Skip to main content
Erschienen in: Current Osteoporosis Reports 2/2019

26.02.2019 | Therapeutics and Medical Management (S Jan de Beur and B Clarke, Section Editors)

Targeting Cell Senescence for the Treatment of Age-Related Bone Loss

verfasst von: Robert J. Pignolo, Rebekah M. Samsonraj, Susan F. Law, Haitao Wang, Abhishek Chandra

Erschienen in: Current Osteoporosis Reports | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

We review cell senescence in the context of age-related bone loss by broadly discussing aging mechanisms in bone, currently known inducers and markers of senescence, the senescence-associated secretory phenotype (SASP), and the emerging roles of senescence in bone homeostasis and pathology.

Recent Findings

Cellular senescence is a state of irreversible cell cycle arrest induced by insults or stressors including telomere attrition, oxidative stress, DNA damage, oncogene activation, and other intrinsic or extrinsic triggers and there is mounting evidence for the role of senescence in aging bone. Cellular aging also instigates a SASP that exerts detrimental paracrine and likely systemic effects.

Summary

With aging, multiple cell types in the bone microenvironment become senescent, with osteocytes and myeloid cells as primary contributors to the SASP. Targeting undesired senescent cells may be a favorable strategy to promote bone anabolic and anti-resorptive functions in aging bone, with the possibility of improving bone quality and function with normal aging and/or disease.
Literatur
1.
Zurück zum Zitat Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol. 2017;31(2):203–17.CrossRefPubMed Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol. 2017;31(2):203–17.CrossRefPubMed
4.
Zurück zum Zitat Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22(8):1197–207.CrossRefPubMed Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22(8):1197–207.CrossRefPubMed
5.
Zurück zum Zitat Khosla S. Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci. 2013;68(10):1226–35.CrossRefPubMed Khosla S. Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci. 2013;68(10):1226–35.CrossRefPubMed
6.
Zurück zum Zitat Khosla S, Pacifici R. Chapter 46 - estrogen deficiency, postmenopausal osteoporosis, and age-related bone loss. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. Fourth ed. San Diego: Academic Press; 2013. p. 1113–36. Khosla S, Pacifici R. Chapter 46 - estrogen deficiency, postmenopausal osteoporosis, and age-related bone loss. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. Fourth ed. San Diego: Academic Press; 2013. p. 1113–36.
7.
Zurück zum Zitat Hay E, Bouaziz W, Funck-Brentano T, Cohen-Solal M. Sclerostin and bone aging: a mini-review. Gerontology. 2016;62(6):618–23.CrossRefPubMed Hay E, Bouaziz W, Funck-Brentano T, Cohen-Solal M. Sclerostin and bone aging: a mini-review. Gerontology. 2016;62(6):618–23.CrossRefPubMed
8.
Zurück zum Zitat Girgis CM, Baldock PA, Downes M. Vitamin D, muscle and bone: integrating effects in development, aging and injury. Mol Cell Endocrinol. 2015;410:3–10.CrossRefPubMed Girgis CM, Baldock PA, Downes M. Vitamin D, muscle and bone: integrating effects in development, aging and injury. Mol Cell Endocrinol. 2015;410:3–10.CrossRefPubMed
9.
Zurück zum Zitat Bianco P, Robey PG. Skeletal stem cells. Development (Cambridge, England). 2015;142(6):1023–7.CrossRef Bianco P, Robey PG. Skeletal stem cells. Development (Cambridge, England). 2015;142(6):1023–7.CrossRef
10.
Zurück zum Zitat Guntur AR, Rosen CJ. IGF-1 regulation of key signaling pathways in bone. BoneKEy Rep. 2013;2. Guntur AR, Rosen CJ. IGF-1 regulation of key signaling pathways in bone. BoneKEy Rep. 2013;2.
11.
Zurück zum Zitat Roberts S, Colombier P, Sowman A, Mennan C, Rölfing JHD, Guicheux J, et al. Ageing in the musculoskeletal system: cellular function and dysfunction throughout life. Acta Orthop. 2016;87(Suppl 363):15–25.CrossRefPubMedPubMedCentral Roberts S, Colombier P, Sowman A, Mennan C, Rölfing JHD, Guicheux J, et al. Ageing in the musculoskeletal system: cellular function and dysfunction throughout life. Acta Orthop. 2016;87(Suppl 363):15–25.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chandra A, Rosenzweig A, Pignolo RJ. Osteobiology of aging. In: Pignolo RJ, Ahn J, editors. Fractures in the elderly: a guide to practical management. Cham: Springer International Publishing; 2018. p. 3–37.CrossRef Chandra A, Rosenzweig A, Pignolo RJ. Osteobiology of aging. In: Pignolo RJ, Ahn J, editors. Fractures in the elderly: a guide to practical management. Cham: Springer International Publishing; 2018. p. 3–37.CrossRef
14.
Zurück zum Zitat •• Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31(11):1920–9 The study provided the first thorough evidence of senescence in bone cells from aged animals and humans. CrossRefPubMed •• Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31(11):1920–9 The study provided the first thorough evidence of senescence in bone cells from aged animals and humans. CrossRefPubMed
15.
Zurück zum Zitat •• Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9 This study provided the first detailed evidence that clearance of senescent cells by genetic and pharmacological methods could alleviate age-associated osteoporosis. CrossRefPubMedPubMedCentral •• Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9 This study provided the first detailed evidence that clearance of senescent cells by genetic and pharmacological methods could alleviate age-associated osteoporosis. CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.CrossRefPubMed Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.CrossRefPubMed
18.
Zurück zum Zitat Lecot P, Alimirah F, Desprez PY, Campisi J, Wiley C. Context-dependent effects of cellular senescence in cancer development. Br J Cancer. 2016;114(11):1180–4.CrossRefPubMedPubMedCentral Lecot P, Alimirah F, Desprez PY, Campisi J, Wiley C. Context-dependent effects of cellular senescence in cancer development. Br J Cancer. 2016;114(11):1180–4.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sueblinvong V, Neveu WA, Neujahr DC, Mills ST, Rojas M, Roman J, et al. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury. Adv Biosci Biotechnol (Print). 2014;5(1):19–30.CrossRef Sueblinvong V, Neveu WA, Neujahr DC, Mills ST, Rojas M, Roman J, et al. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury. Adv Biosci Biotechnol (Print). 2014;5(1):19–30.CrossRef
20.
Zurück zum Zitat Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.CrossRefPubMed Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.CrossRefPubMed
21.
Zurück zum Zitat Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep. 2016;43(11):1213–20.CrossRefPubMed Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep. 2016;43(11):1213–20.CrossRefPubMed
22.
Zurück zum Zitat Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res. 2014;29(6):1311–21.CrossRefPubMed Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res. 2014;29(6):1311–21.CrossRefPubMed
23.
