Skip to main content
Erschienen in: Inflammation 4/2019

02.03.2019 | REVIEW

Targeting of IL-6-Relevant Long Noncoding RNA Profiles in Inflammatory and Tumorous Disease

verfasst von: Juan Zhang, Maolin Chu

Erschienen in: Inflammation | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Interleukin-6 (IL-6) is a critical cytokine with a diverse repertoire of physiological functions. Dysregulation of IL-6 signaling is associated with inflammatory disorders as well as cancers. However, blockade of IL-6 activity via antibodies directed against the IL-6 signaling pathway may compromise the efficacy of the immune system; therefore, patients may not have a uniformly satisfactory response to treatment. Long noncoding RNAs (lncRNAs) have been discovered to be evolutionary conserved transcripts of noncoding DNA sequences and have emerged as biomarkers with great predictive and prognostic value, further employed as a targeted anticancer therapy. LncRNAs have been recently implicated in the regulation of IL-6-related signaling and function; they are tightly linked to the development of a range of IL-6 dysregulated diseases. Here, we will highlight those lncRNAs involved in IL-6 signaling, with an emphasis on the mechanisms of lncRNAs that interact with IL-6. Targeting of such lncRNAs related to IL-6 regulation could be, in the near future, a promising therapeutic strategy in the treatment of inflammatory- and tumor-related diseases.
Literatur
1.
Zurück zum Zitat Rosenbaum, L. 2017. Tragedy, perseverance, and chance - the story of CAR-T therapy. The New England Journal of Medicine 377: 1313–1315.CrossRefPubMed Rosenbaum, L. 2017. Tragedy, perseverance, and chance - the story of CAR-T therapy. The New England Journal of Medicine 377: 1313–1315.CrossRefPubMed
2.
Zurück zum Zitat Ishihara, K., and T. Hirano. 2002. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine & Growth Factor Reviews 13: 357–368.CrossRef Ishihara, K., and T. Hirano. 2002. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine & Growth Factor Reviews 13: 357–368.CrossRef
3.
Zurück zum Zitat Bharti, R., G. Dey, and M. Mandal. 2016. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Letters 375: 51–61.CrossRefPubMed Bharti, R., G. Dey, and M. Mandal. 2016. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Letters 375: 51–61.CrossRefPubMed
4.
Zurück zum Zitat Yao, X., J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, and Y. Yao. 2014. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacology & Therapeutics 141: 125–139.CrossRef Yao, X., J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, and Y. Yao. 2014. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacology & Therapeutics 141: 125–139.CrossRef
5.
Zurück zum Zitat Smolen, J.S., M.M. Schoels, N. Nishimoto, F.C. Breedveld, G.R. Burmester, M. Dougados, P. Emery, G. Ferraccioli, C. Gabay, A. Gibofsky, J.J. Gomez-Reino, G. Jones, T.K. Kvien, M. Murakami, N. Betteridge, C.O. Bingham III, V. Bykerk, E.H. Choy, B. Combe, M. Cutolo, W. Graninger, A. Lanas, E. Martin-Mola, C. Montecucco, M. Ostergaard, K. Pavelka, A. Rubbert-Roth, N. Sattar, M. Scholte-Voshaar, Y. Tanaka, M. Trauner, G. Valentini, K.L. Winthrop, M. de Wit, and D. van der Heijde. 2013. Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Annals of the Rheumatic Diseases 72: 482–492.CrossRefPubMed Smolen, J.S., M.M. Schoels, N. Nishimoto, F.C. Breedveld, G.R. Burmester, M. Dougados, P. Emery, G. Ferraccioli, C. Gabay, A. Gibofsky, J.J. Gomez-Reino, G. Jones, T.K. Kvien, M. Murakami, N. Betteridge, C.O. Bingham III, V. Bykerk, E.H. Choy, B. Combe, M. Cutolo, W. Graninger, A. Lanas, E. Martin-Mola, C. Montecucco, M. Ostergaard, K. Pavelka, A. Rubbert-Roth, N. Sattar, M. Scholte-Voshaar, Y. Tanaka, M. Trauner, G. Valentini, K.L. Winthrop, M. de Wit, and D. van der Heijde. 2013. Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Annals of the Rheumatic Diseases 72: 482–492.CrossRefPubMed
6.
7.
