Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 4/2007

01.12.2007

TGFβ as a Potential Mediator of Progesterone Action in the Mammary Gland of Pregnancy

verfasst von: Jenifer Monks

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 4/2007

Einloggen, um Zugang zu erhalten

Abstract

The molecular mechanisms controlling the onset of copious milk secretion are only now beginning to be elucidated. We have known for nearly four decades that progesterone suppresses milk secretion during pregnancy, and that the fall in progesterone near parturition is necessary for secretory activation. Similarly, we’ve known for 15 years that transforming growth factor β (TGFβ) also suppresses milk secretion. Yet no formal link between the two has ever been established. This work aims to review the evidence for and against a link between progesterone and TGFβ, raise unanswered questions, and to propose further lines of research.
Literatur
1.
Zurück zum Zitat Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004;35(2):83–92.PubMedCrossRef Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004;35(2):83–92.PubMedCrossRef
2.
Zurück zum Zitat Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 2006;166(6):839–48.PubMedCrossRef Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 2006;166(6):839–48.PubMedCrossRef
3.
Zurück zum Zitat Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. Embo J 1998;17(11):3091–100.PubMedCrossRef Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. Embo J 1998;17(11):3091–100.PubMedCrossRef
4.
Zurück zum Zitat Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006;6(7):506–20.PubMedCrossRef Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006;6(7):506–20.PubMedCrossRef
5.
Zurück zum Zitat Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114(Pt 24):4359–69.PubMed Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114(Pt 24):4359–69.PubMed
6.
Zurück zum Zitat Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007;101(1):9–33.PubMedCrossRef Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007;101(1):9–33.PubMedCrossRef
7.
Zurück zum Zitat Xiao YQ, Malcolm K, Worthen GS, Gardai S, Schiemann WP, Fadok VA, et al. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-beta. J Biol Chem 2002;277(17):14884–93.PubMedCrossRef Xiao YQ, Malcolm K, Worthen GS, Gardai S, Schiemann WP, Fadok VA, et al. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-beta. J Biol Chem 2002;277(17):14884–93.PubMedCrossRef
8.
Zurück zum Zitat Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002;13(3):902–14.PubMedCrossRef Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002;13(3):902–14.PubMedCrossRef
9.
Zurück zum Zitat Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425(6958):577–84.PubMedCrossRef Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425(6958):577–84.PubMedCrossRef
10.
Zurück zum Zitat Danielpour D, Song K. Cross-talk between IGF-I and TGF-beta signaling pathways. Cytokine Growth Factor Rev 2006;17(1–2):59–74.PubMedCrossRef Danielpour D, Song K. Cross-talk between IGF-I and TGF-beta signaling pathways. Cytokine Growth Factor Rev 2006;17(1–2):59–74.PubMedCrossRef
11.
Zurück zum Zitat Zhang F, Laiho M. On and off: proteasome and TGF-beta signaling. Exp Cell Res 2003;291(2):275–81.PubMedCrossRef Zhang F, Laiho M. On and off: proteasome and TGF-beta signaling. Exp Cell Res 2003;291(2):275–81.PubMedCrossRef
12.
Zurück zum Zitat Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. Embo J 2000;19(8):1745–54.PubMedCrossRef Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. Embo J 2000;19(8):1745–54.PubMedCrossRef
13.
Zurück zum Zitat Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005;307(5715):1621–5.PubMedCrossRef Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005;307(5715):1621–5.PubMedCrossRef
14.
Zurück zum Zitat Sauer B, Vogler R, von Wenckstern H, Fujii M, Anzano MB, Glick AB, et al. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J Biol Chem 2004;279(37):38471–9.PubMedCrossRef Sauer B, Vogler R, von Wenckstern H, Fujii M, Anzano MB, Glick AB, et al. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J Biol Chem 2004;279(37):38471–9.PubMedCrossRef
15.
