Skip to main content
Erschienen in: CNS Drugs 2/2015

01.02.2015 | Review Article

Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection

verfasst von: Ming Jia, Steve A. Noutong Njapo, Vaibhav Rastogi, Vishnumurthy Shushrutha Hedna

Erschienen in: CNS Drugs | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Much work has been carried out in recent years showing that elevated glutamate levels in the extracellular environment of the central nervous system play a pivotal role in neurodegeneration in acute CNS injuries. With the elucidation of the mechanism governing glutamate excitotoxicity, researchers are devising therapeutic strategies to target different parts of the pathway which begins with glutamate accumulation and ultimately results in neuronal cell death. In this article, we review some of the major classes of agents that are currently being investigated and highlight some of the key studies for each. Glutamate scavenging is a relatively new approach that directly decreases glutamate levels in the brain, thus preventing excitotoxicity. Nitric oxide inhibitors and free radical scavengers are more well-studied strategies that continue to yield promising results.
Literatur
1.
Zurück zum Zitat Teichberg V, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 2009;158(1):301–8.CrossRefPubMed Teichberg V, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 2009;158(1):301–8.CrossRefPubMed
2.
Zurück zum Zitat Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF. Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl. 1996;67:40–4.PubMed Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF. Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl. 1996;67:40–4.PubMed
3.
Zurück zum Zitat Shaw P, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995;4:209–16.CrossRefPubMed Shaw P, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995;4:209–16.CrossRefPubMed
4.
Zurück zum Zitat Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W. Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci. 1996;143:126–31.CrossRefPubMed Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W. Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci. 1996;143:126–31.CrossRefPubMed
5.
Zurück zum Zitat Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):101–5. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):101–5.
6.
Zurück zum Zitat Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl). 2000;78(1):3–13.CrossRefPubMed Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl). 2000;78(1):3–13.CrossRefPubMed
7.
Zurück zum Zitat Muir K. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol. 2006;6(1):53–60.CrossRefPubMed Muir K. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol. 2006;6(1):53–60.CrossRefPubMed
8.
Zurück zum Zitat Benveniste H, Jørgensen MB, Diemer NH, Hansen AJ. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988;78(6):529–36.CrossRefPubMed Benveniste H, Jørgensen MB, Diemer NH, Hansen AJ. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988;78(6):529–36.CrossRefPubMed
9.
Zurück zum Zitat Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989;36(1):106–12.PubMed Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989;36(1):106–12.PubMed
10.
Zurück zum Zitat Castillo M, Babson J. Ca2-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86(4):1133–44.CrossRefPubMed Castillo M, Babson J. Ca2-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86(4):1133–44.CrossRefPubMed
11.
Zurück zum Zitat Li S, Stys P. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse NA(+)-dependent transport in spinal cord white matter. Neuroscience. 2001;107(4):675–83.CrossRefPubMed Li S, Stys P. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse NA(+)-dependent transport in spinal cord white matter. Neuroscience. 2001;107(4):675–83.CrossRefPubMed
12.
Zurück zum Zitat Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.CrossRefPubMed Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.CrossRefPubMed
14.
Zurück zum Zitat Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron. 2003;40(2):401–13.CrossRefPubMed Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron. 2003;40(2):401–13.CrossRefPubMed
15.
16.
Zurück zum Zitat Castillo J, Davalos A, Naveiro J, Noya M. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke. 1996;27(6):1060–5.CrossRefPubMed Castillo J, Davalos A, Naveiro J, Noya M. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke. 1996;27(6):1060–5.CrossRefPubMed
17.
Zurück zum Zitat Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.CrossRefPubMed Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.CrossRefPubMed
18.
Zurück zum Zitat Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg. 2008;110(3):222–6.CrossRefPubMed Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg. 2008;110(3):222–6.CrossRefPubMed
19.
Zurück zum Zitat Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm. 2014;121(8):945–55.CrossRefPubMed Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm. 2014;121(8):945–55.CrossRefPubMed
20.