Zurück zum Zitat Mas-Bargues C, Vina-Almunia J, Ingles M, Sanz-Ros J, Gambini J, Ibanez-Cabellos JS, et al. Role of p16(INK4a) and BMI-1 in oxidative stress-induced premature senescence in human dental pulp stem cells. Redox Biol. 2017;12:690–8.CrossRefPubMedPubMedCentral Mas-Bargues C, Vina-Almunia J, Ingles M, Sanz-Ros J, Gambini J, Ibanez-Cabellos JS, et al. Role of p16(INK4a) and BMI-1 in oxidative stress-induced premature senescence in human dental pulp stem cells. Redox Biol. 2017;12:690–8.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Mirzayans R, Andrais B, Hansen G, Murray D. Role of p16(INK4A) in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Biochem Res Int. 2012;2012:951574.CrossRefPubMedPubMedCentral Mirzayans R, Andrais B, Hansen G, Murray D. Role of p16(INK4A) in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Biochem Res Int. 2012;2012:951574.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Jin J, Tao J, Gu X, Yu Z, Wang R, Zuo G, et al. P16INK4aDeletion ameliorated renal tubulointerstitial injury in a stress-induced premature senescence model of Bmi-1 deficiency. Sci Rep. 2017;7(1):7502.CrossRefPubMedPubMedCentral Jin J, Tao J, Gu X, Yu Z, Wang R, Zuo G, et al. P16INK4aDeletion ameliorated renal tubulointerstitial injury in a stress-induced premature senescence model of Bmi-1 deficiency. Sci Rep. 2017;7(1):7502.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Blazkova H, Krejcikova K, Moudry P, Frisan T, Hodny Z, Bartek J. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling. J Cell Mol Med. 2010;14(1–2):357–67.CrossRefPubMed Blazkova H, Krejcikova K, Moudry P, Frisan T, Hodny Z, Bartek J. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling. J Cell Mol Med. 2010;14(1–2):357–67.CrossRefPubMed
27.
Zurück zum Zitat Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347.CrossRefPubMedPubMedCentral Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973.CrossRefPubMedPubMedCentral Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Saeed H, Abdallah BM, Ditzel N, Catala-Lehnen P, Qiu W, Amling M, et al. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res. 2011;26(7):1494–505.CrossRefPubMed Saeed H, Abdallah BM, Ditzel N, Catala-Lehnen P, Qiu W, Amling M, et al. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res. 2011;26(7):1494–505.CrossRefPubMed
30.
Zurück zum Zitat Wang H, Chen Q, Lee SH, Choi Y, Johnson FB, Pignolo RJ. Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction in mouse models of accelerated aging. Aging Cell. 2012;11(4):704–13.CrossRefPubMed Wang H, Chen Q, Lee SH, Choi Y, Johnson FB, Pignolo RJ. Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction in mouse models of accelerated aging. Aging Cell. 2012;11(4):704–13.CrossRefPubMed
31.
Zurück zum Zitat Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20(6):592–6.CrossRefPubMed Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20(6):592–6.CrossRefPubMed
32.
Zurück zum Zitat Yudoh K, Nishioka K. Telomerized presenescent osteoblasts prevent bone mass loss in vivo. Gene Ther. 2004;11(11):909–15.CrossRefPubMed Yudoh K, Nishioka K. Telomerized presenescent osteoblasts prevent bone mass loss in vivo. Gene Ther. 2004;11(11):909–15.CrossRefPubMed
33.
Zurück zum Zitat • Gronthos S, Chen S, Wang CY, Robey PG, Shi S. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res. 2003;18(4):716–22 This paper provided evidence that telomerase accelerates osteogenic induction. By transplantation of telomerase-expressing MSCs, the authors reported increased ectopic bone formation accompanied with upregulation of osteogenic genes. CrossRefPubMed • Gronthos S, Chen S, Wang CY, Robey PG, Shi S. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res. 2003;18(4):716–22 This paper provided evidence that telomerase accelerates osteogenic induction. By transplantation of telomerase-expressing MSCs, the authors reported increased ectopic bone formation accompanied with upregulation of osteogenic genes. CrossRefPubMed
34.
Zurück zum Zitat Yudoh K, Matsuno H, Nakazawa F, Katayama R, Kimura T. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res. 2001;16(8):1453–64.CrossRefPubMed Yudoh K, Matsuno H, Nakazawa F, Katayama R, Kimura T. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res. 2001;16(8):1453–64.CrossRefPubMed
35.
Zurück zum Zitat •• Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, Choi Y, et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell. 2008;7(1):23–31 Using an accelerated aging model of Wrn and Terc deficiencies that resulted in low bone mass phenotype, this paper showed that age-related osteoporosis results from impaired osteoblast differentiation. This paper was also first to demonstrate that MSCs derived from these double mutant mice showed limited in vitro lifespan and impaired osteogenic potential, together supporting that aging of osteoblast precursors due to telomere dysfunction is an important mechanism underlying age-related osteoporosis. CrossRefPubMed •• Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, Choi Y, et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell. 2008;7(1):23–31 Using an accelerated aging model of Wrn and Terc deficiencies that resulted in low bone mass phenotype, this paper showed that age-related osteoporosis results from impaired osteoblast differentiation. This paper was also first to demonstrate that MSCs derived from these double mutant mice showed limited in vitro lifespan and impaired osteogenic potential, together supporting that aging of osteoblast precursors due to telomere dysfunction is an important mechanism underlying age-related osteoporosis. CrossRefPubMed
36.
Zurück zum Zitat Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8(21):2540–51.CrossRefPubMed Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8(21):2540–51.CrossRefPubMed
37.
Zurück zum Zitat Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14(4):501–13.CrossRefPubMed Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14(4):501–13.CrossRefPubMed
38.
Zurück zum Zitat d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8.CrossRefPubMed d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8.CrossRefPubMed
39.
40.
Zurück zum Zitat Galbiati A, Beausejour C, d'Adda di Fagagna F. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell 2017;16(2):422–427. Galbiati A, Beausejour C, d'Adda di Fagagna F. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell 2017;16(2):422–427.
41.
Zurück zum Zitat Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 2011;124(Pt 1):68–81.CrossRefPubMed Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 2011;124(Pt 1):68–81.CrossRefPubMed
42.
Zurück zum Zitat Munch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, et al. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol. 2014;34(10):1733–46.CrossRefPubMedPubMedCentral Munch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, et al. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol. 2014;34(10):1733–46.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat • Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science (New York, NY). 2015;349(6255):aaa5612 This paper was the first to identify that transcription factor GATA4 is both a senescence and SASP regulator. Being stabilized in cells undergoing senescence, GATA4 was also shown to activate the transcription factor NF-κB to initiate the SASP and mediate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). CrossRef • Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science (New York, NY). 2015;349(6255):aaa5612 This paper was the first to identify that transcription factor GATA4 is both a senescence and SASP regulator. Being stabilized in cells undergoing senescence, GATA4 was also shown to activate the transcription factor NF-κB to initiate the SASP and mediate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). CrossRef
44.
Zurück zum Zitat Lee JY, Yu KR, Lee BC, Kang I, Kim JJ, Jung EJ, et al. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging. Exp Mol Med. 2018;50(5):63.CrossRefPubMedCentral Lee JY, Yu KR, Lee BC, Kang I, Kim JJ, Jung EJ, et al. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging. Exp Mol Med. 2018;50(5):63.CrossRefPubMedCentral
45.
Zurück zum Zitat Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85(3):632–9.CrossRefPubMedPubMedCentral Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85(3):632–9.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 2010;87(3):226–35.CrossRefPubMed Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 2010;87(3):226–35.CrossRefPubMed
47.
Zurück zum Zitat Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res. 2004;295(2):525–38.CrossRefPubMed Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res. 2004;295(2):525–38.CrossRefPubMed
48.
Zurück zum Zitat Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol. 1996;16(9):5210–8.CrossRefPubMedPubMedCentral Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol. 1996;16(9):5210–8.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Wu G, Wang N, Luo Y, Zhang Y, Wang P, Zhu Z, et al. Metabolic perturbation of epigenome by inhibiting S-adenosylhomocysteine hydrolase elicits senescence through DNA damage response in hepatoma cells. Tumour Biol. 2017;39(5):1010428317699117.CrossRefPubMed Wu G, Wang N, Luo Y, Zhang Y, Wang P, Zhu Z, et al. Metabolic perturbation of epigenome by inhibiting S-adenosylhomocysteine hydrolase elicits senescence through DNA damage response in hepatoma cells. Tumour Biol. 2017;39(5):1010428317699117.CrossRefPubMed
50.
