Skip to main content
Erschienen in: Tumor Biology 6/2013

01.12.2013 | Review

The accumulation of DNA repair defects is the molecular origin of carcinogenesis

verfasst von: Hyuk-Jin Cha, Hyungshin Yim

Erschienen in: Tumor Biology | Ausgabe 6/2013

Einloggen, um Zugang zu erhalten

Abstract

Genomic instability has been considered to be one of the prominent factors for carcinogenesis and the development of a number of degenerative disorders, predominantly related to the aging. The cellular machineries involved in the maintenance of genomic integrity such as DNA repair and DNA damage responses are extensively characterized by a large number of studies. The failure of proper actions of such cellular machineries may lead to the devastating effects mostly inducing cancer or premature aging, even with no acute exogenous DNA damage stimuli. In this review, we especially focus on the pathophysiological aspects of the defective DNA damage responses in carcinogenesis and premature aging. Clear understanding the causes of carcinogenesis and age-related degenerative diseases will provide novel and efficient approaches for prevention and rational treatment of cancer and premature aging.
Literatur
1.
Zurück zum Zitat Nakamura J et al. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 1998;58(2):222–5.PubMed Nakamura J et al. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 1998;58(2):222–5.PubMed
3.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
4.
Zurück zum Zitat Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8.PubMedCrossRef Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8.PubMedCrossRef
5.
Zurück zum Zitat Gorgoulis VG et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434(7035):907–13.PubMedCrossRef Gorgoulis VG et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434(7035):907–13.PubMedCrossRef
6.
Zurück zum Zitat Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408(6811):433–9.PubMedCrossRef Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408(6811):433–9.PubMedCrossRef
8.
Zurück zum Zitat Byun TS et al. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 2005;19(9):1040–52.PubMedCrossRefPubMedCentral Byun TS et al. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 2005;19(9):1040–52.PubMedCrossRefPubMedCentral
11.
Zurück zum Zitat Willis J et al. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Proc Natl Acad Sci U S A. 2013;110(26):10592–7.PubMedCrossRef Willis J et al. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Proc Natl Acad Sci U S A. 2013;110(26):10592–7.PubMedCrossRef
12.
Zurück zum Zitat Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300(5625):1542–8.PubMedCrossRef Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300(5625):1542–8.PubMedCrossRef
13.
14.
Zurück zum Zitat Lee J, Kumagai A, Dunphy WG. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem. 2007;282(38):28036–44.PubMedCrossRef Lee J, Kumagai A, Dunphy WG. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem. 2007;282(38):28036–44.PubMedCrossRef
16.
Zurück zum Zitat Garcia V, Furuya K, Carr AM. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst). 2005;4(11):1227–39.CrossRef Garcia V, Furuya K, Carr AM. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst). 2005;4(11):1227–39.CrossRef
17.
Zurück zum Zitat Yan S, Michael WM. TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. J Cell Biol. 2009;184(6):793–804.PubMedCrossRefPubMedCentral Yan S, Michael WM. TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. J Cell Biol. 2009;184(6):793–804.PubMedCrossRefPubMedCentral
18.
20.
Zurück zum Zitat Duursma AM et al. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell. 2013;50(1):116–22.PubMedCrossRef Duursma AM et al. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell. 2013;50(1):116–22.PubMedCrossRef
21.
22.
Zurück zum Zitat Sanchez Y et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277(5331):1497–501.PubMedCrossRef Sanchez Y et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277(5331):1497–501.PubMedCrossRef
24.
Zurück zum Zitat Thanasoula M et al. ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres. EMBO J. 2012;31(16):3398–410.PubMedCrossRefPubMedCentral Thanasoula M et al. ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres. EMBO J. 2012;31(16):3398–410.PubMedCrossRefPubMedCentral
25.
Zurück zum Zitat Peng A et al. Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol. 2010;20(5):387–96.PubMedCrossRefPubMedCentral Peng A et al. Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol. 2010;20(5):387–96.PubMedCrossRefPubMedCentral
26.