Zurück zum Zitat Hawkins RA, Mokashi A, Dejoseph MR, Viña JR, Fernstrom JD. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 2010;59(2):258–66.CrossRefPubMedCentralPubMed Hawkins RA, Mokashi A, Dejoseph MR, Viña JR, Fernstrom JD. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 2010;59(2):258–66.CrossRefPubMedCentralPubMed
21.
Zurück zum Zitat O’kane RL. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem. 1999;274(45):31891–5.CrossRefPubMed O’kane RL. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem. 1999;274(45):31891–5.CrossRefPubMed
22.
Zurück zum Zitat Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;407(6767):316–21. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;407(6767):316–21.
23.
Zurück zum Zitat Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB. Role of the ubiquitin–proteasome system in brain ischemia: friend or foe? Prog Neurobiol. 2014;112:50–69.CrossRefPubMed Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB. Role of the ubiquitin–proteasome system in brain ischemia: friend or foe? Prog Neurobiol. 2014;112:50–69.CrossRefPubMed
24.
Zurück zum Zitat Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014;82(2):279–93.CrossRefPubMed Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014;82(2):279–93.CrossRefPubMed
25.
Zurück zum Zitat Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.CrossRefPubMed Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.CrossRefPubMed
26.
Zurück zum Zitat Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649–57.CrossRefPubMedCentralPubMed Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649–57.CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Campos F, Sobrino T, Perez-Mato M, Rodriguez-Osorio X, Leira R, Blanco M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33(14):1148–54.CrossRefPubMed Campos F, Sobrino T, Perez-Mato M, Rodriguez-Osorio X, Leira R, Blanco M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33(14):1148–54.CrossRefPubMed
28.
Zurück zum Zitat Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Ruban AM, Leon A, et al. The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res. 2008;33(6):1044–50.CrossRefPubMed Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Ruban AM, Leon A, et al. The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res. 2008;33(6):1044–50.CrossRefPubMed
29.
Zurück zum Zitat Van Den Tweel E, Van Bel F, Kavelaars A, Peeters-Scholte C, Haumann J, Nijboer CHA, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab. 2005;25(1):67–74.CrossRefPubMed Van Den Tweel E, Van Bel F, Kavelaars A, Peeters-Scholte C, Haumann J, Nijboer CHA, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab. 2005;25(1):67–74.CrossRefPubMed
30.
Zurück zum Zitat Aarts M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50.CrossRefPubMed Aarts M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50.CrossRefPubMed
31.
Zurück zum Zitat Jones N. Stroke: disruption of the NNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol. 2011;7(2):61.CrossRefPubMed Jones N. Stroke: disruption of the NNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol. 2011;7(2):61.CrossRefPubMed
32.
Zurück zum Zitat Zhou L, Li F, Xu H-B, Luo C-X, Wu H-Y, Zhu M-M, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of NNOS with PSD-95. Nat Med. 2010;16(12):1439–43.CrossRefPubMed Zhou L, Li F, Xu H-B, Luo C-X, Wu H-Y, Zhu M-M, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of NNOS with PSD-95. Nat Med. 2010;16(12):1439–43.CrossRefPubMed
33.
Zurück zum Zitat Boyko M, Gruenbaum SE, Gruenbaum BR, Shipira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 2014;121(8):971–9.CrossRefPubMed Boyko M, Gruenbaum SE, Gruenbaum BR, Shipira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 2014;121(8):971–9.CrossRefPubMed
34.
Zurück zum Zitat Lee J-M, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.CrossRefPubMed Lee J-M, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.CrossRefPubMed
35.
Zurück zum Zitat Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and NA+: implications for neurodegeneration. J Neurochem. 1994;63(2):584–91.CrossRefPubMed Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and NA+: implications for neurodegeneration. J Neurochem. 1994;63(2):584–91.CrossRefPubMed
38.
Zurück zum Zitat Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101–10.CrossRefPubMedCentralPubMed Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101–10.CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem. 2010;115(6):1520–9.CrossRefPubMed Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem. 2010;115(6):1520–9.CrossRefPubMed
40.
