Skip to main content
Erschienen in: Targeted Oncology 4/2010

01.12.2010 | Review

Targeting mTOR in cancer: renal cell is just a beginning

verfasst von: Hamdy Azim, Hatem A. Azim Jr., Bernard Escudier

Erschienen in: Targeted Oncology | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

The mammalian target of rapamycin (mTOR) is a key regulator of cell growth and proliferation. The mTOR pathway integrates signals from nutrients, energy status and extracellular growth factors to regulate many processes, including cell cycle progression, angiogenesis, ribosome biogenesis, and metabolism. Growth factors such as insulin-like growth factor, epidermal growth factor and vascular endothelial growth factor bind to and activate their corresponding tyrosine kinase receptors (TKR) located on the cell surface, to induce signal transduction to the nucleus. TKR induces intracellular signaling cascades via the phosphorylation of the phosphatidylinositol 3-kinase, which in turn phosphorylates Akt. Of particular interest among the Akt targets is the downstream effect on mTOR, which is responsible for protein synthesis of molecules necessary for nutrient uptake, angiogenesis, ribosome biogenesis, cell growth, and proliferation. Growing evidence suggests that mTOR deregulation is associated with many types of human cancer. The importance of mTOR signaling in tumor biology is now widely accepted. Consequently, a number of agents that selectively target mTOR are being developed for cancer treatment and currently temsirolimus and everolimus are approved for the treatment of advanced renal cell cancer. However, the therapeutic benefit of mTOR inhibitors in the clinic may vary depending on the activation state of the different components of the mTOR pathway in a given case. Therefore it seems clear that predicting sensitivity to rapamycins in different cancers will likely require assessing multiple molecular markers related to mTOR signaling pathway, such as phosphatase and tensin homolog (PTEN), phospho-Akt, cytoplasmic p27, and phospho-S6 kinase.
Literatur
1.
Zurück zum Zitat Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726 Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726
2.
Zurück zum Zitat Martel RR, Klicius J, Galet S (1977) Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 55:48–51PubMed Martel RR, Klicius J, Galet S (1977) Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 55:48–51PubMed
3.
Zurück zum Zitat Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M et al (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40:1249–1255 Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M et al (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40:1249–1255
4.
Zurück zum Zitat Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484CrossRefPubMed Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484CrossRefPubMed
5.
Zurück zum Zitat Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344:427–431CrossRefPubMed Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344:427–431CrossRefPubMed
6.
Zurück zum Zitat Kwiatkowski DJ (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2:471–476PubMed Kwiatkowski DJ (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2:471–476PubMed
7.
Zurück zum Zitat Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4:798–806CrossRefPubMed Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4:798–806CrossRefPubMed
8.
Zurück zum Zitat Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963CrossRefPubMed Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963CrossRefPubMed
9.
Zurück zum Zitat Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D et al (2003) Dysregulated PTENPKB and negative receptor status in human breast cancer. Int J Cancer 104:195–203CrossRefPubMed Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D et al (2003) Dysregulated PTENPKB and negative receptor status in human breast cancer. Int J Cancer 104:195–203CrossRefPubMed
10.
Zurück zum Zitat Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C et al (2004) PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene 23:617–628CrossRefPubMed Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C et al (2004) PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene 23:617–628CrossRefPubMed
11.
Zurück zum Zitat Fei G, Ebert MP, Mawron C, Leodolter A, Schmidt N, Dietzmann K, Malfertheiner P (2002) Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives. Eur J Gastroenterol Hepatol 14:297–303CrossRefPubMed Fei G, Ebert MP, Mawron C, Leodolter A, Schmidt N, Dietzmann K, Malfertheiner P (2002) Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives. Eur J Gastroenterol Hepatol 14:297–303CrossRefPubMed
12.
Zurück zum Zitat Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243CrossRefPubMed Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243CrossRefPubMed
13.
Zurück zum Zitat Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288CrossRefPubMed Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288CrossRefPubMed
14.
Zurück zum Zitat Tokunaga C, Yoshino K, Yonezawa K (2004) mTOR integrates amino acid- and energy sensing pathways. Biochem Biophys Res Commun 313:443–446CrossRefPubMed Tokunaga C, Yoshino K, Yonezawa K (2004) mTOR integrates amino acid- and energy sensing pathways. Biochem Biophys Res Commun 313:443–446CrossRefPubMed
15.
Zurück zum Zitat Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437CrossRefPubMed Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437CrossRefPubMed
16.
Zurück zum Zitat Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348CrossRefPubMed Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348CrossRefPubMed
17.