Zurück zum Zitat Ito T, Teo YV, Evans SA, Neretti N, Sedivy JM. Regulation of cellular senescence by Polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 2018;22(13):3480–92.CrossRefPubMedPubMedCentral Ito T, Teo YV, Evans SA, Neretti N, Sedivy JM. Regulation of cellular senescence by Polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 2018;22(13):3480–92.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Kochetkova EY, Blinova GI, Bystrova OA, Martynova MG, Pospelov VA, Pospelova TV. Targeted elimination of senescent Ras-transformed cells by suppression of MEK/ERK pathway. Aging (Albany NY). 2017;9(11):2352–75.CrossRef Kochetkova EY, Blinova GI, Bystrova OA, Martynova MG, Pospelov VA, Pospelova TV. Targeted elimination of senescent Ras-transformed cells by suppression of MEK/ERK pathway. Aging (Albany NY). 2017;9(11):2352–75.CrossRef
53.
54.
Zurück zum Zitat Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T, Pellicer A. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol. 2000;20(8):2915–25.CrossRefPubMedPubMedCentral Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T, Pellicer A. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol. 2000;20(8):2915–25.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology (Baltimore, Md). 2010;52(3):966–74.CrossRef Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology (Baltimore, Md). 2010;52(3):966–74.CrossRef
56.
Zurück zum Zitat Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK, et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 2016;14(1):82–92.CrossRefPubMed Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK, et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 2016;14(1):82–92.CrossRefPubMed
57.
Zurück zum Zitat Maciel-Baron LA, Morales-Rosales SL, Aquino-Cruz AA, Triana-Martinez F, Galvan-Arzate S, Luna-Lopez A, et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr). 2016;38(1):26.CrossRef Maciel-Baron LA, Morales-Rosales SL, Aquino-Cruz AA, Triana-Martinez F, Galvan-Arzate S, Luna-Lopez A, et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr). 2016;38(1):26.CrossRef
58.
Zurück zum Zitat Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31(2):172–83.CrossRefPubMedPubMedCentral Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31(2):172–83.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.CrossRefPubMedPubMedCentral Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthr Cartil. 2015;23(11):1966–71.CrossRef Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthr Cartil. 2015;23(11):1966–71.CrossRef
61.
Zurück zum Zitat Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30(8):1536–48.CrossRefPubMedPubMedCentral Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30(8):1536–48.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY). 2012;4(3):166–75.CrossRef Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY). 2012;4(3):166–75.CrossRef
63.
Zurück zum Zitat Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther. 2014;16(1):R58.CrossRefPubMedPubMedCentral Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther. 2014;16(1):R58.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.CrossRefPubMedPubMedCentral Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Jun JI, Lau LF. Cellular senescence controls fibrosis in wound healing. Aging (Albany NY). 2010;2(9):627–31.CrossRef Jun JI, Lau LF. Cellular senescence controls fibrosis in wound healing. Aging (Albany NY). 2010;2(9):627–31.CrossRef
66.
Zurück zum Zitat Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.CrossRefPubMed Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.CrossRefPubMed
67.
Zurück zum Zitat Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY). 2012;4(3):159–65.CrossRef Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY). 2012;4(3):159–65.CrossRef
69.
Zurück zum Zitat Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle. 2008;7(21):3355–61.CrossRefPubMed Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle. 2008;7(21):3355–61.CrossRefPubMed
70.
Zurück zum Zitat Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. Aging of mice is associated with p16(Ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY). 2016;8(7):1294–315.CrossRef Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. Aging of mice is associated with p16(Ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY). 2016;8(7):1294–315.CrossRef
71.
Zurück zum Zitat Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114(9):1299–307.CrossRefPubMedPubMedCentral Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114(9):1299–307.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):13742–7.CrossRefPubMedPubMedCentral Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):13742–7.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.CrossRefPubMed el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.CrossRefPubMed
74.
Zurück zum Zitat Stein GH, Drullinger LF, Soulard A, Dulic V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 1999;19(3):2109–17.CrossRefPubMedPubMedCentral Stein GH, Drullinger LF, Soulard A, Dulic V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 1999;19(3):2109–17.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.CrossRefPubMedPubMedCentral Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Mets T, Verdonk G. Variations in the stromal cell population of human bone marrow during aging. Mech Ageing Dev. 1981;15(1):41–9.CrossRefPubMed Mets T, Verdonk G. Variations in the stromal cell population of human bone marrow during aging. Mech Ageing Dev. 1981;15(1):41–9.CrossRefPubMed
77.
Zurück zum Zitat Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008;3(5):e2213.CrossRefPubMedPubMedCentral Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008;3(5):e2213.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Babaei M, Jansen L, Balavarca Y, Sjovall A, Bos A, van de Velde T, et al. Neoadjuvant therapy in rectal cancer patients with clinical stage II to III across European countries: variations and outcomes. Clin Colorectal Cancer. 2017. Babaei M, Jansen L, Balavarca Y, Sjovall A, Bos A, van de Velde T, et al. Neoadjuvant therapy in rectal cancer patients with clinical stage II to III across European countries: variations and outcomes. Clin Colorectal Cancer. 2017.
79.
Zurück zum Zitat Cho KA, Ryu SJ, Park JS, Jang IS, Ahn JS, Kim KT, et al. Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem. 2003;278(30):27789–95.CrossRefPubMed Cho KA, Ryu SJ, Park JS, Jang IS, Ahn JS, Kim KT, et al. Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem. 2003;278(30):27789–95.CrossRefPubMed
80.
Zurück zum Zitat Nishio K, Inoue A, Qiao S, Kondo H, Mimura A. Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochem Cell Biol. 2001;116(4):321–7.CrossRefPubMed Nishio K, Inoue A, Qiao S, Kondo H, Mimura A. Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochem Cell Biol. 2001;116(4):321–7.CrossRefPubMed
81.
Zurück zum Zitat Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP, et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem. 2004;279(40):42270–8.CrossRefPubMed Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP, et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem. 2004;279(40):42270–8.CrossRefPubMed
82.
Zurück zum Zitat Lipetz J, Cristofalo VJ. Ultrastructural changes accompanying the aging of human diploid cells in culture. J Ultrastruct Res. 1972;39(1):43–56.CrossRefPubMed Lipetz J, Cristofalo VJ. Ultrastructural changes accompanying the aging of human diploid cells in culture. J Ultrastruct Res. 1972;39(1):43–56.CrossRefPubMed
83.
Zurück zum Zitat De Priester W, Van Manen R, Knook DL. Lysosomal activity in the aging rat liver: II. Morphometry of acid phosphatase positive dense bodies. Mech Ageing Dev. 1984;26(2–3):205–16.CrossRefPubMed De Priester W, Van Manen R, Knook DL. Lysosomal activity in the aging rat liver: II. Morphometry of acid phosphatase positive dense bodies. Mech Ageing Dev. 1984;26(2–3):205–16.CrossRefPubMed
84.
Zurück zum Zitat Schmucker DL, Sachs H. Quantifying dense bodies and lipofuscin during aging: a morphologist’s perspective. Arch Gerontol Geriatr. 2002;34(3):249–61.CrossRefPubMed Schmucker DL, Sachs H. Quantifying dense bodies and lipofuscin during aging: a morphologist’s perspective. Arch Gerontol Geriatr. 2002;34(3):249–61.CrossRefPubMed
85.
Zurück zum Zitat Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.CrossRefPubMedPubMedCentral Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–806.CrossRefPubMed Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–806.CrossRefPubMed
87.
Zurück zum Zitat Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.CrossRefPubMed Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.CrossRefPubMed
88.
Zurück zum Zitat Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113(Pt 20):3613–22.PubMed Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113(Pt 20):3613–22.PubMed
89.
Zurück zum Zitat Yang NC, Hu ML. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9.CrossRefPubMed Yang NC, Hu ML. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9.CrossRefPubMed
90.