Zurück zum Zitat Lowe J et al. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci. 2012;17:1480–98.CrossRef Lowe J et al. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci. 2012;17:1480–98.CrossRef
27.
Zurück zum Zitat Yoo HY et al. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell. 2004;117(5):575–88.PubMedCrossRef Yoo HY et al. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell. 2004;117(5):575–88.PubMedCrossRef
28.
Zurück zum Zitat Mamely I et al. Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol. 2006;16(19):1950–5.PubMedCrossRef Mamely I et al. Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol. 2006;16(19):1950–5.PubMedCrossRef
29.
Zurück zum Zitat Pandita TK, Dhar S. Influence of ATM function on interactions between telomeres and nuclear matrix. Radiat Res. 2000;154(2):133–9.PubMedCrossRef Pandita TK, Dhar S. Influence of ATM function on interactions between telomeres and nuclear matrix. Radiat Res. 2000;154(2):133–9.PubMedCrossRef
30.
Zurück zum Zitat Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.PubMedCrossRef Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.PubMedCrossRef
31.
Zurück zum Zitat Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15(17):2177–96.PubMedCrossRef Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15(17):2177–96.PubMedCrossRef
32.
Zurück zum Zitat Fernandez-Capetillo O, Celeste A, Nussenzweig A. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle. 2003;2(5):426–7.PubMedCrossRef Fernandez-Capetillo O, Celeste A, Nussenzweig A. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle. 2003;2(5):426–7.PubMedCrossRef
33.
Zurück zum Zitat Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86.PubMedCrossRef Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86.PubMedCrossRef
34.
Zurück zum Zitat Stucki M et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123(7):1213–26.PubMedCrossRef Stucki M et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123(7):1213–26.PubMedCrossRef
35.
Zurück zum Zitat Lee JH, Paull TT. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science. 2004;304(5667):93–6.PubMedCrossRef Lee JH, Paull TT. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science. 2004;304(5667):93–6.PubMedCrossRef
37.
Zurück zum Zitat Berkovich E, Monnat Jr RJ, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol. 2007;9(6):683–90.PubMedCrossRef Berkovich E, Monnat Jr RJ, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol. 2007;9(6):683–90.PubMedCrossRef
38.
Zurück zum Zitat Lim DS et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000;404(6778):613–7.PubMedCrossRef Lim DS et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000;404(6778):613–7.PubMedCrossRef
39.
Zurück zum Zitat Matsuoka S et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.PubMedCrossRef Matsuoka S et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.PubMedCrossRef
40.
Zurück zum Zitat Falck J et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410(6830):842–7.PubMedCrossRef Falck J et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410(6830):842–7.PubMedCrossRef
41.
Zurück zum Zitat Smith J et al. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 2010;108:73–112.PubMedCrossRef Smith J et al. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 2010;108:73–112.PubMedCrossRef
42.
44.
Zurück zum Zitat Celeste A et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296(5569):922–7.PubMedCrossRef Celeste A et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296(5569):922–7.PubMedCrossRef
45.
Zurück zum Zitat Celeste A et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5(7):675–9.PubMedCrossRef Celeste A et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5(7):675–9.PubMedCrossRef
46.
Zurück zum Zitat Lowe JM et al. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem. 2010;285(8):5249–57.PubMedCrossRefPubMedCentral Lowe JM et al. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem. 2010;285(8):5249–57.PubMedCrossRefPubMedCentral
47.
Zurück zum Zitat Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14(4):197–210.CrossRef Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14(4):197–210.CrossRef
48.
49.
Zurück zum Zitat Yang C et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell. 2011;44(4):597–608.PubMedCrossRefPubMedCentral Yang C et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell. 2011;44(4):597–608.PubMedCrossRefPubMedCentral
52.
Zurück zum Zitat Rupnik A, Lowndes NF, Grenon M. MRN and the race to the break. Chromosoma. 2010;119(2):115–35.PubMedCrossRef Rupnik A, Lowndes NF, Grenon M. MRN and the race to the break. Chromosoma. 2010;119(2):115–35.PubMedCrossRef
53.