Zurück zum Zitat Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G (1999) Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol Cell Biol 19:4525–4534PubMed Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G (1999) Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol Cell Biol 19:4525–4534PubMed
18.
Zurück zum Zitat Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci USA 96:4438–4442CrossRefPubMed Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci USA 96:4438–4442CrossRefPubMed
19.
Zurück zum Zitat Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ et al (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180CrossRefPubMed Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ et al (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180CrossRefPubMed
20.
Zurück zum Zitat Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24:200–216CrossRefPubMed Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24:200–216CrossRefPubMed
21.
Zurück zum Zitat Jiang BH, Jiang GQ, Zheng JZ, Lu ZM, Hunter T, Vogt PK (2001) Phosphatidylinositol 3- kinase signaling controls levels of hypoxia-inducible factor. Cell Growth Differ 12:363–369PubMed Jiang BH, Jiang GQ, Zheng JZ, Lu ZM, Hunter T, Vogt PK (2001) Phosphatidylinositol 3- kinase signaling controls levels of hypoxia-inducible factor. Cell Growth Differ 12:363–369PubMed
22.
Zurück zum Zitat Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014CrossRefPubMed Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014CrossRefPubMed
23.
Zurück zum Zitat Clemens MJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23:3180–3188CrossRefPubMed Clemens MJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23:3180–3188CrossRefPubMed
24.
Zurück zum Zitat Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28:501–512CrossRefPubMed Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28:501–512CrossRefPubMed
25.
Zurück zum Zitat Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5_TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704CrossRefPubMed Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5_TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704CrossRefPubMed
26.
Zurück zum Zitat Dufner A, Thomas G (1999) Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253:100–109CrossRefPubMed Dufner A, Thomas G (1999) Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253:100–109CrossRefPubMed
27.
Zurück zum Zitat Holland EC, Sonenberg N, Pandolfi PP, Thomas G (2004) Signaling control of mRNA translation in cancer pathogenesis. Oncogene 23:3138–3144CrossRefPubMed Holland EC, Sonenberg N, Pandolfi PP, Thomas G (2004) Signaling control of mRNA translation in cancer pathogenesis. Oncogene 23:3138–3144CrossRefPubMed
28.
Zurück zum Zitat Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586CrossRefPubMed Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586CrossRefPubMed
29.
Zurück zum Zitat Taha C, Liu Z, Jin J, Al-Hasani H, Sonenberg N, Klip A (1999) Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J Biol Chem 274:33085–33091CrossRefPubMed Taha C, Liu Z, Jin J, Al-Hasani H, Sonenberg N, Klip A (1999) Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J Biol Chem 274:33085–33091CrossRefPubMed
30.
Zurück zum Zitat Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175CrossRefPubMed
31.
Zurück zum Zitat Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005: pe4 Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005: pe4
32.
Zurück zum Zitat O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508CrossRefPubMed O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508CrossRefPubMed
33.
Zurück zum Zitat Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227CrossRefPubMed Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227CrossRefPubMed
34.
Zurück zum Zitat Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280:20558–20564CrossRefPubMed Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280:20558–20564CrossRefPubMed
35.
Zurück zum Zitat Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189CrossRefPubMed Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189CrossRefPubMed
36.
Zurück zum Zitat Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175CrossRefPubMed
37.
Zurück zum Zitat Schalm SS, Fingar DC, Sabatini DM, Blenis J (2002) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806CrossRef Schalm SS, Fingar DC, Sabatini DM, Blenis J (2002) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806CrossRef
38.
Zurück zum Zitat Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9:359–366CrossRefPubMed Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9:359–366CrossRefPubMed
39.
Zurück zum Zitat Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2:222–232PubMed Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2:222–232PubMed
40.
Zurück zum Zitat Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302CrossRefPubMed Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302CrossRefPubMed
41.
Zurück zum Zitat Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1131CrossRefPubMed Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1131CrossRefPubMed
42.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101CrossRefPubMed Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101CrossRefPubMed
43.
Zurück zum Zitat Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31:292–297CrossRefPubMed Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31:292–297CrossRefPubMed
44.
Zurück zum Zitat Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468CrossRefPubMed Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468CrossRefPubMed
45.
Zurück zum Zitat Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82CrossRefPubMed Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82CrossRefPubMed
46.