Zurück zum Zitat Wang, X., W. Sun, W. Shen, M. Xia, C. Chen, D. Xiang, B. Ning, X. Cui, H. Li, X. Li, J. Ding, and H. Wang. 2016. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. Journal of Hepatology 64: 1283–1294.CrossRefPubMed Wang, X., W. Sun, W. Shen, M. Xia, C. Chen, D. Xiang, B. Ning, X. Cui, H. Li, X. Li, J. Ding, and H. Wang. 2016. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. Journal of Hepatology 64: 1283–1294.CrossRefPubMed
8.
Zurück zum Zitat Garbers, C., S. Heink, T. Korn, and S. Rose-John. 2018. Interleukin-6: designing specific therapeutics for a complex cytokine. Nature Reviews. Drug Discovery 17: 395–412.CrossRefPubMed Garbers, C., S. Heink, T. Korn, and S. Rose-John. 2018. Interleukin-6: designing specific therapeutics for a complex cytokine. Nature Reviews. Drug Discovery 17: 395–412.CrossRefPubMed
9.
Zurück zum Zitat Wolf, J., S. Rose-John, and C. Garbers. 2014. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70: 11–20.CrossRefPubMed Wolf, J., S. Rose-John, and C. Garbers. 2014. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70: 11–20.CrossRefPubMed
10.
Zurück zum Zitat Ji, P., S. Diederichs, W. Wang, S. Boing, R. Metzger, C. Muller-Tidow, et al. 2003. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22: 8031–8041.CrossRefPubMed Ji, P., S. Diederichs, W. Wang, S. Boing, R. Metzger, C. Muller-Tidow, et al. 2003. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22: 8031–8041.CrossRefPubMed
11.
Zurück zum Zitat Zhuang, Y.T., D.Y. Xu, G.Y. Wang, et al. 2017. IL-6 induced lncRNA MALAT1 enhances TNF-alpha expression in LPS-induced septic cardiomyocytes via activation of SAA3. European Review for Medical and Pharmacological Sciences 21: 302–309.PubMed Zhuang, Y.T., D.Y. Xu, G.Y. Wang, et al. 2017. IL-6 induced lncRNA MALAT1 enhances TNF-alpha expression in LPS-induced septic cardiomyocytes via activation of SAA3. European Review for Medical and Pharmacological Sciences 21: 302–309.PubMed
12.
Zurück zum Zitat Chen, H., X. Wang, X. Yan, X. Cheng, X. He, and W. Zheng. 2018. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/Nf kappaB. International Immunopharmacology 55: 69–76.CrossRefPubMed Chen, H., X. Wang, X. Yan, X. Cheng, X. He, and W. Zheng. 2018. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/Nf kappaB. International Immunopharmacology 55: 69–76.CrossRefPubMed
13.
Zurück zum Zitat Wang, L.Q., and H.J. Zhou. 2018. LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Scientific Reports 8: 8346.CrossRefPubMedPubMedCentral Wang, L.Q., and H.J. Zhou. 2018. LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Scientific Reports 8: 8346.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Puthanveetil, P., S. Chen, B. Feng, A. Gautam, and S. Chakrabarti. 2015. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. Journal of Cellular and Molecular Medicine 19: 1418–1425.CrossRefPubMedPubMedCentral Puthanveetil, P., S. Chen, B. Feng, A. Gautam, and S. Chakrabarti. 2015. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. Journal of Cellular and Molecular Medicine 19: 1418–1425.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Wang, Y., W. Nie, K. Yao, et al. 2016. Interleukin 6 induces expression of NADPH oxidase 2 in human aortic endothelial cells via long noncoding RNA MALAT1. Pharmazie 71: 592–597.PubMed Wang, Y., W. Nie, K. Yao, et al. 2016. Interleukin 6 induces expression of NADPH oxidase 2 in human aortic endothelial cells via long noncoding RNA MALAT1. Pharmazie 71: 592–597.PubMed
16.
Zurück zum Zitat Dai, L., G. Zhang, Z. Cheng, X. Wang, L. Jia, X. Jing, H. Wang, R. Zhang, M. Liu, T. Jiang, Y. Yang, and M. Yang. 2018. Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury. Connective Tissue Research 59: 581–592.CrossRefPubMed Dai, L., G. Zhang, Z. Cheng, X. Wang, L. Jia, X. Jing, H. Wang, R. Zhang, M. Liu, T. Jiang, Y. Yang, and M. Yang. 2018. Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury. Connective Tissue Research 59: 581–592.CrossRefPubMed
17.
