Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2020

Open Access 01.12.2020 | Research article

The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis

verfasst von: Arjen B. Blom, Martijn H. van den Bosch, Esmeralda N. Blaney Davidson, Johannes Roth, Thomas Vogl, Fons A. van de Loo, Marije Koenders, Peter M. van der Kraan, Edwin J. Geven, Peter L. van Lent

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2020

Abstract

Background

Synovitis-associated pain is mediated by inflammatory factors that may include S100A8/9, which is able to stimulate nociceptive neurons via Toll-like receptor 4. In this study, we investigated the role of S100A9 in pain response during acute synovitis.

Methods

Acute synovitis was induced by streptococcal cell wall (SCW) injection in the knee joint of C57Bl/6 (WT) and S100A9−/− mice. The expression of S100A8/A9 was determined in serum and synovium by ELISA and immunohistochemistry. Inflammation was investigated by 99mTc accumulation, synovial cytokine release, and histology at days 1, 2, and 7. To assess pain, weight distribution, gait analysis, and mechanical allodynia were monitored. Activation markers in afferent neurons were determined by qPCR and immunohistochemistry in the dorsal root ganglia (DRG). Differences between groups were tested using a one-way or two-way analysis of variance (ANOVA). Differences in histology were tested with a non-parametric Mann–Whitney U test. p values lower than 0.05 were considered significant.

Results

Intra-articular SCW injection resulted in increased synovial expression and serum levels of S100A8/A9 at day 1. These increased levels, however, did not contribute to the development of inflammation, since this was equal in S100A9−/− mice. WT mice showed a significantly decreased percentage of weight bearing on the SCW hind paw on day 1, while S100A9−/− mice showed no reduction. Gait analysis showed increased “limping” behavior in WT, but not S100A9−/− mice. Mechanical allodynia was observed but not different between WT and S100A9−/− when measuring paw withdrawal threshold. The gene expression of neuron activation markers NAV1.7, ATF3, and GAP43 in DRG was significantly increased in arthritic WT mice at day 1 but not in S100A9−/− mice.

Conclusions

S100A8/9, released from the synovium upon inflammation, is an important mediator of pain response in the knee during the acute phase of inflammation.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
α2δ1
Voltage-dependent calcium channel subunit alpha-2/delta-1
ANOVA
Analysis of variance
ATF3
Activating transcription factor 3
CGRP
Calcitonin gene-related peptide
DAMP
Damage-associated molecular patterns
DMM
Destabilization of the medial meniscus
DRG
Dorsal root ganglion
ELISA
Enzyme-linked immunosorbent assay
GAP43
Growth-associated protein 43
H&E
Hematoxylin and eosin
IgG
Immunoglobulin G
IHC
Immunohistochemical
IL-1
Interleukin 1
KC
Keratinocyte chemoattractant
LPS
Lipopolysaccharide
MCP-1
Monocyte chemoattractant protein-1
NAV1.7
Sodium (Na) ion channel 1.7
NGF
Nerve growth factor
NPY
Neuropeptide Y
OA
Osteoarthritis
P2RX3
P2X purinoceptor 3
PMN
Polymorphonuclear neutrophils
qRT-PCR
Quantitative reverse transcription polymerase chain reaction
RA
Rheumatoid arthritis
RAGE
Receptor for advanced glycation end-products
SCW
Streptococcal cell wall
TDS
Terminal dual stance
TLR2
Toll-like receptor 2
TLR4
Toll-like receptor 4
TNFα
Tumor necrosis factor alpha
WT
Wild-type

Background

Synovitis is a hallmark of rheumatoid arthritis (RA) and the majority of osteoarthritis (OA) patients. Both diseases have a huge socio-economical impact on society [1]. Pain, the major clinical symptom for the RA and OA patients, is of unknown origin and correlates poorly with radiographic disease scores, and very often, treatment responses are low. Therefore, there is an urgent need to clarify the mechanisms behind pain perception in rheumatic diseases. It is thought that part of the pain perception in RA and OA is related to mediators of synovitis [24].
In several studies, we demonstrated that S100A8/9 are involved in inflammation and subsequent structural joint pathology, in humans and experimental RA and OA. S100A8 and S100A9 are proteins that form heterodimers and are abundantly expressed and released by neutrophils, monocytes, and activated macrophages. S100A8/9 heterodimers have been shown to signal via Toll-like receptor 4 (TLR4) and are important regulators of the innate inflammatory response [5]. We demonstrated significantly higher levels of S100A8/9 levels in early OA patients that show progression of disease regarding Kellgren and Lawrence score [6], and pathology in experimental RA and OA strongly depends on S100A8/9 [6, 7].
Since S100A8/9 can mediate synovitis in both RA and OA models, it is difficult to investigate whether S100A8/9 plays a direct role in pain perception. TLR4 has been implicated in pain perception, is expressed by afferent sensory neurons, and may play a role in local peripheral nociception [8, 9]. A role for S100A8 was demonstrated in the activation of these neurons, leading to the production of MCP-1 and the local influx of monocytes that produce S100A8 in the dorsal root ganglion (DRG) [10]. Therefore, S100A8/9 may not only be involved in local nociception but also in sensitization by monocyte influx or local MCP-1 production in the DRG. Sensitization leads to increased pain perception and is thought to be involved in chronic pain that occurs in OA [11].
Activation of the peripheral C- and Aδ-fibers leads to pain sensation [12]. Upon excitation of the peripheral pain fiber, the neuron, with the cell body residing in the DRG, is activated, and this may result in the upregulation of several marker genes, among which substance P, CGRP, NPY, galanin, NAV1.7, P2RX3, α2δ1, ATF3, and GAP43, depending on the cause and nature of the pain [13].
The hypothesis of this study is that S100A8/9 induces pain as by direct activation of afferent nerve endings and by sensitization of the peripheral nervous system locally in the DRG, where it is produced by infiltrating monocytes.
Synovitis is studied in streptococcal cell wall (SCW) arthritis, which is based on local activation of the synovium by intra-articular deposition of SCW. SCW bind to TLR2 rather than to TLR4 [14], which makes this a good candidate to study the involvement of S100A8/9, a known TLR4 ligand, in pain perception.
Several methods to measure different aspects of pain have been described [15]. In this study, we used gait analysis and the incapacitance tester to study pain upon static and dynamic loading and von Frey testing to determine allodynia, as a measure for pain sensitization.

Materials and methods

Animals

Synovial activation was elicited in male C57BL/6 mice and in S100a9−/− mice backcrossed to the C57BL/6 background for more than 12 generations. Myeloid cells of S100a9−/− mice also lack S100A8 at the protein level [16]. Mice were used between the age of 14 and 16 weeks. All animal studies were conducted according to the Dutch law and approved by the Dutch Central Animal Experimentation Committee (project 2015-0014). A total of 80 mice were used, 6–8 per experimental group.

