Skip to main content
Erschienen in: Diabetologia 6/2018

15.03.2018 | Article

Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice

verfasst von: Yulin Chen, Jie Wu, Jiajia Wang, Wenjing Zhang, Bohui Xu, Xiaojun Xu, Li Zong

Erschienen in: Diabetologia | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The intestinal immune system is an ideal target to induce immune tolerance physiologically. However, the efficiency of oral protein antigen delivery is limited by degradation of the antigen in the gastrointestinal tract and poor uptake by antigen-presenting cells. Gut dendritic cells (DCs) are professional antigen-presenting cells that are prone to inducing antigen-specific immune tolerance. In this study, we delivered the antigen heat shock protein 65-6×P277 (H6P) directly to the gut DCs of NOD mice through oral vaccination with H6P-loaded targeting nanoparticles (NPs), and investigated the ability of this antigen to induce immune tolerance to prevent autoimmune diabetes in NOD mice.

Methods

A targeting NP delivery system was developed to encapsulate H6P, and the ability of this system to protect and facilitate H6P delivery to gut DCs was assessed. NOD mice were immunised with H6P-loaded targeting NPs orally once a week for 7 weeks and the onset of diabetes was assessed by monitoring blood glucose levels.

Results

H6P-loaded targeting NPs protected the encapsulated H6P from degradation in the gastrointestinal tract environment and significantly increased the uptake of H6P by DCs in the gut Peyer’s patches (4.1 times higher uptake compared with the control H6P solution group). Oral vaccination with H6P-loaded targeting NPs induced antigen-specific T cell tolerance and prevented diabetes in 100% of NOD mice. Immune deviation (T helper [Th]1 to Th2) and CD4+CD25+FOXP3+ regulatory T cells were found to participate in the induction of immune tolerance.