Zurück zum Zitat Sancar A et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.PubMedCrossRef Sancar A et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.PubMedCrossRef
54.
Zurück zum Zitat Botuyan MV et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006;127(7):1361–73.PubMedCrossRefPubMedCentral Botuyan MV et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006;127(7):1361–73.PubMedCrossRefPubMedCentral
55.
Zurück zum Zitat Huyen Y et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004;432(7015):406–11.PubMedCrossRef Huyen Y et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004;432(7015):406–11.PubMedCrossRef
56.
Zurück zum Zitat Stewart GS et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 2009;136(3):420–34.PubMedCrossRef Stewart GS et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 2009;136(3):420–34.PubMedCrossRef
57.
Zurück zum Zitat Doil C et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell. 2009;136(3):435–46.PubMedCrossRef Doil C et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell. 2009;136(3):435–46.PubMedCrossRef
58.
Zurück zum Zitat Kusch T et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science. 2004;306(5704):2084–7.PubMedCrossRef Kusch T et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science. 2004;306(5704):2084–7.PubMedCrossRef
59.
60.
Zurück zum Zitat Nagai S et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science. 2008;322(5901):597–602.PubMedCrossRefPubMedCentral Nagai S et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science. 2008;322(5901):597–602.PubMedCrossRefPubMedCentral
61.
Zurück zum Zitat Giunta S, Belotserkovskaya R, Jackson SP. DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol. 2010;190(2):197–207.PubMedCrossRefPubMedCentral Giunta S, Belotserkovskaya R, Jackson SP. DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol. 2010;190(2):197–207.PubMedCrossRefPubMedCentral
62.
Zurück zum Zitat Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.PubMedCrossRef Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.PubMedCrossRef
63.
Zurück zum Zitat Franco M et al. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–17.PubMedCrossRefPubMedCentral Franco M et al. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–17.PubMedCrossRefPubMedCentral
64.
Zurück zum Zitat Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell. 1993;72(1):131–42.PubMedCrossRef Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell. 1993;72(1):131–42.PubMedCrossRef
65.
Zurück zum Zitat Yang J et al. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis. 2003;24(10):1571–80.PubMedCrossRef Yang J et al. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis. 2003;24(10):1571–80.PubMedCrossRef
66.
Zurück zum Zitat Meek K, Dang V, Lees-Miller SP. DNA-PK: the means to justify the ends? Adv Immunol. 2008;99:33–58.PubMedCrossRef Meek K, Dang V, Lees-Miller SP. DNA-PK: the means to justify the ends? Adv Immunol. 2008;99:33–58.PubMedCrossRef
67.
Zurück zum Zitat Hill R, Lee PW. The DNA-dependent protein kinase (DNA-PK): more than just a case of making ends meet? Cell Cycle. 2010;9(17):3460–9.PubMedCrossRef Hill R, Lee PW. The DNA-dependent protein kinase (DNA-PK): more than just a case of making ends meet? Cell Cycle. 2010;9(17):3460–9.PubMedCrossRef
68.
Zurück zum Zitat McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 2008;24(11):529–38.PubMedCrossRef McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 2008;24(11):529–38.PubMedCrossRef
69.
Zurück zum Zitat Truong LN et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A. 2013;110(19):7720–5.PubMedCrossRefPubMedCentral Truong LN et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A. 2013;110(19):7720–5.PubMedCrossRefPubMedCentral
70.
Zurück zum Zitat Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9(8):619–31.PubMed Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9(8):619–31.PubMed
71.
Zurück zum Zitat Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7(5):335–46.PubMedCrossRef Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7(5):335–46.PubMedCrossRef
72.
Zurück zum Zitat Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging antitumour therapies. Eur J Cancer. 2003;39(15):2142–9.PubMedCrossRef Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging antitumour therapies. Eur J Cancer. 2003;39(15):2142–9.PubMedCrossRef
73.
Zurück zum Zitat Fortini P et al. The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem. 1999;274(21):15230–6.PubMedCrossRef Fortini P et al. The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem. 1999;274(21):15230–6.PubMedCrossRef
74.