SCW arthritis induction

SCW were produced as described previously [17]. After randomization, unilateral arthritis was induced by intra-articular injection of 25 μg SCW (rhamnose content) in 6 μL PBS into the right knee joint of 20 WT mice and 10 S100a9−/− mice. As a sham control, saline was injected into the right knee joint of 20 WT and 10 S100a9−/− mice. At day 1 and day 7 after induction, serum was collected and S100A8/9 levels were determined using an ELISA that was designed in-house [18].

99mTc uptake measurement

To quantify joint swelling as a measure for inflammation, the uptake of 99mTc-pertechnetate was measured [19]. The signal was expressed as a ratio relative to the naive contralateral knee joint. Briefly, mice were injected subcutaneously with 12 μCi 99mTc-pertechnetate and sedated. After 30 min, the amount of radioactivity was assessed by measuring the gamma radiation with the knee in a fixed position, using a collimated NaI scintillation crystal. Swelling was measured at baseline and at days 1 and 7 after injection.

Isolation of the knee joints and DRG

On days 1 and 7 after induction of SCW arthritis, the knee joints were isolated and fixed in 4% formaldehyde, decalcified in formic acid, and subsequently dehydrated and embedded in paraffin. From a part of the murine joints, synovium was isolated for the preparation of washouts and RNA isolation. Briefly, the synovium was isolated from the murine knee joints using a standardized method comprising removal of the quadriceps and section of the patella ligament. Tissue was put in RPMI (Gibco, Invitrogen, Carlsbad, CA, USA), enriched with 0.1% BSA (Sigma–Aldrich) for 1 h at room temperature. Prior to incubation, two 3-mm biopsies were taken for RNA isolation. DRG were isolated at the L3–5 levels of the spinal column. Briefly, the spines were isolated and cut in half transversely, and the ipsilateral L3–5 were removed. DRG were fixed in 4% formaldehyde, subsequently dehydrated, and embedded in paraffin. Paraffin sections were cut at 7 μM or 5 μM and mounted on coated slides. Hematoxylin/eosin (H&E) staining was performed to study the inflammatory cells and tissue morphology. Of the knee joints, inflammation scored using an arbitrary scoring system. The severity was determined using an arbitrary score (0–3), performed blindly by two observer: 0, no influx; 1, mild cellularity; 2, higher cellularity; and 3, very high cellularity. Immunohistochemical (IHC) staining was performed on S100A8 and S100A9 in WT mice. As primary antibodies, anti S100A8 and S100A9 were used that were prepared as described previously [5]. On DRG, IHC staining was performed for F4/80, to detect monocytes/macrophages, and for NAV1.7 (Alomone Labs, asc-008). For all IHC detections, isotype-matched IgG was used as a negative control. For S100A8, S100A9, and NAV1.7, IHC staining was scored in a semi-quantitative manner by assessing the diaminobenzidine (DAB) intensity using ImageJ (NIH, Bethesda). Since DAB intensity is not linearly related to expression, the staining is qualified as semi-quantitative. Briefly, photomicrographs were corrected for background, area of interest was selected, and the mean intensity of the area was assessed using the “H DAB” plugin after color deconvolution. Quantification of F4/80 staining in the DRG was done by counting the amount of positive cells per field of view after deconvolution.

Assessment of pain behavior

In order to reliably measure pain in animal models, using more than one way to measure pain behavior in experimental models is highly recommendable [15]. None of the available pain tests for rodents is specific only for pain, since in all cases, behavior is studied, and behavior can easily be influenced by other parameters. Therefore, in our experiments, extreme care was taken to include a proper adjustment period for acclimatization, sham controls were used, and baseline measurements were taken at 3 alternate days before the start of the experiments. By taking these precautions, and by combining several methods, pain measurements can be reliably performed, and several groups have shown that these methods reflect pain behavior since the use of analgesics normalizes behavior [20]. All measurements were performed by the same observers (AB, EBD, and EG) who were blinded for treatment and phenotype. Mice were randomized prior to the start of the experiments. The methods we used were (a) incapacitance testing, (b) gait analysis, and (c) von Frey testing.

Incapacitance tester

To assess the weight distribution between the hind paws, we used the Linton incapacitance tester (Linton Instruments, UK). Briefly, mice were put on the device and due to the dimensions of the device, mice were forced to stand on their rear legs, and the left and right legs were positioned on two separate scales. Due to the hyperactive nature of mice in general, using the incapacitance tester can be challenging, but reliable results have been obtained by many groups. We used a functionality of the incapacitance tester that only starts measuring when the mouse is in a stable position, as reflected by stable readings for at least 4 s, to ensure a reliable measurement. The measurement itself lasted 1 s. Per mouse, 6 serial measurements were made, and the mean was calculated. Before the start of the measurements, mice were acclimatized to the incapacitance tester 3 times before the start of the measurements at day − 7. Three baseline measurements were made on days − 7, − 3, and day 0. Subsequently, the effect of synovitis was measured at day 1 and day 7 after injection of SCW. The results were expressed as the percentage of total weight on the arthritic right leg compared to the combined weight on the right and unaffected left leg.

Gait analysis using Catwalk-XT

To measure changes in gait parameters induced by injection of SCW, and to assess whether differences were present between WT and S100A9−/− mice, gait analysis was performed using the Catwalk-XT (Catwalk XT®, Wageningen, The Netherlands). Within this system, the mice are allowed to walk freely across a glass plate. A high-speed camera is used to capture suitable runs over a distance of 30 cm, which are selected using software settings: maximal variation in run speed, 60%; minimal time, 1 s; maximal time, 4 s. If these criteria were met, the run was considered valid. A full stop of the mouse during a run would render the run invalid. Per mouse, 3 valid runs were obtained, and for all data, the mean over these runs was calculated. Footprints and footfall patterns were identified and digitally analyzed. Changes in the footprint area, the duration of the stand phase of each paw, and the terminal dual stance were measured as a measure for pain behavior. The footprint area was calculated as the mean width × length for each paw. The stand phase was calculated as the mean duration of contact with the glass of each paw separately. The mean terminal dual stance represents the duration of the overlap of the stand phase between the left and right joint, at the moment the left paw is placed. It represents the time that both hind paws are loaded in the final stand phase of the right hind limb. An increase in time is a measure for increased pain, as this can be considered an attempt to decrease the loading of the right joint. This parameter quantifies what could be called “limping.”

Assessment of allodynia using von Frey hairs

Mechanical allodynia in mice was tested using the up–down staircase method as described by Dixon [21]. In short, mice were placed on a metal grid (with 3-mm-diameter holes) within small Plexiglas cubicles, and a set of 10 calibrated von Frey fibers (0.07, 0.16, 0.4, 0.6, 1, 1.4, 2, 4, 6, and 8 g, BioSeb, Vitrolles, France) was applied perpendicular to the plantar surface of the hind paw until the fibers bowed and then held for 2 s. Paw withdrawal was scored if within 5 s of removal of the fiber the paw was withdrawn or licked. Each fiber was applied 3 times, and a positive withdrawal response was scored if 2 or 3 out of 3 applications resulted in paw withdrawal. All testing and scoring were performed by one researcher. Testing was initiated with the 0.6-g fiber; if the response was negative, a fiber with increased force was applied, and in the event of a positive response, a weaker stimulus was applied. Sequential measurements were separated by at least 5 min. When a fiber resulted in a positive withdrawal response, 4 more additional fibers were tested. The 50% withdrawal threshold was interpolated as described in detail by Chaplan et al. [22].