Zurück zum Zitat Li, H., H. Shi, N. Ma, P. Zi, Q. Liu, and R. Sun. 2018. BML-111 alleviates acute lung injury through regulating the expression of lncRNA MALAT1. Archives of Biochemistry and Biophysics 649: 15–21.CrossRefPubMed Li, H., H. Shi, N. Ma, P. Zi, Q. Liu, and R. Sun. 2018. BML-111 alleviates acute lung injury through regulating the expression of lncRNA MALAT1. Archives of Biochemistry and Biophysics 649: 15–21.CrossRefPubMed
18.
Zurück zum Zitat Li, S., Y. Sun, L. Zhong, Z. Xiao, M. Yang, M. Chen, C. Wang, X. Xie, and X. Chen. 2018. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutrition, Metabolism, and Cardiovascular Diseases 28: 1175–1187.CrossRefPubMed Li, S., Y. Sun, L. Zhong, Z. Xiao, M. Yang, M. Chen, C. Wang, X. Xie, and X. Chen. 2018. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutrition, Metabolism, and Cardiovascular Diseases 28: 1175–1187.CrossRefPubMed
19.
Zurück zum Zitat Pan, L., D. Liu, L. Zhao, L. Wang, M. Xin, and X. Li. 2018. Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced inflammatory injury by upregulating microRNA-19b in murine chondrogenic ATDC5 cells. Journal of Cellular Biochemistry 119: 10165–10175.CrossRefPubMed Pan, L., D. Liu, L. Zhao, L. Wang, M. Xin, and X. Li. 2018. Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced inflammatory injury by upregulating microRNA-19b in murine chondrogenic ATDC5 cells. Journal of Cellular Biochemistry 119: 10165–10175.CrossRefPubMed
20.
Zurück zum Zitat Zhao, G., Z. Su, D. Song, Y. Mao, and X. Mao. 2016. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. FEBS Letters 590: 2884–2895.CrossRefPubMed Zhao, G., Z. Su, D. Song, Y. Mao, and X. Mao. 2016. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. FEBS Letters 590: 2884–2895.CrossRefPubMed
21.
Zurück zum Zitat Zhang, X., X. Tang, K. Liu, M.H. Hamblin, and K.J. Yin. 2017. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. The Journal of Neuroscience 37: 1797–1806.CrossRefPubMedPubMedCentral Zhang, X., X. Tang, K. Liu, M.H. Hamblin, and K.J. Yin. 2017. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. The Journal of Neuroscience 37: 1797–1806.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Huang, Q., C. Huang, Y. Luo, F. He, and R. Zhang. 2018. Circulating lncRNA NEAT1 correlates with increased risk, elevated severity and unfavorable prognosis in sepsis patients. The American Journal of Emergency Medicine 36: 1659–1663.CrossRefPubMed Huang, Q., C. Huang, Y. Luo, F. He, and R. Zhang. 2018. Circulating lncRNA NEAT1 correlates with increased risk, elevated severity and unfavorable prognosis in sepsis patients. The American Journal of Emergency Medicine 36: 1659–1663.CrossRefPubMed
23.
Zurück zum Zitat Xia, L.X., C. Ke, and J.M. Lu. 2018. NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models. Journal of Cellular Physiology 233: 7103–7111.CrossRefPubMed Xia, L.X., C. Ke, and J.M. Lu. 2018. NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models. Journal of Cellular Physiology 233: 7103–7111.CrossRefPubMed
24.
Zurück zum Zitat Chen, D.D., L.L. Hui, X.C. Zhang, and Q. Chang. 2018. NEAT1 contributes to ox-LDL-induced inflammation and oxidative stress in macrophages through inhibiting miR-128. Journal of Cellular Biochemistry 11. Chen, D.D., L.L. Hui, X.C. Zhang, and Q. Chang. 2018. NEAT1 contributes to ox-LDL-induced inflammation and oxidative stress in macrophages through inhibiting miR-128. Journal of Cellular Biochemistry 11.
25.
Zurück zum Zitat Bai, Y.H., Y. Lv, W.Q. Wang, et al. 2018. LncRNA NEAT1 promotes inflammatory response and induces corneal neovascularization. Journal of Molecular Endocrinology 61: 231–239.CrossRefPubMed Bai, Y.H., Y. Lv, W.Q. Wang, et al. 2018. LncRNA NEAT1 promotes inflammatory response and induces corneal neovascularization. Journal of Molecular Endocrinology 61: 231–239.CrossRefPubMed
26.