Conclusions/interpretation

In this study, we successfully induced antigen-specific T cell tolerance and prevented the onset of diabetes in NOD mice. To our knowledge, this is the first attempt at delivering antigen to gut DCs using targeting NPs to induce T cell tolerance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118CrossRefPubMed van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118CrossRefPubMed
2.
Zurück zum Zitat Lernmark A, Larsson HE (2013) Immune therapy in type 1 diabetes mellitus. Nat Rev Endocrinol 9:92–103CrossRefPubMed Lernmark A, Larsson HE (2013) Immune therapy in type 1 diabetes mellitus. Nat Rev Endocrinol 9:92–103CrossRefPubMed
3.
Zurück zum Zitat Frumento D, Nasr MB, Essawy BE, D’Addio F, Zuccotti GV, Fiorina P (2017) Immunotherapy for type 1 diabetes. J Endocrinol Investig 40:803–814CrossRef Frumento D, Nasr MB, Essawy BE, D’Addio F, Zuccotti GV, Fiorina P (2017) Immunotherapy for type 1 diabetes. J Endocrinol Investig 40:803–814CrossRef
4.
Zurück zum Zitat Elias D, Reshef T, Birk OS, van der Zee R, Walker MD, Cohen IR (1991) Vaccination against autoimmune mouse diabetes with a T cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci U S A 88:3088–3091CrossRefPubMedPubMedCentral Elias D, Reshef T, Birk OS, van der Zee R, Walker MD, Cohen IR (1991) Vaccination against autoimmune mouse diabetes with a T cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci U S A 88:3088–3091CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR (1999) T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 12:121–129CrossRefPubMed Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR (1999) T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 12:121–129CrossRefPubMed
6.
Zurück zum Zitat Jin L, Zhu A, Wang Y et al (2008) A Th1-recognized peptide P277, when tandemly repeated, enhances a Th2 immune response toward effective vaccines against autoimmune diabetes in nonobese diabetic mice. J Immunol 180:58–63CrossRefPubMed Jin L, Zhu A, Wang Y et al (2008) A Th1-recognized peptide P277, when tandemly repeated, enhances a Th2 immune response toward effective vaccines against autoimmune diabetes in nonobese diabetic mice. J Immunol 180:58–63CrossRefPubMed
7.
Zurück zum Zitat Xu D, Prasad S, Miller SD (2013) Inducing immune tolerance: a focus on type 1 diabetes mellitus. Diabetes Manag 3:415–426CrossRef Xu D, Prasad S, Miller SD (2013) Inducing immune tolerance: a focus on type 1 diabetes mellitus. Diabetes Manag 3:415–426CrossRef
8.
Zurück zum Zitat Li AF, Escher A (2003) Intradermal or oral delivery of GAD-encoding genetic vaccines suppresses type 1 diabetes. DNA Cell Biol 22:227–232CrossRefPubMed Li AF, Escher A (2003) Intradermal or oral delivery of GAD-encoding genetic vaccines suppresses type 1 diabetes. DNA Cell Biol 22:227–232CrossRefPubMed
9.
Zurück zum Zitat Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341CrossRefPubMed Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341CrossRefPubMed
10.
Zurück zum Zitat Matzinger P, Kamala T (2011) Tissue-based class control: the other side of tolerance. Nat Rev Immunol 11:221–230CrossRefPubMed Matzinger P, Kamala T (2011) Tissue-based class control: the other side of tolerance. Nat Rev Immunol 11:221–230CrossRefPubMed
11.
Zurück zum Zitat Rimoldi M, Chieppa M, Salucci V et al (2005) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6:507–514CrossRefPubMed Rimoldi M, Chieppa M, Salucci V et al (2005) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6:507–514CrossRefPubMed
12.
Zurück zum Zitat Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260CrossRefPubMed Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260CrossRefPubMed
13.
Zurück zum Zitat Banchereau J, Briere F, Caux C et al (1999) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811CrossRef Banchereau J, Briere F, Caux C et al (1999) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811CrossRef
14.
Zurück zum Zitat Everson MP, Lemak DG, McDuffie DS, Koopman WJ, McGhee JR, Beagley KW (1998) Dendritic cells from Peyer’s patch and spleen induce different T helper cell responses. J Interf Cytokine Res 18:103–115CrossRef Everson MP, Lemak DG, McDuffie DS, Koopman WJ, McGhee JR, Beagley KW (1998) Dendritic cells from Peyer’s patch and spleen induce different T helper cell responses. J Interf Cytokine Res 18:103–115CrossRef
15.
Zurück zum Zitat Hashiguchi M, Hachimura S, Ametani A et al (2011) Naïve CD4+ T cells of Peyer’s patches produce more IL-6 than those of spleen in response to antigenic stimulation. Immunol Lett 141:109–115CrossRefPubMed Hashiguchi M, Hachimura S, Ametani A et al (2011) Naïve CD4+ T cells of Peyer’s patches produce more IL-6 than those of spleen in response to antigenic stimulation. Immunol Lett 141:109–115CrossRefPubMed
16.
Zurück zum Zitat Iwasaki A, Kelsall BL (1999) Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190:229–239CrossRefPubMedPubMedCentral Iwasaki A, Kelsall BL (1999) Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190:229–239CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Peron JP, de Oliveira AP, Rizzo LV (2009) It takes guts for tolerance: the phenomenon of oral tolerance and the regulation of autoimmune response. Autoimmun Rev 9:1–4CrossRefPubMed Peron JP, de Oliveira AP, Rizzo LV (2009) It takes guts for tolerance: the phenomenon of oral tolerance and the regulation of autoimmune response. Autoimmun Rev 9:1–4CrossRefPubMed
18.
Zurück zum Zitat Wang X, Sherman A, Liao G et al (2013) Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev 65:759–773CrossRefPubMed Wang X, Sherman A, Liao G et al (2013) Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev 65:759–773CrossRefPubMed
19.
Zurück zum Zitat Kraehenbuhl JP, Neutra MR (2000) Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 16:301–332CrossRefPubMed Kraehenbuhl JP, Neutra MR (2000) Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 16:301–332CrossRefPubMed
20.
Zurück zum Zitat Davitt CJ, Lavelle EC (2015) Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 91:52–69CrossRefPubMed Davitt CJ, Lavelle EC (2015) Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 91:52–69CrossRefPubMed
21.
Zurück zum Zitat Garinot M, Fiévez V, Pourcelle V et al (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120:195–204CrossRefPubMed Garinot M, Fiévez V, Pourcelle V et al (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120:195–204CrossRefPubMed
22.
Zurück zum Zitat Raviv L, Jaron-Mendelson M, David A (2015) Mannosylated polyion complexes for in vivo gene delivery into CD11c+ dendritic cells. Mol Pharm 12:453–462CrossRefPubMed Raviv L, Jaron-Mendelson M, David A (2015) Mannosylated polyion complexes for in vivo gene delivery into CD11c+ dendritic cells. Mol Pharm 12:453–462CrossRefPubMed