Isolation of RNA (synovium and DRG) and subsequent qPCR

Gene expression was determined using quantitative real-time PCR (qRT-PCR). DRG for RNA isolation were homogenized in RLT buffer using the MagNA Lyser Instrument (Roche). Total RNA was isolated using the RNeasy MinElute kit (Qiagen) with a Proteinase K step according to the manufacturer’s protocol. The RNA concentration was determined using a Nanodrop spectrophotometer and subsequently reverse transcribed into cDNA. qRT-PCR was performed using specific primers (Table 1) and the SYBR Green Master Mix in the Applied Biosystems StepOnePlus real-time PCR system (Applied Biosystems). Reactions were presented as minus delta threshold cycle Ct (−ΔCt) values, calculated by correcting the negative threshold cycle (−Ct) of the gene of interest to the −Ct of the reference gene GAPDH.
Table 1
Primers to measure expression in synovium and/or DRG using Q-PCR
Gene
Forward primer
Reverse primer
α2δ1(A2d1)
5′-gtcacactggattttctcgatgc-3′
5′-gggtttctgaatatctggcctga-3′
Atf3
5′-gaggattttgctaacctgacacc-3′
5′-ttgacggtaactgactccagc-3′
Cfos
5′-aaacccatcaccatcttcca-3′
5′-gtggttcacacccatcacaa-3′
Cgrp
5′-ttgtcagcatcttgctcctgtac-3′
5′-gcctgggctgctttcca-3′
Galanin
5′-ggcagcgttatcctgctagg-3′
5′-ctgttcagggtccaacctct-3′
Gap43
5′-tggtgtcaagccggaagataa-3′
5′-gctggtgcatcacccttct-3′
Gapdh
5′-ggcaaattcaacggcaca-3′
5′-gttagtggggtctcgctcctg-3′
Il1b
5′-ggacagaatatcaaccaacaagtgata-3′
5′-gtgtgccgtctttcattacacag-3′
Il6
5′-caagtcggaggcttaattacacatg-3′
5′-attgccattgcacaactcttttct-3′
Kc
5′-tggctgggattcacctcaa-3′
5′-gagtgtggctatgacttcggttt-3′
Mcp1
5′-ttggctcagccagatgca-3′
5′-cctactcattgggatcatcttgct-3′
Nav1.7
5′-cgacagcggcacaactaatc-3′
5′-agaatgcttgctctgctcatg-3′
Ngf
5′-tcgggccagtatagaaagct-3′
5′-ggggagcgcatcgagtttt-3′
Npy
5′-atgctaggtaacaagcgaatgg-3′
5′-tgtcgcagagcggagtagtat-3′
P2rx3
5′-aaagctggaccattgggatca-3′
5′-cgtgtcccgcacttggtag-3′
S100a8
5′-tgtcctcagtttgtgcagaatataaat-3′
5′-tttatcaccatcgcaaggaactc-3′
S100a9
5′-ggcaaaggctgtgggaagt-3′
5′-ccattgagtaagccattcccttta-3′
SubstanceP (Tac1)
5′-attcctttgttggactaatgggc-3′
5′-acgtcttctttcgtagttctgc-3′
Tnfa
5′-cagaccctcacactcagatcatct-3′
5′-cctccacttggtggtttgcta-3′
Trka
5′-gcctaaccatcgtgaagagtg-3′
5′-ccaacgcattggaggacagat-3′

Statistical analysis

Statistical analyses were performed using Graphpad Prism version 5.03. Differences between the groups were tested using a one-way or two-way analysis of variance (ANOVA). Differences in histology were tested with a non-parametric Mann–Whitney U test. p values lower than 0.05 were considered significant. Results are expressed as mean values ± standard deviation (SD).

Results

Serum levels and synovial expression and release of S100A8 and S100A9 are increased upon SCW injection

First, we determined whether in the acute synovitis model of SCW induced arthritis in C57Bl/6 mice, S100A8 or S100A9 genes and proteins were expressed. After a single i.a. SCW injection, the expression of both S100a8 and S100a9 mRNA was significantly upregulated locally in the synovium. The peak expression was found on day 1 (resp. 29- (ddCt 5.4 ± 2.1) and 34-fold increase (ddCt 5.8 ± 1.8) compared to sham), and levels decreased at day 2- to 8-fold increase for both (ddCt resp. 3.0 ± 1.6 and 3.0 ± 1.2) compared to sham and were back to baseline at day 7 (ddCt resp. 0.8 ± 1.1 and 0.9 ± 1.5). This upregulation in S100a8 and S100a9 mRNA was reflected by increased protein levels in serum and synovial washouts (Fig. 1a, b).
Using immunohistochemistry we demonstrated that levels of both S100A8 and –A9 peaked at day 1, decreased slightly at day 2 and were low, but still above baseline at day 7 after SCW injection (Fig. 1c, d).

Increased S100A8/A9 expression after SCW injection does not contribute to the development of inflammation

To study the involvement of S100A8/9 in synovitis, we first determined swelling of the knee joint at day 1 and at day 7 after SCW injection. Swelling increased, as determined by measuring the 99mTc-pertechnetate uptake R/L ratio, 1 day after injection of SCW in WT mice (Fig. 2a). At day 7, joint swelling was down to baseline levels. In S100a9−/− mice, effectively lacking both S100A9 and S100A8, swelling was induced to comparable levels as in WT mice. Swelling at day 7 was not different from baseline levels. To determine whether S100A8/9 deficiency leads to changes in cell influx, we scored local inflammation using histology (Fig. 2b–d). Inflammation was high at day 1 and was decreased but still present at day 7 after induction. Interestingly, however, no differences in cell numbers and cell types could be observed between WT and S100a9−/− mice (Fig. 2d). Mediators for inflammation, except TNFα and IL-1, were increased in synovial washouts during SCW arthritis, but none of the inflammatory mediators (KC, MCP-1, IL-6) were significantly different between WT and S100a9−/− (Fig. 2e).

SCW injection leads to increased nociceptive pain behavior in the affected leg, which is absent in S100a9−/− mice

The lack of effect of S100A8/9 on inflammation presented us with the perfect conditions to determine the role of S100A8/9 in pain irrespective of inflammation. We first measured pain behavior defined by static loading of the right and left paws using an incapacitance tester. At day 1 after induction, the percentage of total weight on the right hind leg decreased from approximately 50% at baseline to just below 30%, p < .001 (Fig. 3a). In contrast, mice lacking S100A9 showed no shift. Seven days after induction, incapacitance normalized almost completely to 44% in the WT and 48% in the S100a9−/− and was no longer significantly different from saline-injected controls.
Next, animals were allowed to walk freely, and gait was monitored at day 1 after injection for 2 parameters, the stand phase of each paw, and the terminal dual stance (TDS). Remarkably, the stand phase of the right hind leg was unchanged 1 day after SCW injection, both in WT and S100a9−/− mice. However, in WT mice, the stand phase in the remaining legs, left hind and right and left front legs, increased significantly (respectively p < .001, p < .05, and p < .001). This increase was not observed in S100a9−/− mice (Fig. 3b). Next, the TDS was determined from the Catwalk data. This parameter can be described as “limping.” The TDS significantly increased in wild-type mice after injection of SCW, resulting in “limping” behavior (Fig. 3c). In contrast, no change in TDS was observed in the S100a9−/− mice with SCW arthritis, underlining the role of S100A8/9 in pain perception.