Zurück zum Zitat Xin C, Ren S, Kleuser B, Shabahang S, Eberhardt W, Radeke H, et al. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem 2004;279(34):35255–62.PubMedCrossRef Xin C, Ren S, Kleuser B, Shabahang S, Eberhardt W, Radeke H, et al. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem 2004;279(34):35255–62.PubMedCrossRef
16.
Zurück zum Zitat Cho KW, Kim JY, Song SJ, Farrell E, Eblaghie MC, Kim HJ, et al. Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development. Proc Natl Acad Sci U S A 2006;103(45):16788–93.PubMedCrossRef Cho KW, Kim JY, Song SJ, Farrell E, Eblaghie MC, Kim HJ, et al. Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development. Proc Natl Acad Sci U S A 2006;103(45):16788–93.PubMedCrossRef
17.
Zurück zum Zitat Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 2007;134(6):1221–30.PubMedCrossRef Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 2007;134(6):1221–30.PubMedCrossRef
18.
Zurück zum Zitat Daniel CW, Robinson S, Silberstein GB. The transforming growth factors beta in development and functional differentiation of the mouse mammary gland. Adv Exp Med Biol 2001;501:61–70.PubMed Daniel CW, Robinson S, Silberstein GB. The transforming growth factors beta in development and functional differentiation of the mouse mammary gland. Adv Exp Med Biol 2001;501:61–70.PubMed
19.
Zurück zum Zitat Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005;7(6):245–51.PubMedCrossRef Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005;7(6):245–51.PubMedCrossRef
20.
Zurück zum Zitat Serra R, Crowley MR. Mouse models of transforming growth factor beta impact in breast development and cancer. Endocr Relat Cancer 2005;12(4):749–60.PubMedCrossRef Serra R, Crowley MR. Mouse models of transforming growth factor beta impact in breast development and cancer. Endocr Relat Cancer 2005;12(4):749–60.PubMedCrossRef
21.
22.
Zurück zum Zitat Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer 2006;13(2):379–400.PubMedCrossRef Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer 2006;13(2):379–400.PubMedCrossRef
23.
Zurück zum Zitat Barcellos-Hoff MH, Medina D. New highlights on stroma–epithelial interactions in breast cancer. Breast Cancer Res 2005;7(1):33–6.PubMedCrossRef Barcellos-Hoff MH, Medina D. New highlights on stroma–epithelial interactions in breast cancer. Breast Cancer Res 2005;7(1):33–6.PubMedCrossRef
24.
Zurück zum Zitat Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7(1):49–66.PubMedCrossRef Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7(1):49–66.PubMedCrossRef
25.
Zurück zum Zitat Schedin P, Mitrenga T, Kaeck M. Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in the Sprague–Dawley rat: a model for investigating the role of estrous cycling in mammary carcinogenesis. J Mammary Gland Biol Neoplasia 2000;5(2):211–25.PubMedCrossRef Schedin P, Mitrenga T, Kaeck M. Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in the Sprague–Dawley rat: a model for investigating the role of estrous cycling in mammary carcinogenesis. J Mammary Gland Biol Neoplasia 2000;5(2):211–25.PubMedCrossRef
26.
Zurück zum Zitat Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod 2001;65(3):680–8.PubMedCrossRef Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod 2001;65(3):680–8.PubMedCrossRef
27.
Zurück zum Zitat Neifert MR, McDonough SL, Neville MC. Failure of lactogenesis associated with placental retention. Am J Obstet Gynecol 1981;140(4):477–8.PubMed Neifert MR, McDonough SL, Neville MC. Failure of lactogenesis associated with placental retention. Am J Obstet Gynecol 1981;140(4):477–8.PubMed
28.
Zurück zum Zitat Nguyen DA, Parlow AF, Neville MC. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol 2001;170(2):347–56.PubMedCrossRef Nguyen DA, Parlow AF, Neville MC. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol 2001;170(2):347–56.PubMedCrossRef
29.
Zurück zum Zitat Murphy G, Ariyanayagam AD, Kuhn NJ. Progesterone and the metabolic control of the lactose biosynthetic pathway during lactogenesis in the rat. Biochem J 1973;136(4):1105–16.PubMed Murphy G, Ariyanayagam AD, Kuhn NJ. Progesterone and the metabolic control of the lactose biosynthetic pathway during lactogenesis in the rat. Biochem J 1973;136(4):1105–16.PubMed
30.