Zurück zum Zitat Cristofalo VJ. SA beta Gal staining: biomarker or delusion. Exp Gerontol. 2005;40(10):836–8.CrossRefPubMed Cristofalo VJ. SA beta Gal staining: biomarker or delusion. Exp Gerontol. 2005;40(10):836–8.CrossRefPubMed
91.
Zurück zum Zitat Hildebrand DG, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K. alpha-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle. 2013;12(12):1922–7.CrossRefPubMedPubMedCentral Hildebrand DG, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K. alpha-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle. 2013;12(12):1922–7.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.CrossRefPubMed Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.CrossRefPubMed
93.
Zurück zum Zitat Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31.CrossRefPubMed Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31.CrossRefPubMed
94.
Zurück zum Zitat Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.CrossRefPubMed Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.CrossRefPubMed
95.
Zurück zum Zitat Kim HN, Chang J, Shao L, Han L, Iyer S, Manolagas SC, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell. 2017;16(4):693–703.CrossRefPubMedPubMedCentral Kim HN, Chang J, Shao L, Han L, Iyer S, Manolagas SC, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell. 2017;16(4):693–703.CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Piemontese M, Almeida M, Robling AG, Kim HN, Xiong J, Thostenson JD, et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight. 2017;2(17). Piemontese M, Almeida M, Robling AG, Kim HN, Xiong J, Thostenson JD, et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight. 2017;2(17).
97.
Zurück zum Zitat Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMed Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMed
98.
Zurück zum Zitat Kranjc T, Ostanek B, Marc J. Bone microRNAs and ageing. Curr Pharm Biotechnol. 2017;18(3):210–20.CrossRefPubMed Kranjc T, Ostanek B, Marc J. Bone microRNAs and ageing. Curr Pharm Biotechnol. 2017;18(3):210–20.CrossRefPubMed
99.
Zurück zum Zitat Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells. 2016;34(1):148–59.CrossRefPubMed Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells. 2016;34(1):148–59.CrossRefPubMed
100.
Zurück zum Zitat Yoo JK, Kim CH, Jung HY, Lee DR, Kim JK. Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. Exp Gerontol. 2014;58:139–45.CrossRefPubMed Yoo JK, Kim CH, Jung HY, Lee DR, Kim JK. Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. Exp Gerontol. 2014;58:139–45.CrossRefPubMed
101.
Zurück zum Zitat He X, Zhang W, Liao L, Fu X, Yu Q, Jin Y. Identification and characterization of microRNAs by high through-put sequencing in mesenchymal stem cells and bone tissue from mice of age-related osteoporosis. PLoS One. 2013;8(8):e71895.CrossRefPubMedPubMedCentral He X, Zhang W, Liao L, Fu X, Yu Q, Jin Y. Identification and characterization of microRNAs by high through-put sequencing in mesenchymal stem cells and bone tissue from mice of age-related osteoporosis. PLoS One. 2013;8(8):e71895.CrossRefPubMedPubMedCentral
102.
Zurück zum Zitat Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22(5):675–82.CrossRefPubMed Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22(5):675–82.CrossRefPubMed
103.
Zurück zum Zitat Raz V, Vermolen BJ, Garini Y, Onderwater JJ, Mommaas-Kienhuis MA, Koster AJ, et al. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci. 2008;121(Pt 24):4018–28.CrossRefPubMed Raz V, Vermolen BJ, Garini Y, Onderwater JJ, Mommaas-Kienhuis MA, Koster AJ, et al. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci. 2008;121(Pt 24):4018–28.CrossRefPubMed
104.
Zurück zum Zitat Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6.CrossRefPubMedPubMedCentral Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63.CrossRefPubMed Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63.CrossRefPubMed
108.
Zurück zum Zitat Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.CrossRefPubMed Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.CrossRefPubMed
109.
Zurück zum Zitat Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.CrossRefPubMed Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.CrossRefPubMed
110.
Zurück zum Zitat Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010;20(4):440–6.CrossRefPubMedPubMedCentral Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010;20(4):440–6.CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24.CrossRefPubMedPubMedCentral Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24.CrossRefPubMedPubMedCentral
112.
113.
Zurück zum Zitat Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13(10):R97.CrossRefPubMedPubMedCentral Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13(10):R97.CrossRefPubMedPubMedCentral
114.
Zurück zum Zitat •• Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. 2014;23(5):1186–201 This study provides a thorough description of how an “epigenetic clock” could predict age across individuals in a large epigenome-wide study of 965 individuals. The authors identified 155 significantly age-associated CpG sites mapping to 100 genes and identified over 60 novel age-associated CpG sites with high correlation to age in specific tissues. CrossRefPubMed •• Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. 2014;23(5):1186–201 This study provides a thorough description of how an “epigenetic clock” could predict age across individuals in a large epigenome-wide study of 965 individuals. The authors identified 155 significantly age-associated CpG sites mapping to 100 genes and identified over 60 novel age-associated CpG sites with high correlation to age in specific tissues. CrossRefPubMed
115.
Zurück zum Zitat Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.CrossRefPubMed Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.CrossRefPubMed
116.
Zurück zum Zitat Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2005;8(1):19–30.CrossRefPubMed Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2005;8(1):19–30.CrossRefPubMed
117.
Zurück zum Zitat •• Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006;126(3):503–14 HMGA1 and 2 were identified as proteins that are structural components of SAHFs which stabilize senescence and block proliferation. They modulate transcription involved in the switch between senescence and transformation. CrossRefPubMed •• Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006;126(3):503–14 HMGA1 and 2 were identified as proteins that are structural components of SAHFs which stabilize senescence and block proliferation. They modulate transcription involved in the switch between senescence and transformation. CrossRefPubMed
119.
Zurück zum Zitat Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle. 2014;13(2):249–67.CrossRefPubMed Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle. 2014;13(2):249–67.CrossRefPubMed
120.
121.
Zurück zum Zitat Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A. 2006;103(23):8703–8.CrossRefPubMedPubMedCentral Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A. 2006;103(23):8703–8.CrossRefPubMedPubMedCentral
123.
Zurück zum Zitat Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 2013;203(6):929–42.CrossRefPubMedPubMedCentral Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 2013;203(6):929–42.CrossRefPubMedPubMedCentral
124.
Zurück zum Zitat Swanson EC, Rapkin LM, Bazett-Jones DP, Lawrence JB. Unfolding the story of chromatin organization in senescent cells. Nucleus. 2015;6(4):254–60.CrossRefPubMedPubMedCentral Swanson EC, Rapkin LM, Bazett-Jones DP, Lawrence JB. Unfolding the story of chromatin organization in senescent cells. Nucleus. 2015;6(4):254–60.CrossRefPubMedPubMedCentral
125.
Zurück zum Zitat Pignolo RJ, Martin BG, Horton JH, Kalbach AN, Cristofalo VJ. The pathway of cell senescence: WI-38 cells arrest in late G1 and are unable to traverse the cell cycle from a true G0 state. Exp Gerontol. 1998;33(1–2):67–80.CrossRefPubMed Pignolo RJ, Martin BG, Horton JH, Kalbach AN, Cristofalo VJ. The pathway of cell senescence: WI-38 cells arrest in late G1 and are unable to traverse the cell cycle from a true G0 state. Exp Gerontol. 1998;33(1–2):67–80.CrossRefPubMed
126.
Zurück zum Zitat Bemiller PM, Lee LH. Nucleolar changes in senescing WI-38 cells. Mech Ageing Dev. 1978;8(6):417–27.CrossRefPubMed Bemiller PM, Lee LH. Nucleolar changes in senescing WI-38 cells. Mech Ageing Dev. 1978;8(6):417–27.CrossRefPubMed
127.