23.
Zurück zum Zitat Yao W, Jiao Y, Luo J, Du M, Zong L (2012) Practical synthesis and characterization of mannose-modified chitosan. Int J Biol Macromol 50:821–825CrossRefPubMed Yao W, Jiao Y, Luo J, Du M, Zong L (2012) Practical synthesis and characterization of mannose-modified chitosan. Int J Biol Macromol 50:821–825CrossRefPubMed
24.
Zurück zum Zitat Wang C, Chen B, Zou M, Cheng G (2014) Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloids Surf B Biointerfaces 122:332–340CrossRefPubMed Wang C, Chen B, Zou M, Cheng G (2014) Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloids Surf B Biointerfaces 122:332–340CrossRefPubMed
25.
Zurück zum Zitat Biswas S, Chattopadhyay M, Sen KK, Saha MK (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 121:403–410CrossRefPubMed Biswas S, Chattopadhyay M, Sen KK, Saha MK (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 121:403–410CrossRefPubMed
26.
Zurück zum Zitat Primard C, Rochereau N, Luciani E et al (2010) Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 31:6060–6068CrossRefPubMed Primard C, Rochereau N, Luciani E et al (2010) Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 31:6060–6068CrossRefPubMed
27.
Zurück zum Zitat Mariño E, Richards JL, McLeod KH et al (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18:552–562CrossRefPubMed Mariño E, Richards JL, McLeod KH et al (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18:552–562CrossRefPubMed
28.
Zurück zum Zitat Qi F, Wu J, Yang T, Ma G, Su Z (2014) Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater 10:4247–4256CrossRefPubMed Qi F, Wu J, Yang T, Ma G, Su Z (2014) Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater 10:4247–4256CrossRefPubMed
29.
Zurück zum Zitat Lai J, Shah BP, Garfunkel E, Lee KB (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7:2741–2750CrossRefPubMedPubMedCentral Lai J, Shah BP, Garfunkel E, Lee KB (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7:2741–2750CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Jiang PL, Lin HJ, Wang HW et al (2015) Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater 11:356–367CrossRefPubMed Jiang PL, Lin HJ, Wang HW et al (2015) Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater 11:356–367CrossRefPubMed
31.
Zurück zum Zitat Maassen CB, Boersma WJ, Van Holten-Neelen C, Claassen E, Laman JD (2003) Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine 21:2751–2757CrossRefPubMed Maassen CB, Boersma WJ, Van Holten-Neelen C, Claassen E, Laman JD (2003) Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine 21:2751–2757CrossRefPubMed
32.
Zurück zum Zitat Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758CrossRefPubMed Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758CrossRefPubMed
33.
Zurück zum Zitat Fei L, Wang L, Jin XM, Yan CH, Shan J, Shen XM (2009) The immunologic effect of TGF-beta1 chitosan nanoparticle plasmids on ovalbumin-induced allergic BALB/c mice. Immunobiology 214:87–99CrossRef Fei L, Wang L, Jin XM, Yan CH, Shan J, Shen XM (2009) The immunologic effect of TGF-beta1 chitosan nanoparticle plasmids on ovalbumin-induced allergic BALB/c mice. Immunobiology 214:87–99CrossRef
34.
Zurück zum Zitat Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458CrossRefPubMed Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458CrossRefPubMed
35.
Zurück zum Zitat Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL (1991) Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. J Endocrinol Investig 88:10252–10256 Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL (1991) Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. J Endocrinol Investig 88:10252–10256
36.
Zurück zum Zitat Bergerot I, Arreaza GA, Cameron MJ et al (1999) Insulin B-chain reactive CD4+ regulatory T cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T cells. Diabetes 48:1720–1729CrossRefPubMed Bergerot I, Arreaza GA, Cameron MJ et al (1999) Insulin B-chain reactive CD4+ regulatory T cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T cells. Diabetes 48:1720–1729CrossRefPubMed
37.
Zurück zum Zitat Takiishi T, Korf H, Van Belle TL et al (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122:1717–1725CrossRefPubMedPubMedCentral Takiishi T, Korf H, Van Belle TL et al (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122:1717–1725CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Bonifacio E, Ziegler AG, Klingensmith G et al (2015) Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA 313:1541–1549CrossRefPubMed Bonifacio E, Ziegler AG, Klingensmith G et al (2015) Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA 313:1541–1549CrossRefPubMed
39.
Zurück zum Zitat Ma Y, Liu J, Hou J et al (2014) Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS One 9:e105701CrossRefPubMedPubMedCentral Ma Y, Liu J, Hou J et al (2014) Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS One 9:e105701CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Harrison LC, Hafler DA (2000) Antigen-specific therapy for autoimmune disease. Curr Opin Immunol 12:704–711CrossRefPubMed Harrison LC, Hafler DA (2000) Antigen-specific therapy for autoimmune disease. Curr Opin Immunol 12:704–711CrossRefPubMed
41.
Zurück zum Zitat Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9:2279–2283CrossRefPubMedPubMedCentral Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9:2279–2283CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Cohensfady M, Nussbaum G, Pevsnerfischer M et al (2005) Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 175:3594–3602CrossRef Cohensfady M, Nussbaum G, Pevsnerfischer M et al (2005) Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 175:3594–3602CrossRef
43.
Zurück zum Zitat Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167:1081–1089CrossRefPubMed Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167:1081–1089CrossRefPubMed
44.
Zurück zum Zitat Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13CrossRefPubMed Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13CrossRefPubMed
45.
Zurück zum Zitat Kasagi S, Zhang P, Che L et al (2014) In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci Transl Med 6:241–278CrossRef Kasagi S, Zhang P, Che L et al (2014) In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci Transl Med 6:241–278CrossRef
Metadaten
Titel
Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice
verfasst von
Yulin Chen
Jie Wu
Jiajia Wang
Wenjing Zhang
Bohui Xu
Xiaojun Xu
Li Zong
Publikationsdatum
15.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 6/2018
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4593-3

Weitere Artikel der Ausgabe 6/2018

Diabetologia 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.