SCW-induced mechanical allodynia does not differ between WT and S100A9−/− mice

To determine whether S100A8/9 are contributing to pain sensitization, we measured hind paw mechanical allodynia using von Frey filaments. At day 1 after SCW injection, allodynia could be clearly demonstrated (p < .001) in WT mice (Fig. 4a). Saline-injected animals did not differ from baseline and had a 50% paw withdrawal threshold of approximately 3 g, whereas SCW-injected mice showed a dip of approximately 1 g at day 1 after injection, which returned to baseline levels at day 7. In contrast to the parameters for general pain perception, allodynia in S100a9−/− was present (p < .001) and did not differ from WT (Fig. 4b).

SCW synovitis does not cause cell influx or pro-inflammatory response in the DRG and no differences between WT and S100A9−/− mice

To study the possible mechanisms that underlie differences in pain perception between WT and S100a9−/−, we determined whether the inflammatory response in the relevant DRGs (L3-L5) was different between WT and S100a9−/−. In the joint, S100A8/9 in WT may bind to the afferent neuronal ending, thus causing activation of the neuronal bodies in the DRG. We did not find increased expression of MCP-1 in the DRG 1 or 7 days after induction of synovitis (Fig. 5a). Also, other mediators that may signify cell influx or inflammation (S100A8, IL-1β, NGF, and TNFα, the latter not shown) were unchanged (Fig. 5b–d). Histological examination of the DRG proved a lack of cell influx upon induction of synovitis. This was confirmed by immunohistochemical detection of F4/80, which was not different in DRG of SCW versus saline-injected mice (Fig. 5e, f).

SCW injection results in increased expression of neuron activation markers in DRG of WT mice but not in S100a9−/− mice

Now that we could not demonstrate regulation of inflammatory response genes in the DRG, we detected genes that are involved in neuron function in the DRG and may serve as markers for activation or damage: Substance P, CGRP, NPY, galanin, NAV1.7, P2RX3, α2δ1, ATF3, and GAP43. First, we determined levels of mRNA expression of these genes in WT mice injected i.a. with SCW and compared this to WT mice that received saline (Table 2). One day after induction of SCW arthritis, 3 genes of this panel were upregulated: NAV1.7 (1.7-fold), ATF3 (1.8-fold), and GAP43 (1.9-fold) (Fig. 6a–c). Subsequently, regulation of these genes in DRG of S100a9−/− mice after induction of SCW arthritis was absent. In contrast, even a downregulation of ATF3 compared to WT mice was observed (2.1-fold). At day 7 after induction of SCW, none of the genes were differentially expressed, in WT nor in S100a9−/−. The mRNA findings of NAV1.7 were confirmed by immunohistochemistry on DRG, where enhanced staining was found in WT compared to S100a9−/−, although protein levels were not significantly different between WT and S100a9−/− until day 7 (Fig. 6d, e).
Table 2
Q-PCR results DRG. dCT ± SD *p < .05. Significance was calculated compared to the saline
 
Day 1
Day 7
WT
S100A9−/−
WT
S100A9−/−
Saline
SCW
Saline
SCW
Saline
SCW
Saline
SCW
α2δ1(A2d1)
− 13.1 ± 0.7
− 12.4 ± 0.9
− 12.5 ± 1.9
− 13.1 ± 1.2
− 12.8 ± 1.2
− 12.2 ± 0.5
− 13.1 ± 0.6
− 13.8 ± 1.7
Atf3
− 8.2 ± 0.3
− 7.5 ± 0.3*
− 7.5 ± 0.9
− 8.8 ± 0.5*
− 8.0 ± 0.5
− 7.7 ± 0.4
− 8.1 ± 0.7
− 7.4 ± 0.3
Cfos
− 10.1 ± 0.5
− 10.9 ± 0.4
− 10.6 ± 0.4
− 10.6 ± 0.4
− 11.2 ± 0.5
− 11.0 ± 0.4
− 9.8 ± 1.6
− 9.5 ± 1.3
Cgrp
− 0.4 ± 0.4
− 0.7 ± 0.6
− 0.7 ± 0.4
− 0.3 ± 0.5
− 0.7 ± 0.3
− 0.5 ± 0.3
− 0.6 ± 0.2
− 0.5 ± 0.3
Galanin
− 5.8 ± 0.3
− 5.8 ± 0.4
− 5.9 ± 0.5
− 6.0 ± 1.4
− 5.6 ± 0.7
− 5.6 ± 0.6
− 5.7 ± 0.4
− 5.0 ± 0.5
Gap43
− 3.2 ± 0.3
− 2.7 ± 0.2*
− 2.8 ± 0.6
− 3.2 ± 0.7
− 2.6 ± 0.5
− 2.5 ± 0.3
− 3.0 ± 0.3
− 2.7 ± 0.4
Nav1.7
− 5.2 ± 0.4
− 4.4 ± 0.5*
− 4.9 ± 0.6
− 4.9 ± 0.8
− 5.1 ± 1.7
− 4.9 ± 0.7
− 5.0 ± 0.7
− 4.4 ± 0.5
Ngf
− 11.1 ± 0.3
− 11.5 ± 0.5
− 11.2 ± 0.3
− 11.6 ± 0.7
− 11.1 ± 0.5
− 11.3 ± 0.3
− 11.2 ± 0.9
− 10.8 ± 0.5
Npy
− 10.7 ± 0.3
− 11.4 ± 1.3
− 10.8 ± 1.1
− 11.7 ± 1.4
− 8.7 ± 1.1
− 8.5 ± 0.6
− 8.9 ± 0.5
− 8.5 ± 0.5
P2rx3
− 6.9 ± 0.4
− 6.8 ± 0.8
− 6.8 ± 0.6
− 7.0 ± 0.7
− 6.9 ± 0.4
− 6.1 ± 0.5
− 6.7 ± 0.6
− 6.6 ± 0.8
Subst P
− 1.6 ± 0.4
− 1.5 ± 0.6
− 1.8 ± 0.6
− 1.3 ± 0.3
− 1.6 ± 0.4
− 1.8 ± 0.2
− 1.8 ± 0.2
− 1.6 ± 0.3
Trka
− 8.5 ± 0.7
− 8.1 ± 1.1
− 8.2 ± 1.0
− 8.3 ± 0.5
− 8.5 ± 0.9
− 7.8 ± 0.5
− 8.7 ± 1.1
− 8.4 ± 0.4

