Skip to main content
Erschienen in: Tumor Biology 3/2016

17.10.2015 | Original Article

TAB3 overexpression promotes cell proliferation in non-small cell lung cancer and mediates chemoresistance to CDDP in A549 cells via the NF-κB pathway

verfasst von: Jie Chen, Jun Gu, Jian Feng, Yifei Liu, Qun Xue, Tingting Ni, Zhiwen Wang, Liangliang Jia, Guoxin Mao, Lili Ji

Erschienen in: Tumor Biology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Transforming growth factor-activated kinase 1 (TAK1)-binding protein 3 (TAB3) is essential for the activation of the nuclear factor kappa B (NF-κB) pathway and has important roles in cell survival. However, the contribution of TAB3 to non-small cell lung cancer (NSCLC) remains elusive. In the present study, Western blotting and immunohistochemistry assays demonstrated that TAB3 expression was frequently increased in NSCLC tissues and cells. In addition, chi-square test and Kaplan–Meier analysis revealed that upregulation of TAB3 expression correlated with a more invasive tumor phenotype and poor prognosis. In addition, a series of experiments, including serum starvation–refeeding experiment and TAB3-siRNA transfection assay, showed that TAB3 expression promoted NSCLC cell proliferation. Furthermore, the effect of TAB3 expression on the sensitivity to cis-diamminedichloroplatinum (CDDP) and possible signaling transduction pathways was investigated. When the expression of TAB3 was inhibited by siRNA transfection, the sensitivity to CDDP was enhanced. Moreover, it showed that downregulation of TAB3 enhanced CDDP-induced A549 cell apoptosis through the inhibition of the NF-κB pathway. These results suggest that TAB3 plays a critical role in NSCLC progression and chemoresistance and that TAB3 depletion may be a promising approach to lung cancer therapy.
Literatur
1.
3.
Zurück zum Zitat Liu Y, Ni T, Xue Q, Lv L, Chen B, et al. Involvement of p29/SYF2/fSAP29/NTC31 in the progression of NSCLC via modulating cell proliferation. Pathol Res Pract. 2015;211:36–42.CrossRefPubMed Liu Y, Ni T, Xue Q, Lv L, Chen B, et al. Involvement of p29/SYF2/fSAP29/NTC31 in the progression of NSCLC via modulating cell proliferation. Pathol Res Pract. 2015;211:36–42.CrossRefPubMed
4.
Zurück zum Zitat Ji XD, Li G, Feng YX, Zhao JS, Li JJ, et al. EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration. Cancer Res. 2011;71:1156–66.CrossRefPubMed Ji XD, Li G, Feng YX, Zhao JS, Li JJ, et al. EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration. Cancer Res. 2011;71:1156–66.CrossRefPubMed
5.
Zurück zum Zitat Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, et al. American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol. 2004;22:330–53.CrossRefPubMed Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, et al. American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol. 2004;22:330–53.CrossRefPubMed
6.
Zurück zum Zitat Ji L, Li H, Gao P, Shang G, Zhang DD, et al. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 2013;8:e63404.CrossRefPubMedPubMedCentral Ji L, Li H, Gao P, Shang G, Zhang DD, et al. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 2013;8:e63404.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Cai J, Fang L, Huang Y, Li R, Yuan J, et al. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res. 2013;73:5402–15.CrossRefPubMed Cai J, Fang L, Huang Y, Li R, Yuan J, et al. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res. 2013;73:5402–15.CrossRefPubMed
8.
Zurück zum Zitat Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.CrossRefPubMed Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.CrossRefPubMed
9.
Zurück zum Zitat Tao T, Cheng C, Ji Y, Xu G, Zhang J, et al. Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell. 2012;23:2635–44.CrossRefPubMedPubMedCentral Tao T, Cheng C, Ji Y, Xu G, Zhang J, et al. Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell. 2012;23:2635–44.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Sarkar D, Park ES, Emdad L, Lee SG, Su ZZ, et al. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res. 2008;68:1478–84.CrossRefPubMed Sarkar D, Park ES, Emdad L, Lee SG, Su ZZ, et al. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res. 2008;68:1478–84.CrossRefPubMed
11.
Zurück zum Zitat Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, et al. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res. 2006;66:9535–42.CrossRefPubMed Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, et al. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res. 2006;66:9535–42.CrossRefPubMed
13.