Zurück zum Zitat De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.CrossRefPubMed De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.CrossRefPubMed
41.
Zurück zum Zitat Gottlieb M, Wang Y, Teichberg VI. Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem. 2003;87(1):119–26.CrossRefPubMed Gottlieb M, Wang Y, Teichberg VI. Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem. 2003;87(1):119–26.CrossRefPubMed
42.
Zurück zum Zitat Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI. Brain neuroprotection by scavenging blood glutamate. Exp Neurol. 2007;203(1):213–20.CrossRefPubMed Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI. Brain neuroprotection by scavenging blood glutamate. Exp Neurol. 2007;203(1):213–20.CrossRefPubMed
43.
Zurück zum Zitat Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity. J Neurosurg Anesthesiol. 2009;21(3):235–41.CrossRefPubMed Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity. J Neurosurg Anesthesiol. 2009;21(3):235–41.CrossRefPubMed
44.
Zurück zum Zitat Baker AJ, Moulton RJ, Macmillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg. 1993;79(3):369–72.CrossRefPubMed Baker AJ, Moulton RJ, Macmillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg. 1993;79(3):369–72.CrossRefPubMed
45.
Zurück zum Zitat Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, Dekosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61(6):2015–24.CrossRefPubMed Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, Dekosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61(6):2015–24.CrossRefPubMed
46.
Zurück zum Zitat Castillo J, Dávalos A, Noya M. Progression of ischaemic stroke and excitotoxic aminoacids. Lancet. 1997;349(9045):79–83.CrossRefPubMed Castillo J, Dávalos A, Noya M. Progression of ischaemic stroke and excitotoxic aminoacids. Lancet. 1997;349(9045):79–83.CrossRefPubMed
47.
Zurück zum Zitat Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–86.CrossRefPubMedCentralPubMed Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–86.CrossRefPubMedCentralPubMed
48.
Zurück zum Zitat Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, et al. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol. 2009;26(6):827–35.CrossRef Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, et al. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol. 2009;26(6):827–35.CrossRef
49.
Zurück zum Zitat Pérez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, et al. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis. 2014;5(1):e992.CrossRefPubMedCentralPubMed Pérez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, et al. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis. 2014;5(1):e992.CrossRefPubMedCentralPubMed
50.
Zurück zum Zitat Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, et al. Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci. 2011;34(9):1432–41.CrossRefPubMed Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, et al. Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci. 2011;34(9):1432–41.CrossRefPubMed
51.
Zurück zum Zitat Knapp L, Gellért L, Kocsis K, Kis Z, Farkas T, Vécsei L, et al. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat. Cell Mol Neurobiol (Epub 8 May 2014). Knapp L, Gellért L, Kocsis K, Kis Z, Farkas T, Vécsei L, et al. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat. Cell Mol Neurobiol (Epub 8 May 2014).
52.
Zurück zum Zitat Carvalho A, Rodrigues S, Torres LB, Persike DS, Fernandes MJS, Amado D, et al. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int. 2011;58(3):385–90.CrossRefPubMed Carvalho A, Rodrigues S, Torres LB, Persike DS, Fernandes MJS, Amado D, et al. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int. 2011;58(3):385–90.CrossRefPubMed
53.
Zurück zum Zitat Tattersall J. Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed). 2009;14:3688–711.CrossRefPubMed Tattersall J. Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed). 2009;14:3688–711.CrossRefPubMed
54.
Zurück zum Zitat Ruban A, Mohar B, Jona G, Teichberg VI. Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab. 2014;34(2):221–7.CrossRefPubMedCentralPubMed Ruban A, Mohar B, Jona G, Teichberg VI. Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab. 2014;34(2):221–7.CrossRefPubMedCentralPubMed
55.
Zurück zum Zitat Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, et al. The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol. 2013;25(3):262–6.CrossRefPubMed Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, et al. The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol. 2013;25(3):262–6.CrossRefPubMed
56.
Zurück zum Zitat Godino MeC, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J, et al. Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest. 2013;123(10):4359–63. Godino MeC, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J, et al. Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest. 2013;123(10):4359–63.
