Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2015

01.03.2015 | Clinical

The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal

verfasst von: Maarten F. Bijlsma, Hanneke W. M. van Laarhoven

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

A nearly universal feature of pancreatic ductal adenocarcinoma (PDAC) is an extensive presence of activated stroma. This stroma is thought to aid in various tumor-promoting processes and hampers response to therapy. Here, we aim to evaluate the evidence that supports this role of the stroma in PDAC with functional experiments in relevant models, discuss the clinical trials that have aimed to target the stroma in this disease, and examine recent work that explains why these clinical trials based on stroma-targeting strategies have thus far not achieved the expected success. We systematically searched PubMed through August 2014 with no restrictions to identify published peer-reviewed research articles assessing the effect of targeting the stroma on tumor growth or metastases in preclinical animal models. Five hundred and thirty articles were extracted of which 31 were included in the analysis. Unfortunately, due to the large variety in models and outcome measures, we could not perform a meta-analysis of our data. We find that despite an abundance of positive outcomes reported in previous studies on stroma targeting, a strong discrepancy exists with the outcomes of clinical trials and the more recent preclinical work that is in line with these trials. We explain the incongruities by the duration of stroma targeting and propose that chronic stroma targeting treatment is possibly detrimental in the treatment of this disease.
Literatur
1.
Zurück zum Zitat Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74, 2913–2921. doi:10.1158/0008-5472.CAN-14-0155.CrossRefPubMed Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74, 2913–2921. doi:10.​1158/​0008-5472.​CAN-14-0155.CrossRefPubMed
3.
Zurück zum Zitat Oettle, H., Post, S., Neuhaus, P., Gellert, K., Langrehr, J., Ridwelski, K., Schramm, H., Fahlke, J., Zuelke, C., Burkart, C., Gutberlet, K., Kettner, E., Schmalenberg, H., Weigang-Koehler, K., Bechstein, W. O., Niedergethmann, M., Schmidt-Wolf, I., Roll, L., Doerken, B., & Riess, H. (2007). Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 297, 267–277. doi:10.1001/jama.297.3.267.CrossRefPubMed Oettle, H., Post, S., Neuhaus, P., Gellert, K., Langrehr, J., Ridwelski, K., Schramm, H., Fahlke, J., Zuelke, C., Burkart, C., Gutberlet, K., Kettner, E., Schmalenberg, H., Weigang-Koehler, K., Bechstein, W. O., Niedergethmann, M., Schmidt-Wolf, I., Roll, L., Doerken, B., & Riess, H. (2007). Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 297, 267–277. doi:10.​1001/​jama.​297.​3.​267.CrossRefPubMed
4.
Zurück zum Zitat Neoptolemos, J. P., Stocken, D. D., Bassi, C., Ghaneh, P., Cunningham, D., Goldstein, D., Padbury, R., Moore, M. J., Gallinger, S., Mariette, C., Wente, M. N., Izbicki, J. R., Friess, H., Lerch, M. M., Dervenis, C., Olah, A., Butturini, G., Doi, R., Lind, P. A., Smith, D., Valle, J. W., Palmer, D. H., Buckels, J. A., Thompson, J., McKay, C. J., & Rawcliffe, C. L. (2010). Buchler MW (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA, 304, 1073–1081.CrossRefPubMed Neoptolemos, J. P., Stocken, D. D., Bassi, C., Ghaneh, P., Cunningham, D., Goldstein, D., Padbury, R., Moore, M. J., Gallinger, S., Mariette, C., Wente, M. N., Izbicki, J. R., Friess, H., Lerch, M. M., Dervenis, C., Olah, A., Butturini, G., Doi, R., Lind, P. A., Smith, D., Valle, J. W., Palmer, D. H., Buckels, J. A., Thompson, J., McKay, C. J., & Rawcliffe, C. L. (2010). Buchler MW (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA, 304, 1073–1081.CrossRefPubMed
5.
Zurück zum Zitat Ueno, H., Kosuge, T., Matsuyama, Y., Yamamoto, J., Nakao, A., Egawa, S., Doi, R., Monden, M., Hatori, T., Tanaka, M., Shimada, M., & Kanemitsu, K. (2009). A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. British Journal of Cancer, 101, 908–915. doi:10.1038/sj.bjc.6605256.CrossRefPubMedPubMedCentral Ueno, H., Kosuge, T., Matsuyama, Y., Yamamoto, J., Nakao, A., Egawa, S., Doi, R., Monden, M., Hatori, T., Tanaka, M., Shimada, M., & Kanemitsu, K. (2009). A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. British Journal of Cancer, 101, 908–915. doi:10.​1038/​sj.​bjc.​6605256.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Burris, H. A., III, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., Cripps, M. C., Portenoy, R. K., Storniolo, A. M., Tarassoff, P., Nelson, R., Dorr, F. A., Stephens, C. D., & Von Hoff, D. D. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15, 2403–2413.PubMed Burris, H. A., III, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., Cripps, M. C., Portenoy, R. K., Storniolo, A. M., Tarassoff, P., Nelson, R., Dorr, F. A., Stephens, C. D., & Von Hoff, D. D. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15, 2403–2413.PubMed
7.