Zurück zum Zitat •• Lessard F, Igelmann S, Trahan C, Huot G, Saint-Germain E, Mignacca L, et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol. 2018;20(7):789–99 This study reported how cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. The accumulation of ribosomal protein L29 may serve as a novel senescence biomarker in vivo and in vitro. Further genetic analysis revealed that Rb but not p53 was required for the senescence response to alter ribosome biogenesis. CrossRefPubMed •• Lessard F, Igelmann S, Trahan C, Huot G, Saint-Germain E, Mignacca L, et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol. 2018;20(7):789–99 This study reported how cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. The accumulation of ribosomal protein L29 may serve as a novel senescence biomarker in vivo and in vitro. Further genetic analysis revealed that Rb but not p53 was required for the senescence response to alter ribosome biogenesis. CrossRefPubMed
128.
Zurück zum Zitat Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4(1):87–98.CrossRefPubMedPubMedCentral Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4(1):87–98.CrossRefPubMedPubMedCentral
129.
130.
Zurück zum Zitat Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene. 2008;27(44):5774–84.CrossRefPubMed Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene. 2008;27(44):5774–84.CrossRefPubMed
131.
Zurück zum Zitat Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994;14(11):7414–20.CrossRefPubMedPubMedCentral Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994;14(11):7414–20.CrossRefPubMedPubMedCentral
132.
Zurück zum Zitat Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014;5:e1528.CrossRefPubMedPubMedCentral Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014;5:e1528.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Odgren PR, MacKay CA, Mason-Savas A, Yang M, Mailhot G, Birnbaum MJ. False-positive beta-galactosidase staining in osteoclasts by endogenous enzyme: studies in neonatal and month-old wild-type mice. Connect Tissue Res. 2006;47(4):229–34.CrossRefPubMed Odgren PR, MacKay CA, Mason-Savas A, Yang M, Mailhot G, Birnbaum MJ. False-positive beta-galactosidase staining in osteoclasts by endogenous enzyme: studies in neonatal and month-old wild-type mice. Connect Tissue Res. 2006;47(4):229–34.CrossRefPubMed
135.
Zurück zum Zitat Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res. 1982;4(1):1–6.CrossRefPubMed Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res. 1982;4(1):1–6.CrossRefPubMed
136.
Zurück zum Zitat Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.CrossRefPubMedPubMedCentral Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Mason DX, Jackson TJ, Lin AW. Molecular signature of oncogenic ras-induced senescence. Oncogene. 2004;23(57):9238–46.CrossRefPubMed Mason DX, Jackson TJ, Lin AW. Molecular signature of oncogenic ras-induced senescence. Oncogene. 2004;23(57):9238–46.CrossRefPubMed
139.
Zurück zum Zitat Lau L, David G. Senescence phenotypes induced by Ras in primary cells. Methods Mol Biol. 2017;1534:17–30.CrossRefPubMed Lau L, David G. Senescence phenotypes induced by Ras in primary cells. Methods Mol Biol. 2017;1534:17–30.CrossRefPubMed
140.
Zurück zum Zitat Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science (New York, NY). 2006;311(5765):1257.CrossRef Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science (New York, NY). 2006;311(5765):1257.CrossRef
141.
Zurück zum Zitat Chen X, Li M, Yan J, Liu T, Pan G, Yang H, et al. Alcohol induces cellular senescence and impairs osteogenic potential in bone marrow-derived mesenchymal stem cells. Alcohol Alcohol. 2017;52(3):289–97.CrossRefPubMedPubMedCentral Chen X, Li M, Yan J, Liu T, Pan G, Yang H, et al. Alcohol induces cellular senescence and impairs osteogenic potential in bone marrow-derived mesenchymal stem cells. Alcohol Alcohol. 2017;52(3):289–97.CrossRefPubMedPubMedCentral
142.
Zurück zum Zitat Muthna D, Soukup T, Vavrova J, Mokry J, Cmielova J, Visek B, et al. Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest, and senescence but not apoptosis. Stem Cells Dev. 2010;19(12):1855–62.CrossRefPubMed Muthna D, Soukup T, Vavrova J, Mokry J, Cmielova J, Visek B, et al. Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest, and senescence but not apoptosis. Stem Cells Dev. 2010;19(12):1855–62.CrossRefPubMed
143.
Zurück zum Zitat Sui B, Hu C, Liao L, Chen Y, Zhang X, Fu X, et al. Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci Rep. 2016;6:30186.CrossRefPubMedPubMedCentral Sui B, Hu C, Liao L, Chen Y, Zhang X, Fu X, et al. Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci Rep. 2016;6:30186.CrossRefPubMedPubMedCentral
144.
Zurück zum Zitat Kawase M, Tsuda M, Matsuo T. Accelerated bone resorption in senescence-accelerated mouse (SAM-P/6). J Bone Miner Res. 1989;4(3):359–64.CrossRefPubMed Kawase M, Tsuda M, Matsuo T. Accelerated bone resorption in senescence-accelerated mouse (SAM-P/6). J Bone Miner Res. 1989;4(3):359–64.CrossRefPubMed
145.
Zurück zum Zitat Perkins SL, Gibbons R, Kling S, Kahn AJ. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone. 1994;15(1):65–72.CrossRefPubMed Perkins SL, Gibbons R, Kling S, Kahn AJ. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone. 1994;15(1):65–72.CrossRefPubMed
146.
Zurück zum Zitat Okamoto Y, Takahashi K, Toriyama K, Takeda N, Kitagawa K, Hosokawa M, et al. Femoral peak bone mass and osteoclast number in an animal model of age-related spontaneous osteopenia. Anat Rec. 1995;242(1):21–8.CrossRefPubMed Okamoto Y, Takahashi K, Toriyama K, Takeda N, Kitagawa K, Hosokawa M, et al. Femoral peak bone mass and osteoclast number in an animal model of age-related spontaneous osteopenia. Anat Rec. 1995;242(1):21–8.CrossRefPubMed
147.
Zurück zum Zitat Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta. 2009;1792(4):364–70.CrossRefPubMed Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta. 2009;1792(4):364–70.CrossRefPubMed
148.
Zurück zum Zitat Erdmann J, Kogler C, Diel I, Ziegler R, Pfeilschifter J. Age-associated changes in the stimulatory effect of transforming growth factor beta on human osteogenic colony formation. Mech Ageing Dev. 1999;110(1–2):73–85.CrossRefPubMed Erdmann J, Kogler C, Diel I, Ziegler R, Pfeilschifter J. Age-associated changes in the stimulatory effect of transforming growth factor beta on human osteogenic colony formation. Mech Ageing Dev. 1999;110(1–2):73–85.CrossRefPubMed
149.
Zurück zum Zitat Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ, et al. Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J Bone Miner Res. 2017;32(2):360–72.CrossRefPubMed Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ, et al. Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J Bone Miner Res. 2017;32(2):360–72.CrossRefPubMed
150.
Zurück zum Zitat Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127(4):1241–53.CrossRefPubMedPubMedCentral Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127(4):1241–53.CrossRefPubMedPubMedCentral
151.
Zurück zum Zitat Abdallah BM, Haack-Sorensen M, Fink T, Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone. 2006;39(1):181–8.CrossRefPubMed Abdallah BM, Haack-Sorensen M, Fink T, Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone. 2006;39(1):181–8.CrossRefPubMed
152.
Zurück zum Zitat Larsen SA, Kassem M, Rattan SI. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells. Chem Cent J. 2012;6(1):18.CrossRefPubMedPubMedCentral Larsen SA, Kassem M, Rattan SI. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells. Chem Cent J. 2012;6(1):18.CrossRefPubMedPubMedCentral
153.
154.
Zurück zum Zitat Portal-Nunez S, Ardura JA, Lozano D, Bolivar OH, Lopez-Herradon A, Gutierrez-Rojas I, et al. Adverse effects of diabetes mellitus on the skeleton of aging mice. J Gerontol A Biol Sci Med Sci. 2016;71(3):290–9.CrossRefPubMed Portal-Nunez S, Ardura JA, Lozano D, Bolivar OH, Lopez-Herradon A, Gutierrez-Rojas I, et al. Adverse effects of diabetes mellitus on the skeleton of aging mice. J Gerontol A Biol Sci Med Sci. 2016;71(3):290–9.CrossRefPubMed
155.