Zurück zum Zitat de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes. Carcinogenesis. 2000;21(3):453–60.PubMedCrossRef de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes. Carcinogenesis. 2000;21(3):453–60.PubMedCrossRef
75.
Zurück zum Zitat Fisher AE et al. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007;27(15):5597–605.PubMedCrossRefPubMedCentral Fisher AE et al. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007;27(15):5597–605.PubMedCrossRefPubMedCentral
76.
Zurück zum Zitat Jilani A et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem. 1999;274(34):24176–86.PubMedCrossRef Jilani A et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem. 1999;274(34):24176–86.PubMedCrossRef
77.
Zurück zum Zitat Izumi T et al. Requirement for human AP endonuclease 1 for repair of 3′-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis. 2000;21(7):1329–34.PubMedCrossRef Izumi T et al. Requirement for human AP endonuclease 1 for repair of 3′-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis. 2000;21(7):1329–34.PubMedCrossRef
78.
Zurück zum Zitat Sobol RW et al. The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature. 2000;405(6788):807–10.PubMedCrossRef Sobol RW et al. The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature. 2000;405(6788):807–10.PubMedCrossRef
79.
Zurück zum Zitat Caldecott KW. Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair (Amst). 2007;6(4):443–53.CrossRef Caldecott KW. Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair (Amst). 2007;6(4):443–53.CrossRef
80.
Zurück zum Zitat Whitehouse CJ et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001;104(1):107–17.PubMedCrossRef Whitehouse CJ et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001;104(1):107–17.PubMedCrossRef
81.
Zurück zum Zitat Parsons JL et al. Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS J. 2005;272(8):2012–21.PubMedCrossRef Parsons JL et al. Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS J. 2005;272(8):2012–21.PubMedCrossRef
82.
Zurück zum Zitat Girard PM et al. Radiosensitivity in Nijmegen breakage syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res. 2000;60(17):4881–8.PubMed Girard PM et al. Radiosensitivity in Nijmegen breakage syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res. 2000;60(17):4881–8.PubMed
83.
Zurück zum Zitat Banin S et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281(5383):1674–7.PubMedCrossRef Banin S et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281(5383):1674–7.PubMedCrossRef
84.
Zurück zum Zitat Canman CE et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281(5383):1677–9.PubMedCrossRef Canman CE et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281(5383):1677–9.PubMedCrossRef
85.
Zurück zum Zitat Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18(53):7644–55.PubMedCrossRef Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18(53):7644–55.PubMedCrossRef
86.
Zurück zum Zitat Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28(3):128–36.PubMedCrossRef Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28(3):128–36.PubMedCrossRef
87.
Zurück zum Zitat Wang X, D'Andrea AD. The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst). 2004;3(8–9):1063–9.CrossRef Wang X, D'Andrea AD. The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst). 2004;3(8–9):1063–9.CrossRef
89.
Zurück zum Zitat O'Driscoll M et al. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet. 2003;33(4):497–501.PubMedCrossRef O'Driscoll M et al. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet. 2003;33(4):497–501.PubMedCrossRef
90.
Zurück zum Zitat Abbott DW et al. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem. 1999;274(26):18808–12.PubMedCrossRef Abbott DW et al. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem. 1999;274(26):18808–12.PubMedCrossRef
91.
Zurück zum Zitat Kaneko H, Kondo N. Clinical features of Bloom syndrome and function of the causative gene, BLM helicase. Expert Rev Mol Diagn. 2004;4(3):393–401.PubMedCrossRef Kaneko H, Kondo N. Clinical features of Bloom syndrome and function of the causative gene, BLM helicase. Expert Rev Mol Diagn. 2004;4(3):393–401.PubMedCrossRef
92.
Zurück zum Zitat Varley JM. Germline TP53 mutations and Li–Fraumeni syndrome. Hum Mutat. 2003;21(3):313–20.PubMedCrossRef Varley JM. Germline TP53 mutations and Li–Fraumeni syndrome. Hum Mutat. 2003;21(3):313–20.PubMedCrossRef
93.
Zurück zum Zitat Kaneko H, Fukao T, Kondo N. The function of RecQ helicase gene family (especially BLM) in DNA recombination and joining. Adv Biophys. 2004;38:45–64.CrossRef Kaneko H, Fukao T, Kondo N. The function of RecQ helicase gene family (especially BLM) in DNA recombination and joining. Adv Biophys. 2004;38:45–64.CrossRef