Zurück zum Zitat Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., Au, H. J., Murawa, P., Walde, D., Wolff, R. A., Campos, D., Lim, R., Ding, K., Clark, G., Voskoglou-Nomikos, T., Ptasynski, M., & Parulekar, W. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966. doi:10.1200/JCO.2006.07.9525.CrossRefPubMed Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., Au, H. J., Murawa, P., Walde, D., Wolff, R. A., Campos, D., Lim, R., Ding, K., Clark, G., Voskoglou-Nomikos, T., Ptasynski, M., & Parulekar, W. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966. doi:10.​1200/​JCO.​2006.​07.​9525.CrossRefPubMed
8.
Zurück zum Zitat Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., Adenis, A., Raoul, J. L., Gourgou-Bourgade, S., de la Fouchardiere, C., Bennouna, J., Bachet, J. B., Khemissa-Akouz, F., Pere-Verge, D., Delbaldo, C., Assenat, E., Chauffert, B., Michel, P., Montoto-Grillot, C., & Ducreux, M. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New English Journal Medicine, 364, 1817–825. doi:10.1056/NEJMoa1011923. 364.CrossRef Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., Adenis, A., Raoul, J. L., Gourgou-Bourgade, S., de la Fouchardiere, C., Bennouna, J., Bachet, J. B., Khemissa-Akouz, F., Pere-Verge, D., Delbaldo, C., Assenat, E., Chauffert, B., Michel, P., Montoto-Grillot, C., & Ducreux, M. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New English Journal Medicine, 364, 1817–825. doi:10.​1056/​NEJMoa1011923. 364.CrossRef
9.
Zurück zum Zitat Van Laethem, J. L., Verslype, C., Iovanna, J. L., Michl, P., Conroy, T., Louvet, C., Hammel, P., Mitry, E., Ducreux, M., Maraculla, T., Uhl, W., Van, T. G., Bachet, J. B., Marechal, R., Hendlisz, A., Bali, M., Demetter, P., Ulrich, F., Aust, D., Luttges, J., Peeters, M., Mauer, M., Roth, A., Neoptolemos, J. P., & Lutz, M. (2012). ew strategies and designs in pancreatic cancer research: consensus guidelines report from a European expert panel. Annals of Oncology, 23, 570–576. doi:10.1093/annonc/mdr351.CrossRefPubMed Van Laethem, J. L., Verslype, C., Iovanna, J. L., Michl, P., Conroy, T., Louvet, C., Hammel, P., Mitry, E., Ducreux, M., Maraculla, T., Uhl, W., Van, T. G., Bachet, J. B., Marechal, R., Hendlisz, A., Bali, M., Demetter, P., Ulrich, F., Aust, D., Luttges, J., Peeters, M., Mauer, M., Roth, A., Neoptolemos, J. P., & Lutz, M. (2012). ew strategies and designs in pancreatic cancer research: consensus guidelines report from a European expert panel. Annals of Oncology, 23, 570–576. doi:10.​1093/​annonc/​mdr351.CrossRefPubMed
10.
Zurück zum Zitat Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., Gray, J. W., Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17(17), 500–503. doi:10.1038/nm.2344.CrossRefPubMedPubMedCentral Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., Gray, J. W., Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17(17), 500–503. doi:10.​1038/​nm.​2344.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Wu, J., Jiao, Y., Dal, M. M., Maitra, A., de Wilde, R. F., Wood, L. D., Eshleman, J. R., Goggins, M. G., Wolfgang, C. L., Canto, M. I., Schulick, R. D., Edil, B. H., Choti, M. A., Adsay, V., Klimstra, D. S., Offerhaus, G. J., Klein, A. P., Kopelovich, L., Carter, H., Karchin, R., Allen, P. J., Schmidt, C. M., Naito, Y., Diaz, L. A., Jr., Kinzler, K. W., Papadopoulos, N., Hruban, R. H., & Vogelstein, B. (2011). Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 21188–21193. doi:10.1073/pnas.1118046108.CrossRefPubMedPubMedCentral Wu, J., Jiao, Y., Dal, M. M., Maitra, A., de Wilde, R. F., Wood, L. D., Eshleman, J. R., Goggins, M. G., Wolfgang, C. L., Canto, M. I., Schulick, R. D., Edil, B. H., Choti, M. A., Adsay, V., Klimstra, D. S., Offerhaus, G. J., Klein, A. P., Kopelovich, L., Carter, H., Karchin, R., Allen, P. J., Schmidt, C. M., Naito, Y., Diaz, L. A., Jr., Kinzler, K. W., Papadopoulos, N., Hruban, R. H., & Vogelstein, B. (2011). Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 21188–21193. doi:10.​1073/​pnas.​1118046108.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De, B. R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A., & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399–405. doi:10.1038/nature11547.CrossRefPubMedPubMedCentral Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De, B. R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A., & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399–405. doi:10.​1038/​nature11547.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Collins, M. A., Bednar, F., Zhang, Y., Brisset, J. C., Galban, S., Galban, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & di Pasca, M. M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 122, 639–653. doi:10.1172/JCI59227.CrossRefPubMedPubMedCentral Collins, M. A., Bednar, F., Zhang, Y., Brisset, J. C., Galban, S., Galban, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & di Pasca, M. M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 122, 639–653. doi:10.​1172/​JCI59227.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18, 6339–6347. doi:10.1158/1078-0432.CCR-12-1215.CrossRefPubMedPubMedCentral Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18, 6339–6347. doi:10.​1158/​1078-0432.​CCR-12-1215.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Donahue, T. R., Tran, L. M., Hill, R., Li, Y., Kovochich, A., Calvopina, J. H., Patel, S. G., Wu, N., Hindoyan, A., Farrell, J. J., Li, X., Dawson, D. W., & Wu, H. (2012). Integrative survival-based molecular profiling of human pancreatic cancer. Clinical Cancer Research, 18, 1352–1363. doi:10.1158/1078-0432.CCR-11-1539.CrossRefPubMed Donahue, T. R., Tran, L. M., Hill, R., Li, Y., Kovochich, A., Calvopina, J. H., Patel, S. G., Wu, N., Hindoyan, A., Farrell, J. J., Li, X., Dawson, D. W., & Wu, H. (2012). Integrative survival-based molecular profiling of human pancreatic cancer. Clinical Cancer Research, 18, 1352–1363. doi:10.​1158/​1078-0432.​CCR-11-1539.CrossRefPubMed
20.