Discussion

Synovitis and bone marrow lesions have been proposed to determine OA pain [23]. In RA, it is well accepted that synovitis is an important source of pain, but also here, mechanisms are poorly understood [24]. An intriguing question is whether key mediators can be identified in the joint that are particularly involved in the generation and maintenance of pain caused by synovitis. S100A8/A9 is a potent mediator of synovitis and joint destruction during mouse and human OA and these alarmins are produced within the joint throughout the course of the disease. In the present study, we set out to determine if and to what extent the S100A8/9 heterodimer is involved in pain that is mediated by synovitis. We clearly demonstrate that the heterodimer S100A8/9 is indeed involved in pain behavior in an experimental model for synovitis. S100A8/9 seem particularly important in nociception, since we found a clear normalization of joint loading and gait in S100a9−/−.
SCW synovitis is based on the activation of TLR2, rather than TLR4, which would disturb the measurement of isolated effects of the TLR4 ligand S100A8/9 [14]. Interestingly, in contrast to other models [6, 7, 25], the inflammation in the SCW model was not mediated by S100A8/A9. This allowed us to study the direct effect of S100A8/A9 in pain, independent of the differences in inflammation. The SCW arthritis model is a generalized model for acute synovitis. The infiltrate is characterized by cells of the innate immune system, like monocytes, macrophages, and PMN, rather than lymphocytes, cell types relevant for both RA and OA. Inflammation is an important source of pain in many processes, including arthritic diseases [10, 26]. It has been recently shown that a 32-mer aggrecan fragment is a potent activator of TLR2 and is involved in inflammation and pain in models for OA [27, 28].
Much is still unknown about the involvement of the DAMP S100A8/9, in pain perception. We studied S100A8/9 involvement in 2 different aspects of pain: (1) acute inflammatory or nociceptive pain, caused by direct excitation by S100A8/9 of the relevant afferent nerve fibers, likely via TLR4 or RAGE, directly resulting in pain [8, 29]; (2) sensitization, induced by binding of TLR4 or RAGE, and resulting in increased excitability of the afferent nerve fiber, via cell influx into the DRG or via regulation of nociceptors or ion channels.
By comparing the differential effects of S100A8/9 on the specific parameters, we deducted the involvement of S100A8/9 in these different aspects of pain. The first indication that pain caused by synovitis is mediated by S100A8/A9 came from our finding that static weight bearing, determined with the incapacitance tester [30, 31], was unchanged in S100a9−/− but not in WT mice. Gait was analyzed to measure the dynamic loading of the paws and “limping” [32]. These parameters were quantified as (1) the mean stand phase of all four paws and (2) the TDS. Both parameters have been described before to reflect pain behavior [33, 34]. We found an increase in stand phase in the unaffected paws in WT mice, rather than a decrease of the stand phase of the arthritic paw. It is assumed that the loading of unaffected limbs is increased to spare the affected limb. This effect has been described before in a rat model for arthritis [35]. TDS of the right hind paw is considered an indicator of pain, and changes represent “limping” behavior. This clear demonstration of lack of pain behavior when S100A8/9 is absent affirms the importance of S100A8/9 in general pain behavior during synovitis.
To study the second aspect of pain, sensitization, we determined the pressure-pain threshold (tactile allodynia) using von Frey filaments [36, 37]. Although clearly present in WT and S100A9−/− mice, allodynia was equal between the two groups, excluding a role for S100A8/9 in sensitization in acute synovitis.
Together, these data strongly suggest a role for the TLR4 ligand S100A8/9 in acute nociception rather than modulation of pain sensitivity. This is in line with a recent finding, in which TLR4 deficiency did not alter sensitization [10]. Although S100A8 stimulation caused excitation of afferent neurons, when a model for OA, destabilization of the medial meniscus (DMM), was induced in the knee joints of Tlr4−/− mice, no effect on sensitization was demonstrated. In contrast to these findings, a study in which LPS was injected in the paw of WT and Tlr4−/− mice did demonstrate a role for TLR4 in this process [38]. This indicates that endogenous TLR4 ligands as formed in (osteo) arthritis models may play a redundant role. S100A8/9 can bind to RAGE, but most literature suggests a role for RAGE in neuropathic pain and central sensitization, for which the current model is not suitable [39]. We therefore cannot claim a role for this receptor. Future experiments could include i.a. injection of S100A8 or S100A9 homodimers to test the hypothesis that these compounds induce an acute pain response, and using specific knockout mice, this could shed light on the receptors that are involved in this. However, it would be difficult to determine whether this would be a direct effect on pain behavior or indirect through the mediation of inflammation.
To shed more light on the cellular and molecular processes that may underlie the differences in pain behavior, we studied the DRG, where the cell bodies of the Aδ- and C-fibers reside [40]. Ipsilateral DRG from L3–L5 were pooled, since the neuronal bodies of the afferents from the knee joint reside at these levels, using retrograde fluorogold staining [41]. We tested the expression of markers for neuronal inflammation, activation, and neuropathy. No induction of markers for inflammation was found, which is in contrast to previous studies which were performed in a model for OA, the DMM [10, 42]. Also in contrast to these studies, we did not observe an influx of monocytes in DRG, likely explained by the lack of upregulation of MCP-1 by the DRG. The lack of DRG inflammation in synovitis during acute SCW-induced arthritis refutes our hypothesis, derived from the DMM-data, that influx of cells or production of MCP-1 by the DRG would be responsible for the sensitization in both WT and S100a9−/− mice [10, 43, 44]. An obvious difference between both models is the acute nature of the SCW arthritis compared to the DMM, with long-lasting mild synovitis. Whether the DRG inflammation during DMM is S100A8/A9-dependent is currently under investigation. Possibly in the chronic variant of the SCW model, DRG inflammation is comparable to DMM, which will be subject to future experiments [45]. The relevance of an acute flare of inflammation during OA for joint pathology was demonstrated elegantly in a study in rats where an acute inflammation was induced during an induced instability model for OA by intra-articular carrageenan injection. This indeed caused acute pain and also led to more pronounced end-stage pathology [46].
Stimulation of TLR4 by LPS leads to the expression of IL-1 and TNFα in the DRG [47]. In addition, TLR4 may play a role in the conversion of acute to chronic pain, which was demonstrated in a model for chronic arthritis, where TLR4 was involved in sustaining sensitization after the inflammation waned [48, 49].
Cytokines that are produced locally in the joint during arthritis, like IL-1, TNFα, IL-6, and IL-17, have been shown to modulate neurons [50]. However, in osteoarthritis, cytokine levels are considerably lower and therefore may have less impact. In contrast, levels of S100A8/9 are high [6], and therefore, S100A8/9 may play a particularly relevant role in OA pain. In vitro stimulation of DRG with S100A8 resulted both in the excitation of the neurons and the production of inflammatory mediators [10]. In a study in rats, macrophages were stimulated with LPS in co-culture with DRG neurons, and this led to apoptosis of neurons, suggesting a role for TLR4 in neuropathy [51].
Male mice showed TLR4-mediated hyperalgesia when challenged with LPS, whereas the role of TLR4 in allodynia was comparable between male and female mice [52]. This, and other studies, indicate sex as an important factor in pain. In the present study, experiments were performed in males only, which is a limitation of our approach.
The neuronal markers that were differentially expressed in the DRG were NAV1.7, ATF3, and GAP43, which were increased in WT DRG and not S100a9−/−. These markers appear related to both nerve injury and inflammatory pain since they are also expressed in collagen antibody-induced arthritis and signify activation of the Aδ- and C-afferents [13]. The fact that they are differentially expressed in S100a9−/− is in line with the demonstrated difference in pain behavior. They are related to nerve injury and this suggests that local joint inflammation during SCW causes damage to peripheral afferent fibers [53]. However, we did not find clear signs of nerve injury at this early time point, like prolonged changes in pain behavior in this acute synovitis. Unfortunately, due to the experimental setup, we were not able to further study local processes. Possibly, the neuronal markers for tissue inflammation, CGRP, substance P, and α2δ1, but also TrkA, would have been differentially expressed [51, 54]. In a study in which the effect of local macrophage activation in the DRG was studied, activated macrophages induced CGRP production by afferent neurons. Our lack of monocyte influx may at least explain the lack of CGRP regulation [51]. Nevertheless, we were able to confirm the effects of S100A8/9 on pain behavior on a molecular level.