Zurück zum Zitat Rosso A, Balsamo A, Gambino R, Dentelli P, Falcioni R, Cassader M, et al. p53 mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem. 2006;281(7):4339–47.CrossRefPubMed Rosso A, Balsamo A, Gambino R, Dentelli P, Falcioni R, Cassader M, et al. p53 mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem. 2006;281(7):4339–47.CrossRefPubMed
156.
Zurück zum Zitat Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, et al. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30(3):498–508.CrossRefPubMed Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, et al. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30(3):498–508.CrossRefPubMed
157.
Zurück zum Zitat Carnevale V, Romagnoli E, D'Erasmo L, D'Erasmo E. Bone damage in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2014;24(11):1151–7.CrossRefPubMed Carnevale V, Romagnoli E, D'Erasmo L, D'Erasmo E. Bone damage in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2014;24(11):1151–7.CrossRefPubMed
158.
Zurück zum Zitat Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellstrom D, Rudang R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;32(5):1062–71.CrossRefPubMed Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellstrom D, Rudang R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;32(5):1062–71.CrossRefPubMed
159.
Zurück zum Zitat Karim L, Bouxsein ML. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone. 2016;82:21–7.CrossRefPubMed Karim L, Bouxsein ML. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone. 2016;82:21–7.CrossRefPubMed
160.
Zurück zum Zitat Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29.CrossRefPubMedPubMedCentral Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29.CrossRefPubMedPubMedCentral
161.
Zurück zum Zitat Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediat Inflamm. 2014;2014:975872.CrossRef Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediat Inflamm. 2014;2014:975872.CrossRef
163.
Zurück zum Zitat Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015;64(7):2289–98.CrossRefPubMedPubMedCentral Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015;64(7):2289–98.CrossRefPubMedPubMedCentral
164.
Zurück zum Zitat Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes. 2006;30(9):1347–55.CrossRef Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes. 2006;30(9):1347–55.CrossRef
165.
Zurück zum Zitat Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.CrossRefPubMed Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.CrossRefPubMed
166.
Zurück zum Zitat Lau YK, Lee E, Prior HJ, Lix LM, Metge CJ, Leslie WD. Fracture risk in androgen deprivation therapy: a Canadian population based analysis. Can J Urol. 2009;16(6):4908–14.PubMed Lau YK, Lee E, Prior HJ, Lix LM, Metge CJ, Leslie WD. Fracture risk in androgen deprivation therapy: a Canadian population based analysis. Can J Urol. 2009;16(6):4908–14.PubMed
167.
Zurück zum Zitat Ojeda S, Lloret M, Naranjo A, Deniz F, Chesa N, Dominguez C, et al. Androgen deprivation in prostate cancer and the long-term risk of fracture. Actas Urol Esp. 2017;41(8):491–6.CrossRefPubMed Ojeda S, Lloret M, Naranjo A, Deniz F, Chesa N, Dominguez C, et al. Androgen deprivation in prostate cancer and the long-term risk of fracture. Actas Urol Esp. 2017;41(8):491–6.CrossRefPubMed
168.
Zurück zum Zitat Salama MN, Eid AA, Hatem A, Swidan AK. Prevalence of erectile dysfunction in Egyptian males with metabolic syndrome. Aging Male. 2018:1–7. Salama MN, Eid AA, Hatem A, Swidan AK. Prevalence of erectile dysfunction in Egyptian males with metabolic syndrome. Aging Male. 2018:1–7.
169.
Zurück zum Zitat Salvador C, Planas J, Agreda F, Placer J, Trilla E, Lopez MA, et al. Analysis of the lipid profile and atherogenic risk during androgen deprivation therapy in prostate cancer patients. Urol Int. 2013;90(1):41–4.CrossRefPubMed Salvador C, Planas J, Agreda F, Placer J, Trilla E, Lopez MA, et al. Analysis of the lipid profile and atherogenic risk during androgen deprivation therapy in prostate cancer patients. Urol Int. 2013;90(1):41–4.CrossRefPubMed
170.
Zurück zum Zitat Traish AM, Abdou R, Kypreos KE. Androgen deficiency and atherosclerosis: the lipid link. Vasc Pharmacol. 2009;51(5–6):303–13.CrossRef Traish AM, Abdou R, Kypreos KE. Androgen deficiency and atherosclerosis: the lipid link. Vasc Pharmacol. 2009;51(5–6):303–13.CrossRef
171.
Zurück zum Zitat Janowsky JS. Thinking with your gonads: testosterone and cognition. Trends Cogn Sci. 2006;10(2):77–82.CrossRefPubMed Janowsky JS. Thinking with your gonads: testosterone and cognition. Trends Cogn Sci. 2006;10(2):77–82.CrossRefPubMed
172.
Zurück zum Zitat Morote J, Tabernero AJ, Alvarez-Ossorio JL, Ciria JP, Dominguez-Escrig JL, Vazquez F, et al. Cognitive function in patients on androgen suppression: a prospective, multicentric study. Actas Urol Esp. 2018;42(2):114–20.CrossRefPubMed Morote J, Tabernero AJ, Alvarez-Ossorio JL, Ciria JP, Dominguez-Escrig JL, Vazquez F, et al. Cognitive function in patients on androgen suppression: a prospective, multicentric study. Actas Urol Esp. 2018;42(2):114–20.CrossRefPubMed
173.
Zurück zum Zitat Smith MR, Saad F, Egerdie B, Sieber PR, Tammela TL, Ke C, et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol. 2012;30(26):3271–6.CrossRefPubMedPubMedCentral Smith MR, Saad F, Egerdie B, Sieber PR, Tammela TL, Ke C, et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol. 2012;30(26):3271–6.CrossRefPubMedPubMedCentral
174.
Zurück zum Zitat Rais M, Wilson RM, Urbanski HF, Messaoudi I. Androgen supplementation improves some but not all aspects of immune senescence in aged male macaques. Geroscience. 2017. Rais M, Wilson RM, Urbanski HF, Messaoudi I. Androgen supplementation improves some but not all aspects of immune senescence in aged male macaques. Geroscience. 2017.
175.
Zurück zum Zitat Yialamas MA, Hayes FJ. Androgens and the ageing male and female. Best Pract Res Clin Endocrinol Metab. 2003;17(2):223–36.CrossRefPubMed Yialamas MA, Hayes FJ. Androgens and the ageing male and female. Best Pract Res Clin Endocrinol Metab. 2003;17(2):223–36.CrossRefPubMed
176.
177.
Zurück zum Zitat Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest. 1997;100(7):1755–9.CrossRefPubMedPubMedCentral Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest. 1997;100(7):1755–9.CrossRefPubMedPubMedCentral
178.
Zurück zum Zitat Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest. 1996;97(1):14–21.CrossRefPubMedPubMedCentral Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest. 1996;97(1):14–21.CrossRefPubMedPubMedCentral
179.
Zurück zum Zitat Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–15.CrossRefPubMed Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–15.CrossRefPubMed
180.
Zurück zum Zitat Tyagi AM, Srivastava K, Kureel J, Kumar A, Raghuvanshi A, Yadav D, et al. Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss. Osteoporos Int. 2012;23(3):1151–61.CrossRefPubMed Tyagi AM, Srivastava K, Kureel J, Kumar A, Raghuvanshi A, Yadav D, et al. Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss. Osteoporos Int. 2012;23(3):1151–61.CrossRefPubMed
181.