Zurück zum Zitat Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117. doi:10.1038/nature09515.CrossRefPubMedPubMedCentral Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117. doi:10.​1038/​nature09515.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. doi:10.1126/science.1164368.CrossRefPubMedPubMedCentral Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. doi:10.​1126/​science.​1164368.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Erkan, M., Reiser-Erkan, C., Michalski, C. W., Kong, B., Esposito, I., Friess, H., & Kleeff, J. (2012). The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Current Molecular Medicine, 12, 288–303.CrossRefPubMed Erkan, M., Reiser-Erkan, C., Michalski, C. W., Kong, B., Esposito, I., Friess, H., & Kleeff, J. (2012). The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Current Molecular Medicine, 12, 288–303.CrossRefPubMed
24.
Zurück zum Zitat Erkan, M., Reiser-Erkan, C., Michalski, C. W., & Kleeff, J. (2010). Tumor microenvironment and progression of pancreatic cancer. Experimental Oncology, 32, 128–131.PubMed Erkan, M., Reiser-Erkan, C., Michalski, C. W., & Kleeff, J. (2010). Tumor microenvironment and progression of pancreatic cancer. Experimental Oncology, 32, 128–131.PubMed
25.
Zurück zum Zitat Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S., & Kalluri, R. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734. doi:10.1016/j.ccr.2014.04.005.CrossRefPubMedPubMedCentral Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S., & Kalluri, R. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734. doi:10.​1016/​j.​ccr.​2014.​04.​005.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T., & Vu, V. T. (2009). Hypoxia and radiation therapy: past history, ongoing research, and future promise. Current Molecular Medicine, 9, 442–458.CrossRefPubMedPubMedCentral Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T., & Vu, V. T. (2009). Hypoxia and radiation therapy: past history, ongoing research, and future promise. Current Molecular Medicine, 9, 442–458.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Kleeff, J., Beckhove, P., Esposito, I., Herzig, S., Huber, P. E., Lohr, J. M., & Friess, H. (2007). Pancreatic cancer microenvironment. International Journal of Cancer, 121, 699–705. doi:10.1002/ijc.22871.CrossRefPubMed Kleeff, J., Beckhove, P., Esposito, I., Herzig, S., Huber, P. E., Lohr, J. M., & Friess, H. (2007). Pancreatic cancer microenvironment. International Journal of Cancer, 121, 699–705. doi:10.​1002/​ijc.​22871.CrossRefPubMed
28.
Zurück zum Zitat McCarroll, J. A., Naim, S., Sharbeen, G., Russia, N., Lee, J., Kavallaris, M., Goldstein, D., & Phillips, P. A. (2014). Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Frontiers in Physiology, 5, 141. doi:10.3389/fphys.2014.00141.PubMedPubMedCentral McCarroll, J. A., Naim, S., Sharbeen, G., Russia, N., Lee, J., Kavallaris, M., Goldstein, D., & Phillips, P. A. (2014). Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Frontiers in Physiology, 5, 141. doi:10.​3389/​fphys.​2014.​00141.PubMedPubMedCentral
30.
Zurück zum Zitat Erkan, M., Reiser-Erkan, C., Michalski, C. W., Deucker, S., Sauliunaite, D., Streit, S., Esposito, I., Friess, H., & Kleeff, J. (2009). Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 11, 497–508.CrossRefPubMedPubMedCentral Erkan, M., Reiser-Erkan, C., Michalski, C. W., Deucker, S., Sauliunaite, D., Streit, S., Esposito, I., Friess, H., & Kleeff, J. (2009). Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 11, 497–508.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Sparmann, G., Kruse, M. L., Hofmeister-Mielke, N., Koczan, D., Jaster, R., Liebe, S., Wolff, D., & Emmrich, J. (2010). Bone marrow-derived pancreatic stellate cells in rats. Cell Research, 20, 288–298. doi:10.1038/cr.2010.10.CrossRefPubMed Sparmann, G., Kruse, M. L., Hofmeister-Mielke, N., Koczan, D., Jaster, R., Liebe, S., Wolff, D., & Emmrich, J. (2010). Bone marrow-derived pancreatic stellate cells in rats. Cell Research, 20, 288–298. doi:10.​1038/​cr.​2010.​10.CrossRefPubMed
32.