57.
Zurück zum Zitat Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci. 2012;90(3):154–60.CrossRefPubMed Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci. 2012;90(3):154–60.CrossRefPubMed
58.
Zurück zum Zitat Yin X-H, Yan J-Z, Hou X-Y, Wu S-L, Zhang G-Y. Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. 2013;248:290–8.CrossRefPubMed Yin X-H, Yan J-Z, Hou X-Y, Wu S-L, Zhang G-Y. Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. 2013;248:290–8.CrossRefPubMed
59.
Zurück zum Zitat Lu A, Wagner KR, Broderick JP, Clark JF. Administration of S-methyl-l-thiocitrulline protects against brain injuries after intracerebral hemorrhage. Neuroscience. 2014;270:40–7.CrossRefPubMed Lu A, Wagner KR, Broderick JP, Clark JF. Administration of S-methyl-l-thiocitrulline protects against brain injuries after intracerebral hemorrhage. Neuroscience. 2014;270:40–7.CrossRefPubMed
60.
Zurück zum Zitat Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.CrossRefPubMed Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.CrossRefPubMed
61.
Zurück zum Zitat Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.CrossRefPubMed Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.CrossRefPubMed
62.
Zurück zum Zitat Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13(12):11753–72.CrossRefPubMedCentralPubMed Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13(12):11753–72.CrossRefPubMedCentralPubMed
63.
Zurück zum Zitat Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63.CrossRefPubMedCentralPubMed Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63.CrossRefPubMedCentralPubMed
64.
Zurück zum Zitat Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, et al. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 2013;1519:1–8.CrossRefPubMed Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, et al. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 2013;1519:1–8.CrossRefPubMed
65.
Zurück zum Zitat Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;(12):CD007230. Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;(12):CD007230.
66.
Zurück zum Zitat Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H. Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev. 2011;(2):CD007755. Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H. Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev. 2011;(2):CD007755.
67.
Zurück zum Zitat Otomo E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.CrossRef Otomo E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.CrossRef
68.
Zurück zum Zitat Inatomi Y, Takita T, Yonehara T, Fujioka S, Hashimoto Y, Hirano T, et al. Efficacy of edaravone in cardioembolic stroke. Int Med. 2006;45(5):253–7.CrossRef Inatomi Y, Takita T, Yonehara T, Fujioka S, Hashimoto Y, Hirano T, et al. Efficacy of edaravone in cardioembolic stroke. Int Med. 2006;45(5):253–7.CrossRef
69.
Zurück zum Zitat Mishina M, Komaba Y, Kobayashi S, Tanaka N, Kominami S, Fukuchi T, et al. Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir. 2005;45(7):344–8.CrossRef Mishina M, Komaba Y, Kobayashi S, Tanaka N, Kominami S, Fukuchi T, et al. Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir. 2005;45(7):344–8.CrossRef
70.
Zurück zum Zitat Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Int Med. 2009;48(8):593–6.CrossRef Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Int Med. 2009;48(8):593–6.CrossRef
71.
Zurück zum Zitat Abe M, Kaizu K, Matsumoto K. A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 2007;11(3):235–40.CrossRefPubMed Abe M, Kaizu K, Matsumoto K. A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 2007;11(3):235–40.CrossRefPubMed
72.
Zurück zum Zitat Hishida A. Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exper Nephrol. 2007;11(4):292–6.CrossRef Hishida A. Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exper Nephrol. 2007;11(4):292–6.CrossRef
73.
Zurück zum Zitat Kano T, Harada T, Hirayama T, Katayama Y. Combination therapy using TPA and edaravone improves the neurotoxic effect of TPA. Interv Neuroradiol. 2007;13:106–8.PubMedCentralPubMed Kano T, Harada T, Hirayama T, Katayama Y. Combination therapy using TPA and edaravone improves the neurotoxic effect of TPA. Interv Neuroradiol. 2007;13:106–8.PubMedCentralPubMed
74.
