathogens? A clinical investigation using PCR and culture techniques. J Orthop Surg Res 7:20PubMedPubMedCentralCrossRef Gille J, Wallstabe S, Schulz AP, Paech A, Gerlach U (2012) Is non-union of tibial shaft fractures due to nonculturable bacterial pathogens? A clinical investigation using PCR and culture techniques. J Orthop Surg Res 7:20PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Morgenstern M, Athanasou NA, Ferguson JY, Metsemakers WJ, Atkins BL, McNally MA (2018) The value of quantitative histology in the diagnosis of fracture-related infection. Bone Joint J 100-b(7):966–972PubMedCrossRef Morgenstern M, Athanasou NA, Ferguson JY, Metsemakers WJ, Atkins BL, McNally MA (2018) The value of quantitative histology in the diagnosis of fracture-related infection. Bone Joint J 100-b(7):966–972PubMedCrossRef
22.
Zurück zum Zitat Tanner MC, Heller RA, Grimm A et al (2021) the influence of an occult infection on the outcome of autologous bone grafting during surgical bone reconstruction: a large single-center case-control study. J Inflamm Res 14:995–1005PubMedPubMedCentralCrossRef Tanner MC, Heller RA, Grimm A et al (2021) the influence of an occult infection on the outcome of autologous bone grafting during surgical bone reconstruction: a large single-center case-control study. J Inflamm Res 14:995–1005PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Tosounidis TH, Holton C, Giannoudis VP, Kanakaris NK, West RM, Giannoudis PV (2021) Can CRP levels predict infection in presumptive aseptic long bone non-unions? A prospective cohort study. J Clin Med 10(3):425PubMedPubMedCentralCrossRef Tosounidis TH, Holton C, Giannoudis VP, Kanakaris NK, West RM, Giannoudis PV (2021) Can CRP levels predict infection in presumptive aseptic long bone non-unions? A prospective cohort study. J Clin Med 10(3):425PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Bilgili MG, Tanrıverdi B, Edipoğlu E et al (2020) Acute correction and intramedullary nailing of aseptic oligotrophic and atrophic tibial nonunions with deformity. Jt Dis Relat Surg 31(3):480–487PubMedPubMedCentral Bilgili MG, Tanrıverdi B, Edipoğlu E et al (2020) Acute correction and intramedullary nailing of aseptic oligotrophic and atrophic tibial nonunions with deformity. Jt Dis Relat Surg 31(3):480–487PubMedPubMedCentral
25.
Zurück zum Zitat Fragomen AT, Wellman D, Rozbruch SR (2019) The PRECICE magnetic IM compression nail for long bone nonunions: a preliminary report. Arch Orthop Trauma Surg 139(11):1551–1560PubMedPubMedCentralCrossRef Fragomen AT, Wellman D, Rozbruch SR (2019) The PRECICE magnetic IM compression nail for long bone nonunions: a preliminary report. Arch Orthop Trauma Surg 139(11):1551–1560PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Kim JW, Byun SE, Oh HK, Kim JJ (2015) Indolent infection in nonunion of the distal femur. Eur J Orthop Surg Traumatol 25(3):549–553PubMedCrossRef Kim JW, Byun SE, Oh HK, Kim JJ (2015) Indolent infection in nonunion of the distal femur. Eur J Orthop Surg Traumatol 25(3):549–553PubMedCrossRef
28.
29.
Zurück zum Zitat Moghaddam A, Thaler B, Bruckner T, Tanner M, Schmidmaier G (2017) Treatment of atrophic femoral non-unions according to the diamond concept: results of one- and two-step surgical procedure. J Orthop 14(1):123–133PubMedCrossRef Moghaddam A, Thaler B, Bruckner T, Tanner M, Schmidmaier G (2017) Treatment of atrophic femoral non-unions according to the diamond concept: results of one- and two-step surgical procedure. J Orthop 14(1):123–133PubMedCrossRef
30.
Zurück zum Zitat Otchwemah R, Moczko T, Marche B, Mattner F, Probst C, Tjardes T (2020) High prevalence of bacteria in clinically aseptic non-unions of the tibia and the femur in tissue biopsies. Eur J Trauma Emerg Surg 46(5):1093–1097PubMedCrossRef Otchwemah R, Moczko T, Marche B, Mattner F, Probst C, Tjardes T (2020) High prevalence of bacteria in clinically aseptic non-unions of the tibia and the femur in tissue biopsies. Eur J Trauma Emerg Surg 46(5):1093–1097PubMedCrossRef
31.
Zurück zum Zitat Shin WC, Jang JH, Moon NH, Jun SB (2021) Is open bone graft always necessary when treating aseptic subtrochanteric nonunion with a reamed intramedullary nail? BMC Musculoskelet Disord 22(1):145PubMedPubMedCentralCrossRef Shin WC, Jang JH, Moon NH, Jun SB (2021) Is open bone graft always necessary when treating aseptic subtrochanteric nonunion with a reamed intramedullary nail? BMC Musculoskelet Disord 22(1):145PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Schulz AP, Faschingbauer M, Seide K et al (2009) Is the wave plate still a salvage procedure for femoral non-union? Results of 75 cases treated with a locked wave plate. Eur J Trauma Emerg Surg 35(2):127–131PubMedCrossRef Schulz AP, Faschingbauer M, Seide K et al (2009) Is the wave plate still a salvage procedure for femoral non-union? Results of 75 cases treated with a locked wave plate. Eur J Trauma Emerg Surg 35(2):127–131PubMedCrossRef
33.