Zurück zum Zitat Akita, S., Kubota, K., Kobayashi, A., Misawa, R., Shimizu, A., Nakata, T., Yokoyama, T., Takahashi, M., & Miyagawa, S. (2012). Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochemical and Biophysical Research Communications, 420, 743–749. doi:10.1016/j.bbrc.2012.03.060.CrossRefPubMed Akita, S., Kubota, K., Kobayashi, A., Misawa, R., Shimizu, A., Nakata, T., Yokoyama, T., Takahashi, M., & Miyagawa, S. (2012). Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochemical and Biophysical Research Communications, 420, 743–749. doi:10.​1016/​j.​bbrc.​2012.​03.​060.CrossRefPubMed
33.
Zurück zum Zitat Scarlett, C. J., Colvin, E. K., Pinese, M., Chang, D. K., Morey, A. L., Musgrove, E. A., Pajic, M., Apte, M., Henshall, S. M., Sutherland, R. L., Kench, J. G., & Biankin, A. V. (2011). Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PloS One, 6, e26088. doi:10.1371/journal.pone.0026088.CrossRefPubMedPubMedCentral Scarlett, C. J., Colvin, E. K., Pinese, M., Chang, D. K., Morey, A. L., Musgrove, E. A., Pajic, M., Apte, M., Henshall, S. M., Sutherland, R. L., Kench, J. G., & Biankin, A. V. (2011). Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PloS One, 6, e26088. doi:10.​1371/​journal.​pone.​0026088.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Kadaba, R., Birke, H., Wang, J., Hooper, S., Andl, C. D., Di, M. F., Soylu, E., Ghallab, M., Bor, D., Froeling, F. E., Bhattacharya, S., Rustgi, A. K., Sahai, E., Chelala, C., Sasieni, P., & Kocher, H. M. (2013). Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 230, 107–117. doi:10.1002/path.4172.CrossRefPubMedPubMedCentral Kadaba, R., Birke, H., Wang, J., Hooper, S., Andl, C. D., Di, M. F., Soylu, E., Ghallab, M., Bor, D., Froeling, F. E., Bhattacharya, S., Rustgi, A. K., Sahai, E., Chelala, C., Sasieni, P., & Kocher, H. M. (2013). Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 230, 107–117. doi:10.​1002/​path.​4172.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Coleman, S. J., Chioni, A. M., Ghallab, M., Anderson, R. K., Lemoine, N. R., Kocher, H. M., & Grose, R. P. (2014). Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Molecular Medicine, 6, 467–481. doi:10.1002/emmm.201302698.CrossRefPubMedPubMedCentral Coleman, S. J., Chioni, A. M., Ghallab, M., Anderson, R. K., Lemoine, N. R., Kocher, H. M., & Grose, R. P. (2014). Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Molecular Medicine, 6, 467–481. doi:10.​1002/​emmm.​201302698.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339, b2700.CrossRefPubMedPubMedCentral Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339, b2700.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernandez-del, C. C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A. L., & Hebrok, M. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425, 851–856. doi:10.1038/nature02009.CrossRefPubMedPubMedCentral Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernandez-del, C. C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A. L., & Hebrok, M. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425, 851–856. doi:10.​1038/​nature02009.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Heretsch, P., Tzagkaroulaki, L., & Giannis, A. (2010). Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angewandte Chemie International Edition in English, 49, 3418–3427. doi:10.1002/anie.200906967.CrossRef Heretsch, P., Tzagkaroulaki, L., & Giannis, A. (2010). Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angewandte Chemie International Edition in English, 49, 3418–3427. doi:10.​1002/​anie.​200906967.CrossRef
41.
Zurück zum Zitat Ericson, J., Morton, S., Kawakami, A., Roelink, H., & Jessell, T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661–673.CrossRefPubMed Ericson, J., Morton, S., Kawakami, A., Roelink, H., & Jessell, T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661–673.CrossRefPubMed
43.
Zurück zum Zitat Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M. A., Caldwell, M. E., Allard, D., Frese, K. K., Denicola, G., Feig, C., Combs, C., Winter, S. P., Ireland-Zecchini, H., Reichelt, S., Howat, W. J., Chang, A., Dhara, M., Wang, L., Ruckert, F., Grutzmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S. R., Huang, P., Davies, S. E., Plunkett, W., Egorin, M., Hruban, R. H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., & Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457–1461. doi:10.1126/science.1171362.CrossRefPubMedPubMedCentral Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M. A., Caldwell, M. E., Allard, D., Frese, K. K., Denicola, G., Feig, C., Combs, C., Winter, S. P., Ireland-Zecchini, H., Reichelt, S., Howat, W. J., Chang, A., Dhara, M., Wang, L., Ruckert, F., Grutzmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S. R., Huang, P., Davies, S. E., Plunkett, W., Egorin, M., Hruban, R. H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., & Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457–1461. doi:10.​1126/​science.​1171362.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Nakamura, K., Sasajima, J., Mizukami, Y., Sugiyama, Y., Yamazaki, M., Fujii, R., Kawamoto, T., Koizumi, K., Sato, K., Fujiya, M., Sasaki, K., Tanno, S., Okumura, T., Shimizu, N., Kawabe, J., Karasaki, H., Kono, T., Ii, M., Bardeesy, N., Chung, D. C., & Kohgo, Y. (2010). Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PloS One, 5, e8824. doi:10.1371/journal.pone.0008824.CrossRefPubMedPubMedCentral Nakamura, K., Sasajima, J., Mizukami, Y., Sugiyama, Y., Yamazaki, M., Fujii, R., Kawamoto, T., Koizumi, K., Sato, K., Fujiya, M., Sasaki, K., Tanno, S., Okumura, T., Shimizu, N., Kawabe, J., Karasaki, H., Kono, T., Ii, M., Bardeesy, N., Chung, D. C., & Kohgo, Y. (2010). Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PloS One, 5, e8824. doi:10.​1371/​journal.​pone.​0008824.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290. doi:10.4161/cc.19679.CrossRefPubMed Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290. doi:10.​4161/​cc.​19679.CrossRefPubMed
47.