Zurück zum Zitat Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol. 2013;86(9):1248–53.CrossRefPubMed Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol. 2013;86(9):1248–53.CrossRefPubMed
75.
Zurück zum Zitat Seo JY, Lee CH, Cho JH, Choi JH, Yoo K-Y, Kim DW, et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci. 2009;285(1):88–94.CrossRefPubMed Seo JY, Lee CH, Cho JH, Choi JH, Yoo K-Y, Kim DW, et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci. 2009;285(1):88–94.CrossRefPubMed
76.
Zurück zum Zitat Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, et al. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res. 2005;30(3):403–10.CrossRefPubMed Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, et al. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res. 2005;30(3):403–10.CrossRefPubMed
77.
Zurück zum Zitat Koizumi H, Fujisawa H, Suehiro E, Shirao S, Suzuki M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir. 2011;51(5):337–43.CrossRef Koizumi H, Fujisawa H, Suehiro E, Shirao S, Suzuki M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir. 2011;51(5):337–43.CrossRef
78.
Zurück zum Zitat Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Gonçalves JF, Corrêa M, et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci. 2009;27(1):73–80.CrossRefPubMed Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Gonçalves JF, Corrêa M, et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci. 2009;27(1):73–80.CrossRefPubMed
79.
Zurück zum Zitat Porciúncula LO, Rocha JBT, Boeck CR, Vendite D, Souza DO. Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett. 2001;299(3):217–20.CrossRefPubMed Porciúncula LO, Rocha JBT, Boeck CR, Vendite D, Souza DO. Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett. 2001;299(3):217–20.CrossRefPubMed
80.
Zurück zum Zitat Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke. 1998;29(1):12–7.CrossRefPubMed Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke. 1998;29(1):12–7.CrossRefPubMed
81.
Zurück zum Zitat Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999;9(2):112–8.CrossRefPubMed Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999;9(2):112–8.CrossRefPubMed
82.
Zurück zum Zitat Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet. 2013;45(10):1249–54.CrossRefPubMedCentralPubMed Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet. 2013;45(10):1249–54.CrossRefPubMedCentralPubMed
83.
Zurück zum Zitat Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and P38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol. 2014;41(2):134–8.CrossRefPubMed Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and P38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol. 2014;41(2):134–8.CrossRefPubMed
84.
Zurück zum Zitat Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One. 2013;8(3):e59843.CrossRefPubMedCentralPubMed Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One. 2013;8(3):e59843.CrossRefPubMedCentralPubMed
85.
Zurück zum Zitat Kuo C-P, Lu C-H, Wen L-L, Cherng C-H, Wong C-S, Borel CO, et al. Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology. 2011;115(6):1229–38.PubMed Kuo C-P, Lu C-H, Wen L-L, Cherng C-H, Wong C-S, Borel CO, et al. Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology. 2011;115(6):1229–38.PubMed
86.
Zurück zum Zitat Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014;37(5):1544–51.CrossRefPubMed Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014;37(5):1544–51.CrossRefPubMed
87.
Zurück zum Zitat Koh P-O. Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury. PLoS One. 2013;8(1):e54217.CrossRefPubMedCentralPubMed Koh P-O. Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury. PLoS One. 2013;8(1):e54217.CrossRefPubMedCentralPubMed
88.
Zurück zum Zitat Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res. 2013;91(12):1609–17.CrossRefPubMed Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res. 2013;91(12):1609–17.CrossRefPubMed
89.
Zurück zum Zitat Katnik C, Cuevas J. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci. 2014;15(3):3596–611.CrossRefPubMedCentralPubMed Katnik C, Cuevas J. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci. 2014;15(3):3596–611.CrossRefPubMedCentralPubMed
Metadaten
Titel
Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection
verfasst von
Ming Jia
Steve A. Noutong Njapo
Vaibhav Rastogi
Vishnumurthy Shushrutha Hedna
Publikationsdatum
01.02.2015
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 2/2015
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-015-0225-3

Weitere Artikel der Ausgabe 2/2015

CNS Drugs 2/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.