Conclusions

Here, we clearly demonstrate a role for S100A8/9 in pain perception in a model involving synovitis. We did not find evidence for a role of S100A8/9 in sensitization. These findings have important implications for the development of pain treatment in both arthritis and OA. In both types of diseases, new treatments are much sought after. For OA, no effective long-term pain treatment is available, and these findings may provide evidence for a new approach, especially for inflammatory OA. TLR4 is expressed on primary sensory neurons and is implicated as a potential target in the treatment of pain during arthritis and OA pain in particular. The role of TLR4 in inflammation has been well established; however, targeted treatment or prevention of neuropathic pain with TLR4 antagonists is still under investigation. Increasing evidence suggests that the immune system plays an integral role in the transition to pain but no treatment is currently available to target this pathway [9]. Given the involvement of S100A8/9 in synovitis in several models [6, 7] and the direct role in pain that is demonstrated here, blocking S100A8/A9 may prove a successful strategy for pain management in arthritic diseases.

Acknowledgements

The authors of this manuscript would like to thank Elly Vitters, Birgitte Walgreen, and Monique Helsen for their technical assistance. We thank Dr. Niels Eijkelkamp (Laboratory of Translational Immunity, UMC Utrecht, The Netherlands) for his advise and instructions regarding the isolation of DRG.
All animal studies were conducted according to the Dutch law and approved by the Dutch Central Animal Experimentation Committee (project 2015-0014).
All co-authors gave their consent for publication prior to the submission of this manuscript.