Zurück zum Zitat Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686CrossRefPubMed Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686CrossRefPubMed
47.
Zurück zum Zitat Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688CrossRefPubMed Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688CrossRefPubMed
48.
Zurück zum Zitat Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554CrossRefPubMed Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554CrossRefPubMed
49.
Zurück zum Zitat Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262CrossRefPubMed Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262CrossRefPubMed
50.
Zurück zum Zitat Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al (2001) The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61:7426–7429PubMed Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al (2001) The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61:7426–7429PubMed
51.
Zurück zum Zitat Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395CrossRefPubMed Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395CrossRefPubMed
52.
Zurück zum Zitat Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Ann Rev Pathol 4:127–150CrossRef Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Ann Rev Pathol 4:127–150CrossRef
53.
Zurück zum Zitat Mills GB, Lu Y, Kohn EC (2001) Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 98:10031–10033CrossRefPubMed Mills GB, Lu Y, Kohn EC (2001) Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 98:10031–10033CrossRefPubMed
54.
Zurück zum Zitat Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947CrossRefPubMed Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947CrossRefPubMed
55.
Zurück zum Zitat Pandolfi PP (2008) P-TEN exciting years: from the cytosol to the nucleus and back to keep cancer at bay. Oncogene 27:5386CrossRefPubMed Pandolfi PP (2008) P-TEN exciting years: from the cytosol to the nucleus and back to keep cancer at bay. Oncogene 27:5386CrossRefPubMed
56.
Zurück zum Zitat Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014CrossRefPubMed Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014CrossRefPubMed
57.
Zurück zum Zitat Peponi E, Drakos E, Reyes GG, Leventaki V, Rassidakis GZ, Medeiros LJ (2006) Activation of mammalian target of rapamycin signaling promotoes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 169:2171–2180CrossRefPubMed Peponi E, Drakos E, Reyes GG, Leventaki V, Rassidakis GZ, Medeiros LJ (2006) Activation of mammalian target of rapamycin signaling promotoes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 169:2171–2180CrossRefPubMed
58.
Zurück zum Zitat Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348CrossRefPubMed Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348CrossRefPubMed
59.
Zurück zum Zitat Hedberg Y, Ljungberg B, Roos G, Landberg G (2003) Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer 88:1417–1723CrossRefPubMed Hedberg Y, Ljungberg B, Roos G, Landberg G (2003) Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer 88:1417–1723CrossRefPubMed
60.
Zurück zum Zitat Beuvink I, Boulay A, Fumagalli S, Zibermann F, Ruetz S, O’Reilly T et al (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120:747–759CrossRefPubMed Beuvink I, Boulay A, Fumagalli S, Zibermann F, Ruetz S, O’Reilly T et al (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120:747–759CrossRefPubMed
61.
Zurück zum Zitat Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906CrossRefPubMed Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906CrossRefPubMed
62.
Zurück zum Zitat Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17:415–422CrossRefPubMed Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17:415–422CrossRefPubMed
63.
Zurück zum Zitat Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B et al (2005) Rapamycin sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65:11061–11070CrossRefPubMed Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B et al (2005) Rapamycin sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65:11061–11070CrossRefPubMed
64.
Zurück zum Zitat Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE et al (2006) Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 281:36883–36890CrossRefPubMed Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE et al (2006) Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 281:36883–36890CrossRefPubMed
65.
Zurück zum Zitat Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G et al (2006) Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554CrossRefPubMed Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G et al (2006) Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554CrossRefPubMed
66.
Zurück zum Zitat Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135CrossRefPubMed Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135CrossRefPubMed
67.
Zurück zum Zitat Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940CrossRefPubMed Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940CrossRefPubMed
68.
Zurück zum Zitat Oliveira JC, Souza KK, Dias MM, Faria MC, Ropelle ER, Flores MB et al (2008) Antineoplastic effect of rapamycin is potentiated by inhibition of IRS-1 signaling in prostate cancer cells xenografts. J Cancer Res Clin Oncol 134:833–839CrossRefPubMed Oliveira JC, Souza KK, Dias MM, Faria MC, Ropelle ER, Flores MB et al (2008) Antineoplastic effect of rapamycin is potentiated by inhibition of IRS-1 signaling in prostate cancer cells xenografts. J Cancer Res Clin Oncol 134:833–839CrossRefPubMed
69.
Zurück zum Zitat Atzori F, Traina TA, Ionta MT, Massidda B (2009) Targeting insulin-like growth factor type 1 receptor in cancer therapy. Target Oncol 4:255–266CrossRefPubMed Atzori F, Traina TA, Ionta MT, Massidda B (2009) Targeting insulin-like growth factor type 1 receptor in cancer therapy. Target Oncol 4:255–266CrossRefPubMed