Zurück zum Zitat Kayed, H., Meyer, P., He, Y., Kraenzlin, B., Fink, C., Gretz, N., Schoenberg, S. O., & Sadick, M. (2012). Evaluation of the metabolic response to cyclopamine therapy in pancreatic cancer xenografts using a clinical PET-CT system. Translational Oncology, 5, 335–343.CrossRefPubMedPubMedCentral Kayed, H., Meyer, P., He, Y., Kraenzlin, B., Fink, C., Gretz, N., Schoenberg, S. O., & Sadick, M. (2012). Evaluation of the metabolic response to cyclopamine therapy in pancreatic cancer xenografts using a clinical PET-CT system. Translational Oncology, 5, 335–343.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Chang, Q., Foltz, W. D., Chaudary, N., Hill, R. P., & Hedley, D. W. (2013). Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. International Journal of Cancer, 133, 225–234. doi:10.1002/ijc.28006.CrossRefPubMed Chang, Q., Foltz, W. D., Chaudary, N., Hill, R. P., & Hedley, D. W. (2013). Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. International Journal of Cancer, 133, 225–234. doi:10.​1002/​ijc.​28006.CrossRefPubMed
49.
Zurück zum Zitat Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias, J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra, A., & Hidalgo, M. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29, 4548–4554. doi:10.1200/JCO.2011.36.5742.CrossRef Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias, J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra, A., & Hidalgo, M. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29, 4548–4554. doi:10.​1200/​JCO.​2011.​36.​5742.CrossRef
50.
Zurück zum Zitat Neesse, A., Frese, K. K., Chan, D. S., Bapiro, T. E., Howat, W. J., Richards, F. M., Ellenrieder, V., Jodrell, D. I., & Tuveson, D. A. (2014). SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut, 63, 974–983. doi:10.1136/gutjnl-2013-305559.CrossRefPubMedPubMedCentral Neesse, A., Frese, K. K., Chan, D. S., Bapiro, T. E., Howat, W. J., Richards, F. M., Ellenrieder, V., Jodrell, D. I., & Tuveson, D. A. (2014). SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut, 63, 974–983. doi:10.​1136/​gutjnl-2013-305559.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P. P., Megias, D., Guerra, C., Munoz, M., Quijano, Y., Cubillo, A., Rodriguez-Pascual, J., Plaza, C., de Vicente, E., Prados, S., Tabernero, S., Barbacid, M., Lopez-Rios, F., & Hidalgo, M. (2013). Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. British Journal of Cancer, 109, 926–933. doi:10.1038/bjc.2013.415.CrossRefPubMedPubMedCentral Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P. P., Megias, D., Guerra, C., Munoz, M., Quijano, Y., Cubillo, A., Rodriguez-Pascual, J., Plaza, C., de Vicente, E., Prados, S., Tabernero, S., Barbacid, M., Lopez-Rios, F., & Hidalgo, M. (2013). Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. British Journal of Cancer, 109, 926–933. doi:10.​1038/​bjc.​2013.​415.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., Pilarsky, C., Jodrell, D. I., Spong, S. M., & Tuveson, D. A. (2013). CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 12325–12330. doi:10.1073/pnas.1300415110.CrossRefPubMedPubMedCentral Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., Pilarsky, C., Jodrell, D. I., Spong, S. M., & Tuveson, D. A. (2013). CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 12325–12330. doi:10.​1073/​pnas.​1300415110.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., Zecchini, H. I., Lolkema, M. P., Jiang, P., Kultti, A., Thompson, C. B., Maneval, D. C., Jodrell, D. I., Frost, G. I., Shepard, H. M., Skepper, J. N., & Tuveson, D. A. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120. doi:10.1136/gutjnl-2012-302529.CrossRefPubMedPubMedCentral Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., Zecchini, H. I., Lolkema, M. P., Jiang, P., Kultti, A., Thompson, C. B., Maneval, D. C., Jodrell, D. I., Frost, G. I., Shepard, H. M., Skepper, J. N., & Tuveson, D. A. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120. doi:10.​1136/​gutjnl-2012-302529.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Hajime, M., Shuichi, Y., Makoto, N., Masanori, Y., Ikuko, K., Atsushi, K., Mutsuo, S., & Keiichi, T. (2007). Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. International Journal of Cancer, 120, 2704–2709. doi:10.1002/ijc.22349.CrossRefPubMed Hajime, M., Shuichi, Y., Makoto, N., Masanori, Y., Ikuko, K., Atsushi, K., Mutsuo, S., & Keiichi, T. (2007). Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. International Journal of Cancer, 120, 2704–2709. doi:10.​1002/​ijc.​22349.CrossRefPubMed
58.