Zurück zum Zitat Buser AC, Gass-Handel EK, Wyszomierski SL, Doppler W, Leonhardt SA, Schaack J, et al. Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the beta-casein gene in mammary epithelial cells. Mol Endocrinol 2007;21(1):106–25.PubMedCrossRef Buser AC, Gass-Handel EK, Wyszomierski SL, Doppler W, Leonhardt SA, Schaack J, et al. Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the beta-casein gene in mammary epithelial cells. Mol Endocrinol 2007;21(1):106–25.PubMedCrossRef
31.
Zurück zum Zitat Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ 1996;7(7):945–52.PubMed Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ 1996;7(7):945–52.PubMed
32.
Zurück zum Zitat Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 2002;160(6):2081–93.PubMed Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 2002;160(6):2081–93.PubMed
33.
Zurück zum Zitat Kariagina A, Aupperlee MD, Haslam SZ. Progesterone receptor isoforms and proliferation in the rat mammary gland during development. Endocrinology 2007;148(6):2723–36.PubMedCrossRef Kariagina A, Aupperlee MD, Haslam SZ. Progesterone receptor isoforms and proliferation in the rat mammary gland during development. Endocrinology 2007;148(6):2723–36.PubMedCrossRef
34.
Zurück zum Zitat Schams D, Kohlenberg S, Amselgruber W, Berisha B, Pfaffl MW, Sinowatz F. Expression and localisation of oestrogen and progesterone receptors in the bovine mammary gland during development, function and involution. J Endocrinol 2003;177(2):305–17.PubMedCrossRef Schams D, Kohlenberg S, Amselgruber W, Berisha B, Pfaffl MW, Sinowatz F. Expression and localisation of oestrogen and progesterone receptors in the bovine mammary gland during development, function and involution. J Endocrinol 2003;177(2):305–17.PubMedCrossRef
35.
Zurück zum Zitat Ismail PM, Li J, DeMayo FJ, O'Malley BW, Lydon JP. A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Mol Endocrinol 2002;16(11):2475–89.PubMedCrossRef Ismail PM, Li J, DeMayo FJ, O'Malley BW, Lydon JP. A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Mol Endocrinol 2002;16(11):2475–89.PubMedCrossRef
36.
Zurück zum Zitat Daniel CW, Robinson SD. Regulation of mammary growth and function by TGF-beta. Mol Reprod Dev 1992;32(2):145–51.PubMedCrossRef Daniel CW, Robinson SD. Regulation of mammary growth and function by TGF-beta. Mol Reprod Dev 1992;32(2):145–51.PubMedCrossRef
37.
Zurück zum Zitat Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 1991;113(3):867–78.PubMed Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 1991;113(3):867–78.PubMed
38.
Zurück zum Zitat Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 1992;115(1):49–58.PubMed Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 1992;115(1):49–58.PubMed
39.
Zurück zum Zitat Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 2005;24(4):552–60.PubMedCrossRef Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 2005;24(4):552–60.PubMedCrossRef
40.
Zurück zum Zitat Zhang M, Zola H, Read L, Penttila I. Identification of soluble transforming growth factor-beta receptor III (sTbetaIII) in rat milk. Immunol Cell Biol 2001;79(3):291–7.PubMedCrossRef Zhang M, Zola H, Read L, Penttila I. Identification of soluble transforming growth factor-beta receptor III (sTbetaIII) in rat milk. Immunol Cell Biol 2001;79(3):291–7.PubMedCrossRef
41.
Zurück zum Zitat Hawkes JS, Bryan DL, Gibson RA. Variations in transforming growth factor beta in human milk are not related to levels in plasma. Cytokine 2002;17(4):182–6.PubMedCrossRef Hawkes JS, Bryan DL, Gibson RA. Variations in transforming growth factor beta in human milk are not related to levels in plasma. Cytokine 2002;17(4):182–6.PubMedCrossRef
42.
Zurück zum Zitat Laiho K, Lampi AM, Hamalainen M, Moilanen E, Piironen V, Arvola T, et al. Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatr Res 2003;53(4):642–7.PubMedCrossRef Laiho K, Lampi AM, Hamalainen M, Moilanen E, Piironen V, Arvola T, et al. Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatr Res 2003;53(4):642–7.PubMedCrossRef
43.
Zurück zum Zitat Thompson HG, Mih JD, Krasieva TB, Tromberg BJ, George SC. Epithelial-derived TGF-beta2 modulates basal and wound-healing subepithelial matrix homeostasis. Am J Physiol Lung Cell Mol Physiol 2006;291(6):L1277–85.PubMedCrossRef Thompson HG, Mih JD, Krasieva TB, Tromberg BJ, George SC. Epithelial-derived TGF-beta2 modulates basal and wound-healing subepithelial matrix homeostasis. Am J Physiol Lung Cell Mol Physiol 2006;291(6):L1277–85.PubMedCrossRef