Zurück zum Zitat Mills LA, Aitken SA, Simpson AHRW (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88(4):434–439PubMedPubMedCentralCrossRef Mills LA, Aitken SA, Simpson AHRW (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88(4):434–439PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88(7):1442–1447PubMed Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88(7):1442–1447PubMed
35.
Zurück zum Zitat Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37(2 Supplement):S59–S66PubMedCrossRef Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37(2 Supplement):S59–S66PubMedCrossRef
36.
37.
Zurück zum Zitat Foster AL, Moriarty TF, Trampuz A et al (2020) Fracture-related infection: current methods for prevention and treatment. Expert Rev Anti Infect Ther 18(4):307–321PubMedCrossRef Foster AL, Moriarty TF, Trampuz A et al (2020) Fracture-related infection: current methods for prevention and treatment. Expert Rev Anti Infect Ther 18(4):307–321PubMedCrossRef
38.
Zurück zum Zitat Depypere M, Kuehl R, Metsemakers WJ et al (2020) Recommendations for systemic antimicrobial therapy in fracture-related infection: a consensus from an international expert group. J Orthop Trauma 34(1):30–41PubMedCrossRef Depypere M, Kuehl R, Metsemakers WJ et al (2020) Recommendations for systemic antimicrobial therapy in fracture-related infection: a consensus from an international expert group. J Orthop Trauma 34(1):30–41PubMedCrossRef
39.
Zurück zum Zitat Fang C, Wong T-M, Lau T-W, To KKW, Wong SSY, Leung F (2017) Infection after fracture osteosynthesis – part I: pathogenesis, diagnosis and classification. J Orthop Surg 25(1):2309499017692712 Fang C, Wong T-M, Lau T-W, To KKW, Wong SSY, Leung F (2017) Infection after fracture osteosynthesis – part I: pathogenesis, diagnosis and classification. J Orthop Surg 25(1):2309499017692712
40.
Zurück zum Zitat Schwotzer N, Wahl P, Fracheboud D, Gautier E, Chuard C (2014) Optimal culture incubation time in orthopedic device-associated infections: a retrospective analysis of prolonged 14-day incubation. J Clin Microbiol 52(1):61–66PubMedPubMedCentralCrossRef Schwotzer N, Wahl P, Fracheboud D, Gautier E, Chuard C (2014) Optimal culture incubation time in orthopedic device-associated infections: a retrospective analysis of prolonged 14-day incubation. J Clin Microbiol 52(1):61–66PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Glaudemans A, Jutte PC, Cataldo MA et al (2019) Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging 46(4):957–970PubMedPubMedCentralCrossRef Glaudemans A, Jutte PC, Cataldo MA et al (2019) Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging 46(4):957–970PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Schäfer P, Fink B, Sandow D, Margull A, Berger I, Frommelt L (2008) Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis 47(11):1403–1409PubMedCrossRef Schäfer P, Fink B, Sandow D, Margull A, Berger I, Frommelt L (2008) Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis 47(11):1403–1409PubMedCrossRef
43.
Zurück zum Zitat von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2(11):677–685CrossRef von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2(11):677–685CrossRef
44.
Zurück zum Zitat Gausden EB, Villa J, Warner SJ et al (2017) Nonunion after clavicle osteosynthesis: high incidence of Propionibacterium acnes. J Orthop Trauma 31(4):229–235PubMedCrossRef Gausden EB, Villa J, Warner SJ et al (2017) Nonunion after clavicle osteosynthesis: high incidence of Propionibacterium acnes. J Orthop Trauma 31(4):229–235PubMedCrossRef
45.
Zurück zum Zitat Athwal GS, Sperling JW, Rispoli DM, Cofield RH (2007) Acute deep infection after surgical fixation of proximal humeral fractures. J Shoulder Elbow Surg 16(4):408–412PubMedCrossRef Athwal GS, Sperling JW, Rispoli DM, Cofield RH (2007) Acute deep infection after surgical fixation of proximal humeral fractures. J Shoulder Elbow Surg 16(4):408–412PubMedCrossRef
46.
47.
Zurück zum Zitat Scholz CFP, Kilian M (2016) The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen nov, Cutibacterium gen. nov., and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 66(11):4422–4432PubMedCrossRef Scholz CFP, Kilian M (2016) The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen nov, Cutibacterium gen. nov., and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 66(11):4422–4432PubMedCrossRef
Metadaten
Titel
Surprise positive culture rate in the treatment of presumed aseptic long-bone nonunion: a systematic review with meta-analysis of 2397 patients
verfasst von
Robert Kaspar Wagner
Clinton Hugo van Trikt
Caroline E. Visser
Stein J. Janssen
Peter Kloen
Publikationsdatum
25.11.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Archives of Orthopaedic and Trauma Surgery / Ausgabe 2/2024
Print ISSN: 0936-8051
Elektronische ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-023-05103-6

Weitere Artikel der Ausgabe 2/2024

Archives of Orthopaedic and Trauma Surgery 2/2024 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.