Zurück zum Zitat Kozono, S., Ohuchida, K., Eguchi, D., Ikenaga, N., Fujiwara, K., Cui, L., Mizumoto, K., & Tanaka, M. (2013). Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Research, 73, 2345–2356. doi:10.1158/0008-5472.CAN-12-3180.CrossRefPubMed Kozono, S., Ohuchida, K., Eguchi, D., Ikenaga, N., Fujiwara, K., Cui, L., Mizumoto, K., & Tanaka, M. (2013). Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Research, 73, 2345–2356. doi:10.​1158/​0008-5472.​CAN-12-3180.CrossRefPubMed
59.
Zurück zum Zitat Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America 104, 10.1073/pnas.0611660104 Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America 104, 10.​1073/​pnas.​0611660104
60.
Zurück zum Zitat Medicherla, S., Li, L., Ma, J. Y., Kapoun, A. M., Gaspar, N. J., Liu, Y. W., Mangadu, R., O’Young, G., Protter, A. A., Schreiner, G. F., Wong, D. H., & Higgins, L. S. (2007). Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Research, 27, 4149–4157.PubMed Medicherla, S., Li, L., Ma, J. Y., Kapoun, A. M., Gaspar, N. J., Liu, Y. W., Mangadu, R., O’Young, G., Protter, A. A., Schreiner, G. F., Wong, D. H., & Higgins, L. S. (2007). Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Research, 27, 4149–4157.PubMed
61.
Zurück zum Zitat Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E., & Korc, M. (2014). Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. Journal of Clinical Investigation, 124, 338–352. doi:10.1172/JCI71526.CrossRefPubMedPubMedCentral Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E., & Korc, M. (2014). Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. Journal of Clinical Investigation, 124, 338–352. doi:10.​1172/​JCI71526.CrossRefPubMedPubMedCentral
62.
63.
Zurück zum Zitat Masamune, A., Hamada, S., Kikuta, K., Takikawa, T., Miura, S., Nakano, E., & Shimosegawa, T. (2013). The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scandinavian Journal of Gastroenterology, 48, 602–609. doi:10.3109/00365521.2013.777776.CrossRefPubMed Masamune, A., Hamada, S., Kikuta, K., Takikawa, T., Miura, S., Nakano, E., & Shimosegawa, T. (2013). The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scandinavian Journal of Gastroenterology, 48, 602–609. doi:10.​3109/​00365521.​2013.​777776.CrossRefPubMed
64.
Zurück zum Zitat Raykov, Z., Grekova, S. P., Bour, G., Lehn, J. M., Giese, N. A., Nicolau, C., & Aprahamian, M. (2014). Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. International Journal of Cancer, 134, 2572–2582. doi:10.1002/ijc.28597.CrossRefPubMed Raykov, Z., Grekova, S. P., Bour, G., Lehn, J. M., Giese, N. A., Nicolau, C., & Aprahamian, M. (2014). Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. International Journal of Cancer, 134, 2572–2582. doi:10.​1002/​ijc.​28597.CrossRefPubMed
65.
Zurück zum Zitat Martinez-Bosch, N., Fernandez-Barrena, M. G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Gabius, H. J., Hwang, R. F., Poirier, F., Navas, C., Guerra, C., Fernandez-Zapico, M. E., & Navarro, P. (2014). Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Research, 74, 3512–3524. doi:10.1158/0008-5472.CAN-13-3013.CrossRefPubMedPubMedCentral Martinez-Bosch, N., Fernandez-Barrena, M. G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Gabius, H. J., Hwang, R. F., Poirier, F., Navas, C., Guerra, C., Fernandez-Zapico, M. E., & Navarro, P. (2014). Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Research, 74, 3512–3524. doi:10.​1158/​0008-5472.​CAN-13-3013.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Feig, C., Jones, J. O., Kraman, M., Wells, R. J., Deonarine, A., Chan, D. S., Connell, C. M., Roberts, E. W., Zhao, Q., Caballero, O. L., Teichmann, S. A., Janowitz, T., Jodrell, D. I., Tuveson, D. A., & Fearon, D. T. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20212–20217. doi:10.1073/pnas.1320318110.CrossRefPubMedPubMedCentral Feig, C., Jones, J. O., Kraman, M., Wells, R. J., Deonarine, A., Chan, D. S., Connell, C. M., Roberts, E. W., Zhao, Q., Caballero, O. L., Teichmann, S. A., Janowitz, T., Jodrell, D. I., Tuveson, D. A., & Fearon, D. T. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20212–20217. doi:10.​1073/​pnas.​1320318110.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Ijichi, H., Chytil, A., Gorska, A. E., Aakre, M. E., Bierie, B., Tada, M., Mohri, D., Miyabayashi, K., Asaoka, Y., Maeda, S., Ikenoue, T., Tateishi, K., Wright, C. V., Koike, K., Omata, M., & Moses, H. L. (2011). Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. Journal of Clinical Investigation, 121, 4106–4117. doi:10.1172/JCI42754.CrossRefPubMedPubMedCentral Ijichi, H., Chytil, A., Gorska, A. E., Aakre, M. E., Bierie, B., Tada, M., Mohri, D., Miyabayashi, K., Asaoka, Y., Maeda, S., Ikenoue, T., Tateishi, K., Wright, C. V., Koike, K., Omata, M., & Moses, H. L. (2011). Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. Journal of Clinical Investigation, 121, 4106–4117. doi:10.​1172/​JCI42754.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernandez-Barrena, M. G., Fernandez-Zapico, M. E., Iacobuzio-Donahue, C., Olive, K. P., & Stanger, B. Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747. doi:10.1016/j.ccr.2014.04.021.CrossRefPubMedPubMedCentral Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernandez-Barrena, M. G., Fernandez-Zapico, M. E., Iacobuzio-Donahue, C., Olive, K. P., & Stanger, B. Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747. doi:10.​1016/​j.​ccr.​2014.​04.​021.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, Nagle JM, Deshpande V, Boucher Y, Kato T, Chen JK, Willmann JK, Bardeesy N, Beachy PA (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111, 10.1073/pnas.1411679111 Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, Nagle JM, Deshpande V, Boucher Y, Kato T, Chen JK, Willmann JK, Bardeesy N, Beachy PA (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111, 10.​1073/​pnas.​1411679111
71.