Zurück zum Zitat Mirochnik Y, Veliceasa D, Williams L, Maxwell K, Yemelyanov A, Budunova I, et al. Androgen receptor drives cellular senescence. PLoS One. 2012;7(3):e31052.CrossRefPubMedPubMedCentral Mirochnik Y, Veliceasa D, Williams L, Maxwell K, Yemelyanov A, Budunova I, et al. Androgen receptor drives cellular senescence. PLoS One. 2012;7(3):e31052.CrossRefPubMedPubMedCentral
182.
Zurück zum Zitat Saville PD. Changes in bone mass with age and alcoholism. J Bone Joint Surg Am. 1965;47:492–9.CrossRefPubMed Saville PD. Changes in bone mass with age and alcoholism. J Bone Joint Surg Am. 1965;47:492–9.CrossRefPubMed
183.
Zurück zum Zitat Gaddini GW, Grant KA, Woodall A, Stull C, Maddalozzo GF, Zhang B, et al. Twelve months of voluntary heavy alcohol consumption in male rhesus macaques suppresses intracortical bone remodeling. Bone. 2015;71:227–36.CrossRefPubMed Gaddini GW, Grant KA, Woodall A, Stull C, Maddalozzo GF, Zhang B, et al. Twelve months of voluntary heavy alcohol consumption in male rhesus macaques suppresses intracortical bone remodeling. Bone. 2015;71:227–36.CrossRefPubMed
184.
Zurück zum Zitat Kristensson H, Lunden A, Nilsson BE. Fracture incidence and diagnostic roentgen in alcoholics. Acta Orthop Scand. 1980;51(2):205–7.CrossRefPubMed Kristensson H, Lunden A, Nilsson BE. Fracture incidence and diagnostic roentgen in alcoholics. Acta Orthop Scand. 1980;51(2):205–7.CrossRefPubMed
185.
Zurück zum Zitat Ferguson JW, Luyk NH, Whitley BD. Mandibular osteomyelitis and pathologic fracture associated with metabolic catabolism induced by 'binge' drinking. Case report. Aust Dent J. 1991;36(5):361–5.CrossRefPubMed Ferguson JW, Luyk NH, Whitley BD. Mandibular osteomyelitis and pathologic fracture associated with metabolic catabolism induced by 'binge' drinking. Case report. Aust Dent J. 1991;36(5):361–5.CrossRefPubMed
186.
Zurück zum Zitat Lee K, Olsen J, Sun J, Chandu A. Alcohol-involved maxillofacial fractures. Aust Dent J. 2017;62(2):180–5.CrossRefPubMed Lee K, Olsen J, Sun J, Chandu A. Alcohol-involved maxillofacial fractures. Aust Dent J. 2017;62(2):180–5.CrossRefPubMed
187.
Zurück zum Zitat Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting old through the blood: circulating molecules in aging and senescence of cardiovascular regenerative cells. Front Cardiovasc Med. 2017;4:62.CrossRefPubMedPubMedCentral Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting old through the blood: circulating molecules in aging and senescence of cardiovascular regenerative cells. Front Cardiovasc Med. 2017;4:62.CrossRefPubMedPubMedCentral
188.
Zurück zum Zitat Krall EA, Dawson-Hughes B. Walking is related to bone density and rates of bone loss. Am J Med. 1994;96(1):20–6.CrossRefPubMed Krall EA, Dawson-Hughes B. Walking is related to bone density and rates of bone loss. Am J Med. 1994;96(1):20–6.CrossRefPubMed
189.
Zurück zum Zitat Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, et al. Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res. 2005;21(2):324–31.CrossRefPubMed Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, et al. Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res. 2005;21(2):324–31.CrossRefPubMed
190.
Zurück zum Zitat Takata S, Yasui N. Disuse osteoporosis. J Med Investig. 2001;48(3–4):147–56. Takata S, Yasui N. Disuse osteoporosis. J Med Investig. 2001;48(3–4):147–56.
191.
Zurück zum Zitat Dalsky GP. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med. 1988;108(6):824.CrossRefPubMed Dalsky GP. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med. 1988;108(6):824.CrossRefPubMed
192.
Zurück zum Zitat Wang H, Brennan TA, Russell E, Kim JH, Egan KP, Chen Q, et al. R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis. J Mol Med (Berl). 2013;91(12):1421–9.CrossRef Wang H, Brennan TA, Russell E, Kim JH, Egan KP, Chen Q, et al. R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis. J Mol Med (Berl). 2013;91(12):1421–9.CrossRef
193.
Zurück zum Zitat Sakai A, Sakata T, Tanaka S, Okazaki R, Kunugita N, Norimura T, et al. Disruption of the p53 gene results in preserved trabecular bone mass and bone formation after mechanical unloading. J Bone Miner Res. 2002;17(1):119–27.CrossRefPubMed Sakai A, Sakata T, Tanaka S, Okazaki R, Kunugita N, Norimura T, et al. Disruption of the p53 gene results in preserved trabecular bone mass and bone formation after mechanical unloading. J Bone Miner Res. 2002;17(1):119–27.CrossRefPubMed
194.
Zurück zum Zitat Okazaki R, Sakai A, Ootsuyama A, Sakata T, Nakamura T, Norimura T. Trabecular bone mass and bone formation are preserved after limb immobilisation in p53 null mice. Ann Rheum Dis. 2004;63(4):453–6.CrossRefPubMedPubMedCentral Okazaki R, Sakai A, Ootsuyama A, Sakata T, Nakamura T, Norimura T. Trabecular bone mass and bone formation are preserved after limb immobilisation in p53 null mice. Ann Rheum Dis. 2004;63(4):453–6.CrossRefPubMedPubMedCentral
195.
Zurück zum Zitat Amiche MA, Albaum JM, Tadrous M, Pechlivanoglou P, Levesque LE, Adachi JD, et al. Fracture risk in oral glucocorticoid users: a Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporos Int. 2016;27(5):1709–18.CrossRefPubMed Amiche MA, Albaum JM, Tadrous M, Pechlivanoglou P, Levesque LE, Adachi JD, et al. Fracture risk in oral glucocorticoid users: a Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporos Int. 2016;27(5):1709–18.CrossRefPubMed
196.
Zurück zum Zitat Kaji H, Yamauchi M, Chihara K, Sugimoto T. The threshold of bone mineral density for vertebral fracture in female patients with glucocorticoid-induced osteoporosis. Endocr J. 2006;53(1):27–34.CrossRefPubMed Kaji H, Yamauchi M, Chihara K, Sugimoto T. The threshold of bone mineral density for vertebral fracture in female patients with glucocorticoid-induced osteoporosis. Endocr J. 2006;53(1):27–34.CrossRefPubMed
197.
Zurück zum Zitat Karcic E, Karcic AA. Osteoporosis and fracture risk prevention in long-term glucocorticoid therapy. Arch Intern Med. 2001;161(14):1780–1.CrossRefPubMed Karcic E, Karcic AA. Osteoporosis and fracture risk prevention in long-term glucocorticoid therapy. Arch Intern Med. 2001;161(14):1780–1.CrossRefPubMed
198.
Zurück zum Zitat Yin J, Han L, Cong W. Alpinumisoflavone rescues glucocorticoid-induced apoptosis of osteocytes via suppressing Nox2-dependent ROS generation. Pharmacol Rep. 2018;70(2):270–6.CrossRefPubMed Yin J, Han L, Cong W. Alpinumisoflavone rescues glucocorticoid-induced apoptosis of osteocytes via suppressing Nox2-dependent ROS generation. Pharmacol Rep. 2018;70(2):270–6.CrossRefPubMed
199.