Zurück zum Zitat Zhang, F., L. Wu, J. Qian, B. Qu, S. Xia, T. La, Y. Wu, J. Ma, J. Zeng, Q. Guo, Y. Cui, W. Yang, J. Huang, W. Zhu, Y. Yao, N. Shen, and Y. Tang. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96–104.CrossRefPubMed Zhang, F., L. Wu, J. Qian, B. Qu, S. Xia, T. La, Y. Wu, J. Ma, J. Zeng, Q. Guo, Y. Cui, W. Yang, J. Huang, W. Zhu, Y. Yao, N. Shen, and Y. Tang. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96–104.CrossRefPubMed
27.
Zurück zum Zitat Wang, Q., W. Wang, F. Zhang, Y. Deng, and Z. Long. 2017. NEAT1/miR-181c regulates osteopontin (OPN)-mediated synoviocyte proliferation in osteoarthritis. Journal of Cellular Biochemistry 118: 3775–3784.CrossRefPubMed Wang, Q., W. Wang, F. Zhang, Y. Deng, and Z. Long. 2017. NEAT1/miR-181c regulates osteopontin (OPN)-mediated synoviocyte proliferation in osteoarthritis. Journal of Cellular Biochemistry 118: 3775–3784.CrossRefPubMed
28.
Zurück zum Zitat Obaid, M., S.M.N. Udden, P. Deb, N. Shihabeddin, M.H. Zaki, and S.S. Mandal. 2018. LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Scientific Reports 8: 15670.CrossRefPubMedPubMedCentral Obaid, M., S.M.N. Udden, P. Deb, N. Shihabeddin, M.H. Zaki, and S.S. Mandal. 2018. LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Scientific Reports 8: 15670.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Liu, J., G.Q. Huang, and Z.P. Ke. 2018. Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox-LDL-treated human macrophages by upregulating miR-330-5p. Journal of Cellular Physiology 6. Liu, J., G.Q. Huang, and Z.P. Ke. 2018. Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox-LDL-treated human macrophages by upregulating miR-330-5p. Journal of Cellular Physiology 6.
30.
Zurück zum Zitat Huang, W., X. Lan, X. Li, D. Wang, Y. Sun, Q. Wang, H. Gao, and K. Yu. 2017. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells. International Immunopharmacology 47: 134–140.CrossRefPubMed Huang, W., X. Lan, X. Li, D. Wang, Y. Sun, Q. Wang, H. Gao, and K. Yu. 2017. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells. International Immunopharmacology 47: 134–140.CrossRefPubMed
31.
Zurück zum Zitat Wen, Y., Y. Yu, and X. Fu. 2017. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IkappaB phosphorylation and NF-kappaB activation. Biochemical and Biophysical Research Communications 487: 923–929.CrossRefPubMed Wen, Y., Y. Yu, and X. Fu. 2017. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IkappaB phosphorylation and NF-kappaB activation. Biochemical and Biophysical Research Communications 487: 923–929.CrossRefPubMed
32.
Zurück zum Zitat Li, X., Y. Dai, S. Yan, Y. Shi, B. Han, J. Li, L. Cha, and J. Mu. 2017. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochemical and Biophysical Research Communications 491: 1026–1033.CrossRefPubMed Li, X., Y. Dai, S. Yan, Y. Shi, B. Han, J. Li, L. Cha, and J. Mu. 2017. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochemical and Biophysical Research Communications 491: 1026–1033.CrossRefPubMed
33.
Zurück zum Zitat Hofmann, P., J. Sommer, K. Theodorou, et al. 2018. Long non-coding RNA H19 regulates endothelial cell aging via inhibition of Stat3 signaling. Cardiovascular Research: 13. Hofmann, P., J. Sommer, K. Theodorou, et al. 2018. Long non-coding RNA H19 regulates endothelial cell aging via inhibition of Stat3 signaling. Cardiovascular Research: 13.
34.
Zurück zum Zitat Jin, H., X.J. Du, Y. Zhao, and D.L. Xia. 2018. XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model. Journal of Cellular Physiology 233: 5847–5855.CrossRefPubMed Jin, H., X.J. Du, Y. Zhao, and D.L. Xia. 2018. XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model. Journal of Cellular Physiology 233: 5847–5855.CrossRefPubMed
35.