Zurück zum Zitat Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W., Saleh, M. N., Harris, M., Reni, M., Dowden, S., Laheru, D., Bahary, N., Ramanathan, R. K., Tabernero, J., Hidalgo, M., Goldstein, D., Van, C. E., Wei, X., Iglesias, J., & Renschler, M. F. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine, 369, 1691–1703. doi:10.1056/NEJMoa1304369.CrossRef Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W., Saleh, M. N., Harris, M., Reni, M., Dowden, S., Laheru, D., Bahary, N., Ramanathan, R. K., Tabernero, J., Hidalgo, M., Goldstein, D., Van, C. E., Wei, X., Iglesias, J., & Renschler, M. F. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine, 369, 1691–1703. doi:10.​1056/​NEJMoa1304369.CrossRef
72.
Zurück zum Zitat Goldstein, D., El Maraghi, R. H., Hammel, P., Heinemann, V., Kunzmann, V., Sastre, J., Scheithauer, W., Siena, S., Tabernero, J., Teixeira, L., Tortora, G., Van Laethem, J. L., Young, R., Wei, X., Lu, B., Romano, A., & Von Hoff, D. D. (2014). Updated survival from a randomized phase III trial (MPACT) of nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients (pts) with metastatic adenocarcinoma of the pancreas. Journal of Clinical Oncology Meeting Abstracts, 32, 178. Goldstein, D., El Maraghi, R. H., Hammel, P., Heinemann, V., Kunzmann, V., Sastre, J., Scheithauer, W., Siena, S., Tabernero, J., Teixeira, L., Tortora, G., Van Laethem, J. L., Young, R., Wei, X., Lu, B., Romano, A., & Von Hoff, D. D. (2014). Updated survival from a randomized phase III trial (MPACT) of nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients (pts) with metastatic adenocarcinoma of the pancreas. Journal of Clinical Oncology Meeting Abstracts, 32, 178.
73.
74.
Zurück zum Zitat Catenacci, D. V. T., Bahari, N., Edelman, M. J., Nattam, S. R., de Wilton, M. R., Kaubisch, A., Wallace, J. A., Cohen, D. J., Stiff, P. J., Sleckman, B. G., Thomas, S. P., Lenz, H. J., Henderson, L., Zagaya, C., Vannier, M., Karrison, T., Stadler, W. M., & Kindler, H. L. (2012). A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): Interim analysis of a University of Chicago phase II consortium study. Journal of Clinical Oncology Meeting Abstracts, 30, 4022. Catenacci, D. V. T., Bahari, N., Edelman, M. J., Nattam, S. R., de Wilton, M. R., Kaubisch, A., Wallace, J. A., Cohen, D. J., Stiff, P. J., Sleckman, B. G., Thomas, S. P., Lenz, H. J., Henderson, L., Zagaya, C., Vannier, M., Karrison, T., Stadler, W. M., & Kindler, H. L. (2012). A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): Interim analysis of a University of Chicago phase II consortium study. Journal of Clinical Oncology Meeting Abstracts, 30, 4022.
75.
Zurück zum Zitat Richards, D. A., Stephenson, J., Wolpin, B. M., Becerra, C., Hamm, J. T., Messersmith, W. A., Devens, S., Cushing, J., Schmalbach, T., & Fuchs, C. S. (2012). A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer. Journal of Clinical Oncology Meeting Abstracts, 30, 213. Richards, D. A., Stephenson, J., Wolpin, B. M., Becerra, C., Hamm, J. T., Messersmith, W. A., Devens, S., Cushing, J., Schmalbach, T., & Fuchs, C. S. (2012). A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer. Journal of Clinical Oncology Meeting Abstracts, 30, 213.
76.