Competing interests

None of the co-authors has competing interests to declare, with respect to the research in this manuscript.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.
2.
Zurück zum Zitat Syx D, Tran PB, Miller RE, Malfait AM. Peripheral mechanisms contributing to osteoarthritis pain. Curr Rheumatol Rep. 2018;20(2):9.PubMedPubMedCentral Syx D, Tran PB, Miller RE, Malfait AM. Peripheral mechanisms contributing to osteoarthritis pain. Curr Rheumatol Rep. 2018;20(2):9.PubMedPubMedCentral
3.
Zurück zum Zitat Schaible HG. Osteoarthritis pain. Recent advances and controversies. Curr Opin Support Palliat Care. 2018;2(2):148–53. Schaible HG. Osteoarthritis pain. Recent advances and controversies. Curr Opin Support Palliat Care. 2018;2(2):148–53.
4.
Zurück zum Zitat Neogi T, Guermazi A, Roemer F, Nevitt MC, Scholz J, Arendt-Nielsen L, et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol. 2016;68(3):654–61.PubMedPubMedCentral Neogi T, Guermazi A, Roemer F, Nevitt MC, Scholz J, Arendt-Nielsen L, et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol. 2016;68(3):654–61.PubMedPubMedCentral
5.
Zurück zum Zitat Vogl T, Stratis A, Wixler V, Völler T, Thurainayagam S, Jorch SK, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128(5):1852–66.PubMedPubMedCentral Vogl T, Stratis A, Wixler V, Völler T, Thurainayagam S, Jorch SK, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128(5):1852–66.PubMedPubMedCentral
6.
Zurück zum Zitat van Lent PL, Blom AB, Schelbergen RF, Slöetjes A, Lafeber FP, Lems WF, et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012;64(5):1466–76.PubMed van Lent PL, Blom AB, Schelbergen RF, Slöetjes A, Lafeber FP, Lems WF, et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012;64(5):1466–76.PubMed
7.
Zurück zum Zitat van Lent PL, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T, et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis. 2008;67(12):1750–8.PubMed van Lent PL, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T, et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis. 2008;67(12):1750–8.PubMed
8.
Zurück zum Zitat Wadachi R, Hargreaves KM. Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res. 2006;85(1):49–53.PubMedPubMedCentral Wadachi R, Hargreaves KM. Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res. 2006;85(1):49–53.PubMedPubMedCentral
9.
Zurück zum Zitat Bruno K, Woller SA, Miller YI, Yaksh TL, Wallace M, Beaton G, et al. Targeting toll-like receptor-4 (TLR4)-an emerging therapeutic target for persistent pain states. Pain. 2018;159(10):1908–15.PubMed Bruno K, Woller SA, Miller YI, Yaksh TL, Wallace M, Beaton G, et al. Targeting toll-like receptor-4 (TLR4)-an emerging therapeutic target for persistent pain states. Pain. 2018;159(10):1908–15.PubMed
10.
Zurück zum Zitat Miller RE, Belmadani A, Ishihara S, Tran PB, Ren D, Miller RJ, et al. Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4. Arthritis Rheumatol. 2015;67(11):2933–43.PubMedPubMedCentral Miller RE, Belmadani A, Ishihara S, Tran PB, Ren D, Miller RJ, et al. Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4. Arthritis Rheumatol. 2015;67(11):2933–43.PubMedPubMedCentral
11.
Zurück zum Zitat Schaible HG. Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep. 2012;14(6):549–56.PubMed Schaible HG. Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep. 2012;14(6):549–56.PubMed
12.
Zurück zum Zitat Thakur M, Dickenson AH, Baron R. Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol. 2014;10(6):374–80.PubMed Thakur M, Dickenson AH, Baron R. Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol. 2014;10(6):374–80.PubMed
13.
Zurück zum Zitat Su J, Gao T, Shi T, Xiang Q, Xu X, Wiesenfeld-Hallin Z, et al. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model. J Comp Neurol. 2015;523(10):1505–28.PubMed Su J, Gao T, Shi T, Xiang Q, Xu X, Wiesenfeld-Hallin Z, et al. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model. J Comp Neurol. 2015;523(10):1505–28.PubMed
14.
Zurück zum Zitat Abdollahi-Roodsaz S, Joosten LA, Helsen MM, Walgreen B, van Lent PL, van den Bersselaar LA, et al. Shift from toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum. 2008;58(12):3753–64.PubMed Abdollahi-Roodsaz S, Joosten LA, Helsen MM, Walgreen B, van Lent PL, van den Bersselaar LA, et al. Shift from toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum. 2008;58(12):3753–64.PubMed
15.
Zurück zum Zitat Malfait AM, Little CB, McDougall JJ. A commentary on modelling osteoarthritis pain in small animals. Osteoarthr Cartil. 2013;21(9):1316–26.PubMedPubMedCentral Malfait AM, Little CB, McDougall JJ. A commentary on modelling osteoarthritis pain in small animals. Osteoarthr Cartil. 2013;21(9):1316–26.PubMedPubMedCentral
16.
Zurück zum Zitat Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, et al. Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol. 2003;23(3):1034–43.PubMedPubMedCentral Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, et al. Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol. 2003;23(3):1034–43.PubMedPubMedCentral
17.
Zurück zum Zitat van den Broek MF, van den Berg WB, van de Putte LB, Severijnen AJ. Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. Am J Pathol. 1988;133(1):139–49.PubMedPubMedCentral van den Broek MF, van den Berg WB, van de Putte LB, Severijnen AJ. Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. Am J Pathol. 1988;133(1):139–49.PubMedPubMedCentral
18.
Zurück zum Zitat Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9.PubMed Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9.PubMed
19.
Zurück zum Zitat Kruijsen MW, van den Berg WB, van de Putte LB, van den Broek WJ. Detection and quantification of experimental joint inflammation in mice by measurement of 99mTc-pertechnetate uptake. Agents Actions. 1981;11(6–7):640–2.PubMed Kruijsen MW, van den Berg WB, van de Putte LB, van den Broek WJ. Detection and quantification of experimental joint inflammation in mice by measurement of 99mTc-pertechnetate uptake. Agents Actions. 1981;11(6–7):640–2.PubMed
20.
Zurück zum Zitat Robinson I, Sargent B, Hatcher JP. Use of dynamic weight bearing as a novel end-point for the assessment of Freund’s Complete Adjuvant induced hypersensitivity in mice. Neurosci Lett. 2012;524(2):107–10.PubMed Robinson I, Sargent B, Hatcher JP. Use of dynamic weight bearing as a novel end-point for the assessment of Freund’s Complete Adjuvant induced hypersensitivity in mice. Neurosci Lett. 2012;524(2):107–10.PubMed
21.
Zurück zum Zitat Dixon WJ. Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev. 1991;15(1):47–50.PubMed Dixon WJ. Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev. 1991;15(1):47–50.PubMed
22.
Zurück zum Zitat Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.PubMed Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.PubMed
23.
Zurück zum Zitat Carotti M, Salaffi F, Di Carlo M, Giovagnoni A. Relationship between magnetic resonance imaging findings, radiological grading, psychological distress and pain in patients with symptomatic knee osteoarthritis. Radiol Med. 2017;122(12):934–43.PubMed Carotti M, Salaffi F, Di Carlo M, Giovagnoni A. Relationship between magnetic resonance imaging findings, radiological grading, psychological distress and pain in patients with symptomatic knee osteoarthritis. Radiol Med. 2017;122(12):934–43.PubMed
24.
Zurück zum Zitat Walsh DA, McWilliams DF. Pain in rheumatoid arthritis. Curr Pain Headache Rep. 2012;16(6):509–17.PubMed Walsh DA, McWilliams DF. Pain in rheumatoid arthritis. Curr Pain Headache Rep. 2012;16(6):509–17.PubMed
25.
Zurück zum Zitat Schelbergen RF, Geven EJ, van den Bosch MH, Eriksson H, Leanderson T, Vogl T, et al. Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann Rheum Dis. 2015;74(12):2254–8.PubMed Schelbergen RF, Geven EJ, van den Bosch MH, Eriksson H, Leanderson T, Vogl T, et al. Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann Rheum Dis. 2015;74(12):2254–8.PubMed
26.
Zurück zum Zitat Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.PubMed Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.PubMed
27.
Zurück zum Zitat Lees S, Golub SB, Last K, Zeng W, Jackson DC, Sutton P, Fosang AJ. Bioactivity in an Aggrecan 32-mer fragment is mediated via Toll-like receptor 2. Arthritis Rheumatol. 2015;67(5):1240–9.PubMed Lees S, Golub SB, Last K, Zeng W, Jackson DC, Sutton P, Fosang AJ. Bioactivity in an Aggrecan 32-mer fragment is mediated via Toll-like receptor 2. Arthritis Rheumatol. 2015;67(5):1240–9.PubMed
29.
Zurück zum Zitat Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, Khanna R, White FA. Identification of a functional interaction of HMGB1 with receptor for advanced glycation end-products in a model of neuropathic pain. Brain Behav Immun. 2014;42:169–77.PubMedPubMedCentral Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, Khanna R, White FA. Identification of a functional interaction of HMGB1 with receptor for advanced glycation end-products in a model of neuropathic pain. Brain Behav Immun. 2014;42:169–77.PubMedPubMedCentral