Zurück zum Zitat Yuan, M., S. Wang, L. Yu, B. Qu, L. Xu, L. Liu, H. Sun, C. Li, Y. Shi, and H. Liu. 2017. Long noncoding RNA profiling revealed differentially expressed lncRNAs associated with disease activity in PBMCs from patients with rheumatoid arthritis. PLoS One 12: e0186795.CrossRefPubMedPubMedCentral Yuan, M., S. Wang, L. Yu, B. Qu, L. Xu, L. Liu, H. Sun, C. Li, Y. Shi, and H. Liu. 2017. Long noncoding RNA profiling revealed differentially expressed lncRNAs associated with disease activity in PBMCs from patients with rheumatoid arthritis. PLoS One 12: e0186795.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Wang, Z., X. Chi, L. Liu, Y. Wang, X. Mei, Y. Yang, and T. Jia. 2018. Long noncoding RNA maternally expressed gene 3 knockdown alleviates lipopolysaccharide-induced inflammatory injury by up-regulation of miR-203 in ATDC5 cells. Biomedicine & Pharmacotherapy 100: 240–249.CrossRef Wang, Z., X. Chi, L. Liu, Y. Wang, X. Mei, Y. Yang, and T. Jia. 2018. Long noncoding RNA maternally expressed gene 3 knockdown alleviates lipopolysaccharide-induced inflammatory injury by up-regulation of miR-203 in ATDC5 cells. Biomedicine & Pharmacotherapy 100: 240–249.CrossRef
37.
Zurück zum Zitat Li, F., J. Sun, S. Huang, G. Su, and G. Pi. 2018. LncRNA GAS5 overexpression reverses LPS-induced inflammatory injury and apoptosis through up-regulating KLF2 expression in ATDC5 chondrocytes. Cellular Physiology and Biochemistry 45: 1241–1251.CrossRefPubMed Li, F., J. Sun, S. Huang, G. Su, and G. Pi. 2018. LncRNA GAS5 overexpression reverses LPS-induced inflammatory injury and apoptosis through up-regulating KLF2 expression in ATDC5 chondrocytes. Cellular Physiology and Biochemistry 45: 1241–1251.CrossRefPubMed
38.
Zurück zum Zitat Sun, T., J. Yu, L. Han, S. Tian, B. Xu, X. Gong, Q. Zhao, and Y. Wang. 2018. Knockdown of long non-coding RNA RP11-445H22.4 alleviates LPS-induced injuries by regulation of MiR-301a in osteoarthritis. Cellular Physiology and Biochemistry 45: 832–843.CrossRefPubMed Sun, T., J. Yu, L. Han, S. Tian, B. Xu, X. Gong, Q. Zhao, and Y. Wang. 2018. Knockdown of long non-coding RNA RP11-445H22.4 alleviates LPS-induced injuries by regulation of MiR-301a in osteoarthritis. Cellular Physiology and Biochemistry 45: 832–843.CrossRefPubMed
39.
Zurück zum Zitat Ye, J., C. Wang, D. Wang, and H. Yuan. 2018. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Experimental Cell Research 369: 348–355.CrossRefPubMed Ye, J., C. Wang, D. Wang, and H. Yuan. 2018. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Experimental Cell Research 369: 348–355.CrossRefPubMed
40.
Zurück zum Zitat Binder, S., N. Hosler, D. Riedel, et al. 2017. STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer. Scientific Reports 7: 7976.CrossRefPubMedPubMedCentral Binder, S., N. Hosler, D. Riedel, et al. 2017. STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer. Scientific Reports 7: 7976.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Sun, Y., J. Pan, N. Zhang, W. Wei, S. Yu, and L. Ai. 2017. Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-kappaB pathway. Scientific Reports 7: 18079.CrossRefPubMedPubMedCentral Sun, Y., J. Pan, N. Zhang, W. Wei, S. Yu, and L. Ai. 2017. Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-kappaB pathway. Scientific Reports 7: 18079.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Wang, W.T., H. Ye, P.P. Wei, B.W. Han, B. He, Z.H. Chen, and Y.Q. Chen. 2016. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. Journal of Hematology & Oncology 9: 117.CrossRef Wang, W.T., H. Ye, P.P. Wei, B.W. Han, B. He, Z.H. Chen, and Y.Q. Chen. 2016. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. Journal of Hematology & Oncology 9: 117.CrossRef
43.
Zurück zum Zitat Kong, Y.G., M. Cui, S.M. Chen, Y. Xu, Y. Xu, and Z.Z. Tao. 2018. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 639: 77–84.CrossRefPubMed Kong, Y.G., M. Cui, S.M. Chen, Y. Xu, Y. Xu, and Z.Z. Tao. 2018. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 639: 77–84.CrossRefPubMed
44.