70.
Zurück zum Zitat Garcia JA, Danielpour D (2008) Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol Cancer Ther 7:1347–54CrossRefPubMed Garcia JA, Danielpour D (2008) Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol Cancer Ther 7:1347–54CrossRefPubMed
71.
Zurück zum Zitat Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93:10595–10599CrossRefPubMed Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93:10595–10599CrossRefPubMed
72.
Zurück zum Zitat Maynard MA, Ohh M (2004) Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 24:1–13CrossRefPubMed Maynard MA, Ohh M (2004) Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 24:1–13CrossRefPubMed
73.
Zurück zum Zitat Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66:3539–3554CrossRefPubMed Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66:3539–3554CrossRefPubMed
74.
Zurück zum Zitat Hu CJ, Iyer S, Sataur A, LA Covello C, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α in stem cells. Mol Cell Biol 26:3514–3526CrossRefPubMed Hu CJ, Iyer S, Sataur A, LA Covello C, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α in stem cells. Mol Cell Biol 26:3514–3526CrossRefPubMed
75.
Zurück zum Zitat Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia inducible factor 1. Physiology (Bethesda) 24:97–106 Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia inducible factor 1. Physiology (Bethesda) 24:97–106
76.
Zurück zum Zitat Chen L, Endler A, Shibasaki F (2009) Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors 41:849–857 Chen L, Endler A, Shibasaki F (2009) Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors 41:849–857
77.
Zurück zum Zitat Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B (2005) the expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11:1129–1135PubMed Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B (2005) the expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11:1129–1135PubMed
78.
Zurück zum Zitat Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Bergh A, Ljungberg B (2006) Hypoxia inducible factor 1alpha expression in renal cell carcinoma analyzed by tissue microarray. Eur Urol 60:1272–1277CrossRef Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Bergh A, Ljungberg B (2006) Hypoxia inducible factor 1alpha expression in renal cell carcinoma analyzed by tissue microarray. Eur Urol 60:1272–1277CrossRef
79.
Zurück zum Zitat Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD et al (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13:7388–7393CrossRefPubMed Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD et al (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13:7388–7393CrossRefPubMed
80.
Zurück zum Zitat Figlin RA, de Souza P, McDermott D, Dutcher JP, Berkenblit A, Thiele A et al (2009) Analysis of PTEN and HIF-1alpha and correlation with efficacy in patients with advanced renal cell carcinoma treated with temsirolimus versus interferon-alpha. Cancer 115:3651–3660CrossRefPubMed Figlin RA, de Souza P, McDermott D, Dutcher JP, Berkenblit A, Thiele A et al (2009) Analysis of PTEN and HIF-1alpha and correlation with efficacy in patients with advanced renal cell carcinoma treated with temsirolimus versus interferon-alpha. Cancer 115:3651–3660CrossRefPubMed
81.
Zurück zum Zitat Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al (2006) Hypoxia inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127CrossRefPubMed Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al (2006) Hypoxia inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127CrossRefPubMed
82.
Zurück zum Zitat Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281CrossRefPubMed Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281CrossRefPubMed
83.
Zurück zum Zitat Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456CrossRefPubMed Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456CrossRefPubMed
84.
Zurück zum Zitat Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319CrossRefPubMed Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319CrossRefPubMed
85.
Zurück zum Zitat Dutcher JP, de Souza P, McDermott D, Figlin RA, Berkenblit A, Thiele A et al (2009) Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol 26:202–209CrossRefPubMed Dutcher JP, de Souza P, McDermott D, Figlin RA, Berkenblit A, Thiele A et al (2009) Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol 26:202–209CrossRefPubMed
86.
Zurück zum Zitat Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M et al (2007) Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 5:379–385CrossRefPubMed Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M et al (2007) Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 5:379–385CrossRefPubMed
87.
Zurück zum Zitat Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid mediated mitogenic activation of mTOR signaling. Science (Wash DC) 294:1942–1945CrossRef Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid mediated mitogenic activation of mTOR signaling. Science (Wash DC) 294:1942–1945CrossRef
88.
Zurück zum Zitat Chen Y, Zheng Y, Foster DA (2003) Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22:3937–3942CrossRefPubMed Chen Y, Zheng Y, Foster DA (2003) Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22:3937–3942CrossRefPubMed
Metadaten
Titel
Targeting mTOR in cancer: renal cell is just a beginning
verfasst von
Hamdy Azim
Hatem A. Azim Jr.
Bernard Escudier
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Targeted Oncology / Ausgabe 4/2010
Print ISSN: 1776-2596
Elektronische ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-010-0141-x

Weitere Artikel der Ausgabe 4/2010

Targeted Oncology 4/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.