Zurück zum Zitat Basello K, Pacifici F, Capuani B, Pastore D, Lombardo MF, Ferrelli F, et al. Serum- and glucocorticoid-inducible kinase 1 delay the onset of endothelial senescence by directly interacting with human telomerase reverse transcriptase. Rejuvenation Res. 2016;19(1):79–89.CrossRefPubMed Basello K, Pacifici F, Capuani B, Pastore D, Lombardo MF, Ferrelli F, et al. Serum- and glucocorticoid-inducible kinase 1 delay the onset of endothelial senescence by directly interacting with human telomerase reverse transcriptase. Rejuvenation Res. 2016;19(1):79–89.CrossRefPubMed
200.
Zurück zum Zitat Bose R, Moors M, Tofighi R, Cascante A, Hermanson O, Ceccatelli S. Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death Dis. 2010;1:e92.CrossRefPubMedPubMedCentral Bose R, Moors M, Tofighi R, Cascante A, Hermanson O, Ceccatelli S. Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death Dis. 2010;1:e92.CrossRefPubMedPubMedCentral
201.
Zurück zum Zitat Hodge G, Jersmann H, Tran HB, Holmes M, Reynolds PN, Hodge S. Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes. Respir Res. 2015;16:2.CrossRefPubMedPubMedCentral Hodge G, Jersmann H, Tran HB, Holmes M, Reynolds PN, Hodge S. Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes. Respir Res. 2015;16:2.CrossRefPubMedPubMedCentral
202.
Zurück zum Zitat Poulsen RC, Watts AC, Murphy RJ, Snelling SJ, Carr AJ, Hulley PA. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann Rheum Dis. 2014;73(7):1405–13.CrossRefPubMed Poulsen RC, Watts AC, Murphy RJ, Snelling SJ, Carr AJ, Hulley PA. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann Rheum Dis. 2014;73(7):1405–13.CrossRefPubMed
203.
Zurück zum Zitat Cha HH, Cram EJ, Wang EC, Huang AJ, Kasler HG, Firestone GL. Glucocorticoids stimulate p21 gene expression by targeting multiple transcriptional elements within a steroid responsive region of the p21waf1/cip1 promoter in rat hepatoma cells. J Biol Chem. 1998;273(4):1998–2007.CrossRefPubMed Cha HH, Cram EJ, Wang EC, Huang AJ, Kasler HG, Firestone GL. Glucocorticoids stimulate p21 gene expression by targeting multiple transcriptional elements within a steroid responsive region of the p21waf1/cip1 promoter in rat hepatoma cells. J Biol Chem. 1998;273(4):1998–2007.CrossRefPubMed
204.
Zurück zum Zitat Owen HC, Ahmed SF, Farquharson C. Chondrocyte p21(WAF1/CIP1) expression is increased by dexamethasone but does not contribute to dexamethasone-induced growth retardation in vivo. Calcif Tissue Int. 2009;85(4):326–34.CrossRefPubMed Owen HC, Ahmed SF, Farquharson C. Chondrocyte p21(WAF1/CIP1) expression is increased by dexamethasone but does not contribute to dexamethasone-induced growth retardation in vivo. Calcif Tissue Int. 2009;85(4):326–34.CrossRefPubMed
205.
Zurück zum Zitat Leclerc N, Luppen CA, Ho VV, Nagpal S, Hacia JG, Smith E, et al. Gene expression profiling of glucocorticoid-inhibited osteoblasts. J Mol Endocrinol. 2004;33(1):175–93.CrossRefPubMed Leclerc N, Luppen CA, Ho VV, Nagpal S, Hacia JG, Smith E, et al. Gene expression profiling of glucocorticoid-inhibited osteoblasts. J Mol Endocrinol. 2004;33(1):175–93.CrossRefPubMed
206.
Zurück zum Zitat Li H, Qian W, Weng X, Wu Z, Li H, Zhuang Q, et al. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One. 2012;7(6):e37030.CrossRefPubMedPubMedCentral Li H, Qian W, Weng X, Wu Z, Li H, Zhuang Q, et al. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One. 2012;7(6):e37030.CrossRefPubMedPubMedCentral
207.
Zurück zum Zitat Hurson CJ, Butler JS, Keating DT, Murray DW, Sadlier DM, O'Byrne JM, et al. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord. 2007;8:12.CrossRefPubMedPubMedCentral Hurson CJ, Butler JS, Keating DT, Murray DW, Sadlier DM, O'Byrne JM, et al. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord. 2007;8:12.CrossRefPubMedPubMedCentral
208.
Zurück zum Zitat Ichiyoshi H, Kiyozuka Y, Kishimoto Y, Fukuhara S, Tsubura A. Massive telomere loss and telomerase RNA expression in dexamethasone-induced apoptosis in mouse thymocytes. Exp Mol Pathol. 2003;75(2):178–86.CrossRefPubMed Ichiyoshi H, Kiyozuka Y, Kishimoto Y, Fukuhara S, Tsubura A. Massive telomere loss and telomerase RNA expression in dexamethasone-induced apoptosis in mouse thymocytes. Exp Mol Pathol. 2003;75(2):178–86.CrossRefPubMed
209.
Zurück zum Zitat Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nature medicine. 2018. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nature medicine. 2018.
210.
Zurück zum Zitat Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–7.CrossRefPubMedPubMedCentral Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–7.CrossRefPubMedPubMedCentral
211.
Zurück zum Zitat Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle. 2018. Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle. 2018.
212.
Zurück zum Zitat Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.CrossRefPubMedPubMedCentral Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.CrossRefPubMedPubMedCentral
214.
Zurück zum Zitat Ovadya Y, Krizhanovsky V. Senescent cell death brings hopes to life. Cell Cycle. 2017;16(1):9–10.CrossRefPubMed Ovadya Y, Krizhanovsky V. Senescent cell death brings hopes to life. Cell Cycle. 2017;16(1):9–10.CrossRefPubMed
215.
Zurück zum Zitat Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63.CrossRef Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63.CrossRef
216.
Zurück zum Zitat Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35.CrossRefPubMedPubMedCentral Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35.CrossRefPubMedPubMedCentral
217.
Zurück zum Zitat •• Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6 This paper provided the first evidence for the beneficial effects of senescent cell clearance on delaying age-related adverse pathologies. CrossRefPubMedPubMedCentral •• Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6 This paper provided the first evidence for the beneficial effects of senescent cell clearance on delaying age-related adverse pathologies. CrossRefPubMedPubMedCentral
218.
Zurück zum Zitat Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.CrossRefPubMed Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.CrossRefPubMed
219.
Zurück zum Zitat Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H. Xu M, et al. EBioMedicine: Fisetin is a senotherapeutic that extends health and lifespan; 2018. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H. Xu M, et al. EBioMedicine: Fisetin is a senotherapeutic that extends health and lifespan; 2018.
220.
Zurück zum Zitat Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8(1):422.CrossRefPubMedPubMedCentral Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8(1):422.CrossRefPubMedPubMedCentral
221.
Zurück zum Zitat Farr J MD, Fraser D, Negley B, Thicke B, Onken J, Pignolo R, Tchkonia T, Kirkland J, Khosla S. Estrogen deficiency and cellular senescence represent independent mechanisms in the pathogenesis of osteoporosis: evidence from studies in mice and humans. American Society for Bone and Mineral Research; Montreal, Canada, 2018. Farr J MD, Fraser D, Negley B, Thicke B, Onken J, Pignolo R, Tchkonia T, Kirkland J, Khosla S. Estrogen deficiency and cellular senescence represent independent mechanisms in the pathogenesis of osteoporosis: evidence from studies in mice and humans. American Society for Bone and Mineral Research; Montreal, Canada, 2018.
Metadaten
Titel
Targeting Cell Senescence for the Treatment of Age-Related Bone Loss
verfasst von
Robert J. Pignolo
Rebekah M. Samsonraj
Susan F. Law
Haitao Wang
Abhishek Chandra
Publikationsdatum
26.02.2019
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 2/2019
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-019-00504-2

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.