44.
Zurück zum Zitat Shynlova O, Tsui P, Dorogin A, Langille BL, Lye SJ. The expression of transforming growth factor beta in pregnant rat myometrium is hormone and stretch dependent. Reproduction 2007;134(3):503–11.PubMedCrossRef Shynlova O, Tsui P, Dorogin A, Langille BL, Lye SJ. The expression of transforming growth factor beta in pregnant rat myometrium is hormone and stretch dependent. Reproduction 2007;134(3):503–11.PubMedCrossRef
45.
Zurück zum Zitat Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 2000;127(14):3107–18.PubMed Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 2000;127(14):3107–18.PubMed
46.
Zurück zum Zitat Robinson SD, Roberts AB, Daniel CW. TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol 1993;120(1):245–51.PubMedCrossRef Robinson SD, Roberts AB, Daniel CW. TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol 1993;120(1):245–51.PubMedCrossRef
47.
Zurück zum Zitat Faure E, Heisterkamp N, Groffen J, Kaartinen V. Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res 2000;300(1):89–95.PubMed Faure E, Heisterkamp N, Groffen J, Kaartinen V. Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res 2000;300(1):89–95.PubMed
48.
Zurück zum Zitat Wilde CJ, Addey CV, Boddy LM, Peaker M. Autocrine regulation of milk secretion by a protein in milk. Biochem J 1995;305(Pt 1):51–8.PubMed Wilde CJ, Addey CV, Boddy LM, Peaker M. Autocrine regulation of milk secretion by a protein in milk. Biochem J 1995;305(Pt 1):51–8.PubMed
49.
Zurück zum Zitat Bailey JP, Nieport KM, Herbst MP, Srivastava S, Serra RA, Horseman ND. Prolactin and transforming growth factor-beta signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt-forkhead pathway. Mol Endocrinol 2004;18(5):1171–84.PubMedCrossRef Bailey JP, Nieport KM, Herbst MP, Srivastava S, Serra RA, Horseman ND. Prolactin and transforming growth factor-beta signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt-forkhead pathway. Mol Endocrinol 2004;18(5):1171–84.PubMedCrossRef
50.
Zurück zum Zitat Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 2003;44(6):1100–12.PubMedCrossRef Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 2003;44(6):1100–12.PubMedCrossRef
51.
Zurück zum Zitat Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 2007;28(3):323–36.PubMed Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 2007;28(3):323–36.PubMed
52.
Zurück zum Zitat Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ. Transforming growth factor-beta and microRNA:mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 2007;185(1–3):157–61.PubMedCrossRef Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ. Transforming growth factor-beta and microRNA:mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 2007;185(1–3):157–61.PubMedCrossRef
53.
Zurück zum Zitat Gorska AE, Joseph H, Derynck R, Moses HL, Serra R. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 1998;9(3):229–38.PubMed Gorska AE, Joseph H, Derynck R, Moses HL, Serra R. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 1998;9(3):229–38.PubMed
54.
Zurück zum Zitat Sotgia F, Schubert W, Pestell RG, Lisanti MP. Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biol Ther 2006;5(3):292–7.PubMedCrossRef Sotgia F, Schubert W, Pestell RG, Lisanti MP. Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biol Ther 2006;5(3):292–7.PubMedCrossRef
55.
Zurück zum Zitat Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 2001;276(9):6727–38.PubMedCrossRef Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 2001;276(9):6727–38.PubMedCrossRef
56.
Zurück zum Zitat Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 2004;18(9):2208–23.PubMedCrossRef Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 2004;18(9):2208–23.PubMedCrossRef
57.
Zurück zum Zitat Dibrov A, Kashour T, Amara FM. The role of transforming growth factor beta signaling in messenger RNA stability. Growth Factors 2006;24(1):1–11.PubMedCrossRef Dibrov A, Kashour T, Amara FM. The role of transforming growth factor beta signaling in messenger RNA stability. Growth Factors 2006;24(1):1–11.PubMedCrossRef
58.
Zurück zum Zitat Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005;307(5715):1603–9.PubMedCrossRef Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005;307(5715):1603–9.PubMedCrossRef