30.
Zurück zum Zitat McNamee KE, Alzabin S, Hughes JP, Anand P, Feldmann M, Williams RO, et al. IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain. 2011;152(8):1838–45.PubMed McNamee KE, Alzabin S, Hughes JP, Anand P, Feldmann M, Williams RO, et al. IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain. 2011;152(8):1838–45.PubMed
31.
Zurück zum Zitat Pitzer C, Kuner R, Tappe-Theodor A. Voluntary and evoked behavioral correlates in inflammatory pain conditions under different social housing conditions. Pain Rep. 2016;1(1):e564.PubMedPubMedCentral Pitzer C, Kuner R, Tappe-Theodor A. Voluntary and evoked behavioral correlates in inflammatory pain conditions under different social housing conditions. Pain Rep. 2016;1(1):e564.PubMedPubMedCentral
32.
Zurück zum Zitat Abu-Ghefreh AA, Masocha W. Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord. 2010;11:276.PubMedPubMedCentral Abu-Ghefreh AA, Masocha W. Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord. 2010;11:276.PubMedPubMedCentral
33.
Zurück zum Zitat Parvathy SS, Masocha W. Gait analysis of C57BL/6 mice with complete Freund’s adjuvant-induced arthritis using the CatWalk system. BMC Musculoskelet Disord. 2013;14:14.PubMedPubMedCentral Parvathy SS, Masocha W. Gait analysis of C57BL/6 mice with complete Freund’s adjuvant-induced arthritis using the CatWalk system. BMC Musculoskelet Disord. 2013;14:14.PubMedPubMedCentral
34.
Zurück zum Zitat Coulthard P, Pleuvry BJ, Brewster M, Wilson KL, Macfarlane TV. Gait analysis as an objective measure in a chronic pain model. J Neurosci Methods. 2002;116(2):197–213.PubMed Coulthard P, Pleuvry BJ, Brewster M, Wilson KL, Macfarlane TV. Gait analysis as an objective measure in a chronic pain model. J Neurosci Methods. 2002;116(2):197–213.PubMed
35.
Zurück zum Zitat Hoffmann MH, Hopf R, Niederreiter B, Redl H, Smolen JS, Steiner G. Gait changes precede overt arthritis and strongly correlate with symptoms and histopathological events in pristane-induced arthritis. Arthritis Res Ther. 2010;12(2):R41.PubMedPubMedCentral Hoffmann MH, Hopf R, Niederreiter B, Redl H, Smolen JS, Steiner G. Gait changes precede overt arthritis and strongly correlate with symptoms and histopathological events in pristane-induced arthritis. Arthritis Res Ther. 2010;12(2):R41.PubMedPubMedCentral
36.
Zurück zum Zitat Malfait AM, Ritchie J, Gil AS, Austin JS, Hartke J, Qin W, et al. ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthr Cartil. 2010;18(4):572–80.PubMed Malfait AM, Ritchie J, Gil AS, Austin JS, Hartke J, Qin W, et al. ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthr Cartil. 2010;18(4):572–80.PubMed
37.
Zurück zum Zitat Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: towards a rational method. J Neurosci Methods. 2015;255:92–103.PubMed Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: towards a rational method. J Neurosci Methods. 2015;255:92–103.PubMed
38.
Zurück zum Zitat Guerrero AT, Pinto LG, Cunha FQ, Ferreira SH, Alves-Filho JC, Verri WA, et al. Mechanisms underlying the hyperalgesic responses triggered by joint activation of TLR4. Pharmacol Rep. 2016;68(6):1293–300.PubMed Guerrero AT, Pinto LG, Cunha FQ, Ferreira SH, Alves-Filho JC, Verri WA, et al. Mechanisms underlying the hyperalgesic responses triggered by joint activation of TLR4. Pharmacol Rep. 2016;68(6):1293–300.PubMed
39.
Zurück zum Zitat Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, et al. Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain. 2010;149(3):514–21.PubMed Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, et al. Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain. 2010;149(3):514–21.PubMed
40.
Zurück zum Zitat Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception. Clin Neurophysiol. 2005;116(4):743–63.PubMed Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception. Clin Neurophysiol. 2005;116(4):743–63.PubMed
41.
Zurück zum Zitat Ferreira-Gomes J, Adães S, Sarkander J, Castro-Lopes JM. Phenotypic alterations of neurons that innervate osteoarthritic joints in rats. Arthritis Rheum. 2010;62(12):3677–85.PubMed Ferreira-Gomes J, Adães S, Sarkander J, Castro-Lopes JM. Phenotypic alterations of neurons that innervate osteoarthritic joints in rats. Arthritis Rheum. 2010;62(12):3677–85.PubMed
42.
Zurück zum Zitat Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, Malfait AM. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A. 2012;109(50):20602–7.PubMedPubMedCentral Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, Malfait AM. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A. 2012;109(50):20602–7.PubMedPubMedCentral
43.
Zurück zum Zitat Miller RE, Tran PB, Ishihara S, Larkin J, Malfait AM. Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthr Cartil. 2016;24(2):299–306.PubMed Miller RE, Tran PB, Ishihara S, Larkin J, Malfait AM. Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthr Cartil. 2016;24(2):299–306.PubMed
44.
Zurück zum Zitat Illias AM, Gist AC, Zhang H, Kosturakis AK, Dougherty PM. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatin-induced mechanical hypersensitivity. Pain. 2018;159(7):1308–16.PubMedPubMedCentral Illias AM, Gist AC, Zhang H, Kosturakis AK, Dougherty PM. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatin-induced mechanical hypersensitivity. Pain. 2018;159(7):1308–16.PubMedPubMedCentral
45.
Zurück zum Zitat Koenders MI, Kolls JK, Oppers-Walgreen B, van den Bersselaar L, Joosten LA, Schurr JR, et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 2005;52(10):3239–47.PubMed Koenders MI, Kolls JK, Oppers-Walgreen B, van den Bersselaar L, Joosten LA, Schurr JR, et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 2005;52(10):3239–47.PubMed
46.
Zurück zum Zitat Ashraf S, Mapp PI, Shahtaheri SM, Walsh DA. Effects of carrageenan induced synovitis on joint damage and pain in a rat model of knee osteoarthritis. Osteoarthr Cartil. 2018;26(10):1369–78.PubMed Ashraf S, Mapp PI, Shahtaheri SM, Walsh DA. Effects of carrageenan induced synovitis on joint damage and pain in a rat model of knee osteoarthritis. Osteoarthr Cartil. 2018;26(10):1369–78.PubMed
47.
Zurück zum Zitat Tse KH, Chow KB, Leung WK, Wong YH, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience. 2014;267:241–51.PubMed Tse KH, Chow KB, Leung WK, Wong YH, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience. 2014;267:241–51.PubMed
48.
Zurück zum Zitat Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain. 2010;151(2):394–403.PubMedPubMedCentral Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain. 2010;151(2):394–403.PubMedPubMedCentral
49.
Zurück zum Zitat Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol. 2017;107(5):40–6. Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol. 2017;107(5):40–6.
51.
Zurück zum Zitat Massier J, Eitner A, Segond von Banchet G, Schaible HG. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol. 2015;67(8):2263–72.PubMed Massier J, Eitner A, Segond von Banchet G, Schaible HG. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol. 2015;67(8):2263–72.PubMed
52.
Zurück zum Zitat Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, et al. Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: the role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun. 2016;56:271–80.PubMedPubMedCentral Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, et al. Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: the role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun. 2016;56:271–80.PubMedPubMedCentral
53.
Zurück zum Zitat Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain. 2011;152(12):2881–91.PubMedPubMedCentral Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain. 2011;152(12):2881–91.PubMedPubMedCentral
54.
Zurück zum Zitat Bergman E, Johnson H, Zhang X, Hökfelt T, Ulfhake B. Neuropeptides and neurotrophin receptor mRNAs in primary sensory neurons of aged rats. J Comp Neurol. 1996;375(2):303–19.PubMed Bergman E, Johnson H, Zhang X, Hökfelt T, Ulfhake B. Neuropeptides and neurotrophin receptor mRNAs in primary sensory neurons of aged rats. J Comp Neurol. 1996;375(2):303–19.PubMed
Metadaten
Titel
The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis
verfasst von
Arjen B. Blom
Martijn H. van den Bosch
Esmeralda N. Blaney Davidson
Johannes Roth
Thomas Vogl
Fons A. van de Loo
Marije Koenders
Peter M. van der Kraan
Edwin J. Geven
Peter L. van Lent
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2020
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-020-02295-9

Weitere Artikel der Ausgabe 1/2020

Arthritis Research & Therapy 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Typ-2-Diabetes und Depression folgen oft aufeinander

14.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes sind überdurchschnittlich gefährdet, in den nächsten Jahren auch noch eine Depression zu entwickeln – und umgekehrt. Besonders ausgeprägt ist die Wechselbeziehung laut GKV-Daten bei jüngeren Erwachsenen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.