94.
Zurück zum Zitat Henriksson G et al. Enhanced DNA-dependent protein kinase activity in Sjogren's syndrome B cells. Rheumatology (Oxford). 2004;43(9):1109–15.CrossRef Henriksson G et al. Enhanced DNA-dependent protein kinase activity in Sjogren's syndrome B cells. Rheumatology (Oxford). 2004;43(9):1109–15.CrossRef
95.
Zurück zum Zitat Xie L et al. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proc Natl Acad Sci U S A. 2011;108(24):9939–44.PubMedCrossRefPubMedCentral Xie L et al. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proc Natl Acad Sci U S A. 2011;108(24):9939–44.PubMedCrossRefPubMedCentral
97.
Zurück zum Zitat Zhou BB et al. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem. 2000;275(14):10342–8.PubMedCrossRef Zhou BB et al. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem. 2000;275(14):10342–8.PubMedCrossRef
98.
Zurück zum Zitat Tuveson D, Hanahan D. Translational medicine: cancer lessons from mice to humans. Nature. 2011;471(7338):316–7.PubMedCrossRef Tuveson D, Hanahan D. Translational medicine: cancer lessons from mice to humans. Nature. 2011;471(7338):316–7.PubMedCrossRef
99.
Zurück zum Zitat Sharma RA, Dianov GL. Targeting base excision repair to improve cancer therapies. Mol Aspects Med. 2007;28(3–4):345–74.PubMedCrossRef Sharma RA, Dianov GL. Targeting base excision repair to improve cancer therapies. Mol Aspects Med. 2007;28(3–4):345–74.PubMedCrossRef
100.
Zurück zum Zitat Dianov GL, Parsons JL. Co-ordination of DNA single strand break repair. DNA Repair (Amst). 2007;6(4):454–60.CrossRef Dianov GL, Parsons JL. Co-ordination of DNA single strand break repair. DNA Repair (Amst). 2007;6(4):454–60.CrossRef
101.
Zurück zum Zitat El-Khamisy SF, Caldecott KW. DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1. Neuroscience. 2007;145(4):1260–6.PubMedCrossRef El-Khamisy SF, Caldecott KW. DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1. Neuroscience. 2007;145(4):1260–6.PubMedCrossRef
102.
103.
Zurück zum Zitat El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis. 2006;21(4):219–24.PubMedCrossRef El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis. 2006;21(4):219–24.PubMedCrossRef
104.
Zurück zum Zitat Nie Z et al. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett. 2013;23(12):3662–6.PubMedCrossRef Nie Z et al. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett. 2013;23(12):3662–6.PubMedCrossRef
105.
Zurück zum Zitat Hikichi Y et al. TAK-960, a novel, orally available, selective inhibitor of polo-like kinase 1, shows broad-spectrum preclinical antitumor activity in multiple dosing regimens. Mol Cancer Ther. 2012;11(3):700–9.PubMedCrossRef Hikichi Y et al. TAK-960, a novel, orally available, selective inhibitor of polo-like kinase 1, shows broad-spectrum preclinical antitumor activity in multiple dosing regimens. Mol Cancer Ther. 2012;11(3):700–9.PubMedCrossRef
106.
Zurück zum Zitat Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci. 2012;33(9):494–501.PubMedCrossRef Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci. 2012;33(9):494–501.PubMedCrossRef
107.
Zurück zum Zitat Fukao T et al. Disruption of the BLM gene in ATM-null DT40 cells does not exacerbate either phenotype. Oncogene. 2004;23(8):1498–506.PubMedCrossRef Fukao T et al. Disruption of the BLM gene in ATM-null DT40 cells does not exacerbate either phenotype. Oncogene. 2004;23(8):1498–506.PubMedCrossRef
108.
Zurück zum Zitat O'Driscoll M, Jeggo PA. Clinical impact of ATR checkpoint signalling failure in humans. Cell Cycle. 2003;2(3):194–5.PubMed O'Driscoll M, Jeggo PA. Clinical impact of ATR checkpoint signalling failure in humans. Cell Cycle. 2003;2(3):194–5.PubMed
109.
Zurück zum Zitat Lukas C et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 2004;23(13):2674–83.PubMedCrossRefPubMedCentral Lukas C et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 2004;23(13):2674–83.PubMedCrossRefPubMedCentral
110.
Zurück zum Zitat Montes de Oca R et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood. 2005;105(3):1003–9.PubMedCrossRef Montes de Oca R et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood. 2005;105(3):1003–9.PubMedCrossRef
Metadaten
Titel
The accumulation of DNA repair defects is the molecular origin of carcinogenesis
verfasst von
Hyuk-Jin Cha
Hyungshin Yim
Publikationsdatum
01.12.2013
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 6/2013
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1038-y

Weitere Artikel der Ausgabe 6/2013

Tumor Biology 6/2013 Zur Ausgabe

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.