59.
Zurück zum Zitat Luo XH, Liao EY, Su X. Progesterone upregulates TGF-b isoforms (b1, b2, and b3) expression in normal human osteoblast-like cells. Calcif Tissue Int 2002;71(4):329–34.PubMedCrossRef Luo XH, Liao EY, Su X. Progesterone upregulates TGF-b isoforms (b1, b2, and b3) expression in normal human osteoblast-like cells. Calcif Tissue Int 2002;71(4):329–34.PubMedCrossRef
60.
Zurück zum Zitat Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A 1994;91(20):9312–6.PubMedCrossRef Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A 1994;91(20):9312–6.PubMedCrossRef
61.
Zurück zum Zitat Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development 2000;127(11):2269–82.PubMed Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development 2000;127(11):2269–82.PubMed
62.
Zurück zum Zitat Zarzynska J, Gajewska M, Motyl T. Effects of hormones and growth factors on TGF-beta1 expression in bovine mammary epithelial cells. J Dairy Res 2005;72(1):39–48.PubMedCrossRef Zarzynska J, Gajewska M, Motyl T. Effects of hormones and growth factors on TGF-beta1 expression in bovine mammary epithelial cells. J Dairy Res 2005;72(1):39–48.PubMedCrossRef
63.
Zurück zum Zitat Plath A, Einspanier R, Peters F, Sinowatz F, Schams D. Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation. J Endocrinol 1997;155(3):501–11.PubMedCrossRef Plath A, Einspanier R, Peters F, Sinowatz F, Schams D. Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation. J Endocrinol 1997;155(3):501–11.PubMedCrossRef
65.
Zurück zum Zitat Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998;95(9):5076–81.PubMedCrossRef Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998;95(9):5076–81.PubMedCrossRef
66.
Zurück zum Zitat Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004;303(5660):1007–10.PubMedCrossRef Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004;303(5660):1007–10.PubMedCrossRef
67.
Zurück zum Zitat Onfelt B, Purbhoo MA, Nedvetzki S, Sowinski S, Davis DM. Long-distance calls between cells connected by tunneling nanotubules. Sci STKE 2005;2005(313):pe55.PubMedCrossRef Onfelt B, Purbhoo MA, Nedvetzki S, Sowinski S, Davis DM. Long-distance calls between cells connected by tunneling nanotubules. Sci STKE 2005;2005(313):pe55.PubMedCrossRef
68.
Zurück zum Zitat Wustner D. Plasma membrane sterol distribution resembles the surface topography of living cells. Mol Biol Cell 2007;18(1):211–28.PubMedCrossRef Wustner D. Plasma membrane sterol distribution resembles the surface topography of living cells. Mol Biol Cell 2007;18(1):211–28.PubMedCrossRef
69.
Zurück zum Zitat Akhurst RJ. TGF-beta antagonists: why suppress a tumor suppressor? J Clin Invest 2002;109(12):1533–6.PubMedCrossRef Akhurst RJ. TGF-beta antagonists: why suppress a tumor suppressor? J Clin Invest 2002;109(12):1533–6.PubMedCrossRef
70.
Zurück zum Zitat Schiemann WP. Targeted TGF-beta chemotherapies: friend or foe in treating human malignancies? Expert Rev Anticancer Ther 2007;7(5):609–11.PubMedCrossRef Schiemann WP. Targeted TGF-beta chemotherapies: friend or foe in treating human malignancies? Expert Rev Anticancer Ther 2007;7(5):609–11.PubMedCrossRef
71.
Zurück zum Zitat Katz E, Streuli CH. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int J Biochem Cell Biol 2007;39(4):715–26.PubMedCrossRef Katz E, Streuli CH. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int J Biochem Cell Biol 2007;39(4):715–26.PubMedCrossRef
72.
Zurück zum Zitat Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8(3):287–307.PubMedCrossRef Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8(3):287–307.PubMedCrossRef
73.
Zurück zum Zitat Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–R91.PubMedCrossRef Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–R91.PubMedCrossRef
Metadaten
Titel
TGFβ as a Potential Mediator of Progesterone Action in the Mammary Gland of Pregnancy
verfasst von
Jenifer Monks
Publikationsdatum
01.12.2007
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 4/2007
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-007-9056-2

Weitere Artikel der Ausgabe 4/2007

Journal of Mammary Gland Biology and Neoplasia 4/2007 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.