Zurück zum Zitat Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med. 1999;5:412–7.CrossRefPubMed Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med. 1999;5:412–7.CrossRefPubMed
14.
Zurück zum Zitat Rathos MJ, Khanwalkar H, Joshi K, Manohar SM, Joshi KS. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells. BMC Cancer. 2013;13:29.CrossRefPubMedPubMedCentral Rathos MJ, Khanwalkar H, Joshi K, Manohar SM, Joshi KS. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells. BMC Cancer. 2013;13:29.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Yang L, Zhou Y, Li Y, Zhou J, Wu Y, et al. Mutations of p53 and KRAS activate NF-kappaB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2015;357:520–6.CrossRefPubMed Yang L, Zhou Y, Li Y, Zhou J, Wu Y, et al. Mutations of p53 and KRAS activate NF-kappaB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2015;357:520–6.CrossRefPubMed
16.
18.
Zurück zum Zitat Ruland J. Return to homeostasis: downregulation of NF-kappaB responses. Nat Immunol. 2011;12:709–14.CrossRefPubMed Ruland J. Return to homeostasis: downregulation of NF-kappaB responses. Nat Immunol. 2011;12:709–14.CrossRefPubMed
20.
Zurück zum Zitat Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, et al. TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem. 2007;282:3918–28.CrossRefPubMed Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, et al. TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem. 2007;282:3918–28.CrossRefPubMed
21.
Zurück zum Zitat Jin G, Klika A, Callahan M, Faga B, Danzig J, et al. Identification of a human NF-kappaB-activating protein, TAB3. Proc Natl Acad Sci U S A. 2004;101:2028–33.CrossRefPubMedPubMedCentral Jin G, Klika A, Callahan M, Faga B, Danzig J, et al. Identification of a human NF-kappaB-activating protein, TAB3. Proc Natl Acad Sci U S A. 2004;101:2028–33.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst. 2011;103:1190–204.CrossRefPubMedPubMedCentral Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst. 2011;103:1190–204.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Martin SE, Wu ZH, Gehlhaus K, Jones TL, Zhang YW, et al. RNAi screening identifies TAK1 as a potential target for the enhanced efficacy of topoisomerase inhibitors. Curr Cancer Drug Targets. 2011;11:976–86.CrossRefPubMedPubMedCentral Martin SE, Wu ZH, Gehlhaus K, Jones TL, Zhang YW, et al. RNAi screening identifies TAK1 as a potential target for the enhanced efficacy of topoisomerase inhibitors. Curr Cancer Drug Targets. 2011;11:976–86.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wang Y, Fei M, Cheng C, Zhang D, Lu J, et al. Jun activation domain-binding protein 1 negatively regulate p27 kip1 in non-Hodgkin’s lymphomas. Cancer Biol Ther. 2008;7:460–7.CrossRefPubMed Wang Y, Fei M, Cheng C, Zhang D, Lu J, et al. Jun activation domain-binding protein 1 negatively regulate p27 kip1 in non-Hodgkin’s lymphomas. Cancer Biol Ther. 2008;7:460–7.CrossRefPubMed
25.
Zurück zum Zitat Xue Q, Lv L, Wan C, Chen B, Li M, et al. Expression and clinical role of small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA) as a novel cell cycle protein in NSCLC. J Cancer Res Clin Oncol. 2013;139:1539–49.CrossRefPubMed Xue Q, Lv L, Wan C, Chen B, Li M, et al. Expression and clinical role of small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA) as a novel cell cycle protein in NSCLC. J Cancer Res Clin Oncol. 2013;139:1539–49.CrossRefPubMed
26.
Zurück zum Zitat Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers. 2010;7:543–66.CrossRefPubMed Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers. 2010;7:543–66.CrossRefPubMed
27.
Zurück zum Zitat Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4:307–20.CrossRefPubMed Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4:307–20.CrossRefPubMed
28.
Zurück zum Zitat Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.CrossRefPubMed Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.CrossRefPubMed
29.
Zurück zum Zitat Miyamoto S. Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res. 2011;21:116–30.CrossRefPubMed Miyamoto S. Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res. 2011;21:116–30.CrossRefPubMed
Metadaten
Titel
TAB3 overexpression promotes cell proliferation in non-small cell lung cancer and mediates chemoresistance to CDDP in A549 cells via the NF-κB pathway
verfasst von
Jie Chen
Jun Gu
Jian Feng
Yifei Liu
Qun Xue
Tingting Ni
Zhiwen Wang
Liangliang Jia
Guoxin Mao
Lili Ji
Publikationsdatum
17.10.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 3/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3896-y

Weitere Artikel der Ausgabe 3/2016

Tumor Biology 3/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.