Zurück zum Zitat Su, K., Q. Zhao, A. Bian, et al. 2018. A novel positive feedback regulation between long noncoding RNA UICC and IL-6/STAT3 signaling promotes cervical cancer progression. American Journal of Cancer Research 8: 1176–1189.PubMedPubMedCentral Su, K., Q. Zhao, A. Bian, et al. 2018. A novel positive feedback regulation between long noncoding RNA UICC and IL-6/STAT3 signaling promotes cervical cancer progression. American Journal of Cancer Research 8: 1176–1189.PubMedPubMedCentral
45.
Zurück zum Zitat Wang, S., K. Liang, Q. Hu, P. Li, J. Song, Y. Yang, J. Yao, L.S. Mangala, C. Li, W. Yang, P.K. Park, D.H. Hawke, J. Zhou, Y. Zhou, W. Xia, M.C. Hung, J.R. Marks, G.E. Gallick, G. Lopez-Berestein, E.R. Flores, A.K. Sood, S. Huang, D. Yu, L. Yang, and C. Lin. 2017. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. The Journal of Clinical Investigation 127: 4498–4515.CrossRefPubMedPubMedCentral Wang, S., K. Liang, Q. Hu, P. Li, J. Song, Y. Yang, J. Yao, L.S. Mangala, C. Li, W. Yang, P.K. Park, D.H. Hawke, J. Zhou, Y. Zhou, W. Xia, M.C. Hung, J.R. Marks, G.E. Gallick, G. Lopez-Berestein, E.R. Flores, A.K. Sood, S. Huang, D. Yu, L. Yang, and C. Lin. 2017. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. The Journal of Clinical Investigation 127: 4498–4515.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Zhang, J., Z. Li, L. Liu, Q. Wang, S. Li, D. Chen, Z. Hu, T. Yu, J. Ding, J. Li, M. Yao, S. Huang, Y. Zhao, and X. He. 2018. Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology 67: 171–187.CrossRefPubMed Zhang, J., Z. Li, L. Liu, Q. Wang, S. Li, D. Chen, Z. Hu, T. Yu, J. Ding, J. Li, M. Yao, S. Huang, Y. Zhao, and X. He. 2018. Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology 67: 171–187.CrossRefPubMed
47.
Zurück zum Zitat Zheng, Q., Z. Lin, X. Li, X. Xin, M. Wu, J. An, X. Gui, T. Li, H. Li, and D. Lu. 2016. Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-kappaB signaling. Scientific Reports 6: 36843.CrossRefPubMedPubMedCentral Zheng, Q., Z. Lin, X. Li, X. Xin, M. Wu, J. An, X. Gui, T. Li, H. Li, and D. Lu. 2016. Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-kappaB signaling. Scientific Reports 6: 36843.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Gu, L.Q., X.L. Xing, H. Cai, A.F. Si, X.R. Hu, Q.Y. Ma, M.L. Zheng, R.Y. Wang, H.Y. Li, and X.P. Zhang. 2018. Long non-coding RNA DILC suppresses cell proliferation and metastasis in colorectal cancer. Gene 666: 18–26.CrossRefPubMed Gu, L.Q., X.L. Xing, H. Cai, A.F. Si, X.R. Hu, Q.Y. Ma, M.L. Zheng, R.Y. Wang, H.Y. Li, and X.P. Zhang. 2018. Long non-coding RNA DILC suppresses cell proliferation and metastasis in colorectal cancer. Gene 666: 18–26.CrossRefPubMed
49.
Zurück zum Zitat Xu, Z., F. Yang, D. Wei, B. Liu, C. Chen, Y. Bao, Z. Wu, D. Wu, H. Tan, J. Li, J. Wang, J. Liu, S. Sun, L. Qu, and L. Wang. 2017. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 36: 1965–1977.CrossRefPubMed Xu, Z., F. Yang, D. Wei, B. Liu, C. Chen, Y. Bao, Z. Wu, D. Wu, H. Tan, J. Li, J. Wang, J. Liu, S. Sun, L. Qu, and L. Wang. 2017. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 36: 1965–1977.CrossRefPubMed
50.
Zurück zum Zitat Liang, Z., and C. Ren. 2018. Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. Biomedicine & Pharmacotherapy 103: 897–902.CrossRef Liang, Z., and C. Ren. 2018. Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. Biomedicine & Pharmacotherapy 103: 897–902.CrossRef
Metadaten
Titel
Targeting of IL-6-Relevant Long Noncoding RNA Profiles in Inflammatory and Tumorous Disease
verfasst von
Juan Zhang
Maolin Chu
Publikationsdatum
02.03.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00995-2

Weitere Artikel der Ausgabe 4/2019

Inflammation 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.