Zurück zum Zitat Palmer, S. R., Erlichman, C., Fernandez-Zapico, M., Qi, Y., Almada, L., McCleary-Wheeler, A., Borad, M. J., Molina, J. R., Grothey, H. C., Pitot, H. C., Jatoi, A., Northfelt, D. W., McWilliams, R., Okuno, H., Haluska, P., Kim, G. P., & Colon-Otero, G. (2011). Phase I trial erlotinib, gemcitabine, and the hedgehog inhibitor, GDC-0449. Journal of Clinical Oncology Meeting Abstracts, 29, 3092. Palmer, S. R., Erlichman, C., Fernandez-Zapico, M., Qi, Y., Almada, L., McCleary-Wheeler, A., Borad, M. J., Molina, J. R., Grothey, H. C., Pitot, H. C., Jatoi, A., Northfelt, D. W., McWilliams, R., Okuno, H., Haluska, P., Kim, G. P., & Colon-Otero, G. (2011). Phase I trial erlotinib, gemcitabine, and the hedgehog inhibitor, GDC-0449. Journal of Clinical Oncology Meeting Abstracts, 29, 3092.
77.
Zurück zum Zitat De Jesus-Acosta, A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D., Maitra, A., Rasheed, Z., Zheng, L., Rajeshkumar, N. V., Le, D. T., Hoering, A., Bolejack, V., Yabuuchi, S., & Laheru, D. A. (2014). A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clinical Oncology Meeting Abstracts, 32, 257. De Jesus-Acosta, A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D., Maitra, A., Rasheed, Z., Zheng, L., Rajeshkumar, N. V., Le, D. T., Hoering, A., Bolejack, V., Yabuuchi, S., & Laheru, D. A. (2014). A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clinical Oncology Meeting Abstracts, 32, 257.
79.
Zurück zum Zitat Damhofer, H., Medema, J. P., Veenstra, V. L., Badea, L., Popescu, I., Roelink, H., & Bijlsma, M. F. (2013). Assessment of the stromal contribution to Sonic Hedgehog-dependent pancreatic adenocarcinoma. Molecular Oncology, 7, 1031–1042. doi:10.1016/j.molonc.2013.08.004.CrossRefPubMed Damhofer, H., Medema, J. P., Veenstra, V. L., Badea, L., Popescu, I., Roelink, H., & Bijlsma, M. F. (2013). Assessment of the stromal contribution to Sonic Hedgehog-dependent pancreatic adenocarcinoma. Molecular Oncology, 7, 1031–1042. doi:10.​1016/​j.​molonc.​2013.​08.​004.CrossRefPubMed
80.
Zurück zum Zitat Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicso, F., Alchihabi, N., Olah, E., Csizy, I., Jozsa, T., Andren, O., Johansson, J. E., Andersson, S. O., Klein, G., & Szekely, L. (2011). High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. International Journal of Cancer, 128, 2793–2802. doi:10.1002/ijc.25612.CrossRefPubMed Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicso, F., Alchihabi, N., Olah, E., Csizy, I., Jozsa, T., Andren, O., Johansson, J. E., Andersson, S. O., Klein, G., & Szekely, L. (2011). High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. International Journal of Cancer, 128, 2793–2802. doi:10.​1002/​ijc.​25612.CrossRefPubMed
82.
Zurück zum Zitat Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D., Goel, R., Mathivanan, S., Marimuthu, A., Kashyap, M., Vizza, R. F., Mayer, R. J., Decaprio, J. A., Srivastava, S., Hanash, S. M., Hruban, R. H., & Pandey, A. (2009). A compendium of potential biomarkers of pancreatic cancer. PLoS Medicine, 6, e1000046. doi:10.1371/journal.pmed.1000046.CrossRefPubMedPubMedCentral Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D., Goel, R., Mathivanan, S., Marimuthu, A., Kashyap, M., Vizza, R. F., Mayer, R. J., Decaprio, J. A., Srivastava, S., Hanash, S. M., Hruban, R. H., & Pandey, A. (2009). A compendium of potential biomarkers of pancreatic cancer. PLoS Medicine, 6, e1000046. doi:10.​1371/​journal.​pmed.​1000046.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., Zagorac, S., Alcala, S., Rodriguez-Arabaolaza, I., Ramirez, J. C., Torres-Ruiz, R., Garcia, E., Hidalgo, M., Cebrian, D. A., Heuchel, R., Lohr, M., Berger, F., Bartenstein, P., Aicher, A., & Heeschen, C. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9, 433–446. doi:10.1016/j.stem.2011.10.001.CrossRefPubMed Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., Zagorac, S., Alcala, S., Rodriguez-Arabaolaza, I., Ramirez, J. C., Torres-Ruiz, R., Garcia, E., Hidalgo, M., Cebrian, D. A., Heuchel, R., Lohr, M., Berger, F., Bartenstein, P., Aicher, A., & Heeschen, C. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9, 433–446. doi:10.​1016/​j.​stem.​2011.​10.​001.CrossRefPubMed
Metadaten
Titel
The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal
verfasst von
Maarten F. Bijlsma
Hanneke W. M. van Laarhoven
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2015
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9541-1

Weitere Artikel der Ausgabe 1/2015

Cancer and Metastasis Reviews 1/2015 Zur Ausgabe

EditorialNotes

Preface

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.