Skip to main content
Erschienen in: International Journal of Hematology 2/2012

01.02.2012 | Original Article

The effect of iron overload and chelation on erythroid differentiation

verfasst von: Kazuki Taoka, Keiki Kumano, Fumihiko Nakamura, Masataka Hosoi, Susumu Goyama, Yoichi Imai, Akira Hangaishi, Mineo Kurokawa

Erschienen in: International Journal of Hematology | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

We investigated the mechanisms of hematopoietic disorders caused by iron overload and chelation, in particular, the inhibition of erythroblast differentiation. Murine c-kit+ progenitor cells or human CD34+ peripheral blood hematopoietic progenitors were differentiated in vitro to the erythroid lineage with free iron and/or an iron chelator. Under iron overload, formation of erythroid burst-forming unit colonies and differentiation to mature erythroblasts were significantly suppressed; these effects were canceled by iron chelation with deferoxamine (DFO). Moreover, excessive iron burden promoted apoptosis in immature erythroblasts by elevating intracellular reactive oxygen species (ROS). Interestingly, both DFO and a potent anti-oxidant agent reduced intracellular ROS levels and suppressed apoptosis, thus restoring differentiation to mature erythroblasts. Accordingly, intracellular ROS may represent a new therapeutic target in the treatment of iron overload.
Literatur
1.
Zurück zum Zitat Takatoku M, Uchiyama T, Okamoto S, Kanakura Y, Sawada K, Tomonaga M, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78:487–94.PubMedCrossRef Takatoku M, Uchiyama T, Okamoto S, Kanakura Y, Sawada K, Tomonaga M, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78:487–94.PubMedCrossRef
2.
Zurück zum Zitat Cazzola M, Malcovati L. Myelodysplastic syndromes—coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.PubMedCrossRef Cazzola M, Malcovati L. Myelodysplastic syndromes—coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.PubMedCrossRef
3.
Zurück zum Zitat Suzuki T, Tomonaga M, Miyazaki Y, Nakao S, Ohyashiki K, Matsumura I, et al. Japanese epidemiological survey with consensus statement on Japanese guidelines for treatment of iron overload in bone marrow failure syndromes. Int J Hematol. 2008;88:30–5.PubMedCrossRef Suzuki T, Tomonaga M, Miyazaki Y, Nakao S, Ohyashiki K, Matsumura I, et al. Japanese epidemiological survey with consensus statement on Japanese guidelines for treatment of iron overload in bone marrow failure syndromes. Int J Hematol. 2008;88:30–5.PubMedCrossRef
4.
Zurück zum Zitat Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.PubMedCrossRef Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.PubMedCrossRef
5.
Zurück zum Zitat Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–7.PubMedCrossRef Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–7.PubMedCrossRef
6.
Zurück zum Zitat Weintraub LR, Conrad ME, Crosby WH. Iron-loading anemia. Treatment with repeated phlebotomies and pyridoxine. N Engl J Med. 1966;275:169–76.PubMedCrossRef Weintraub LR, Conrad ME, Crosby WH. Iron-loading anemia. Treatment with repeated phlebotomies and pyridoxine. N Engl J Med. 1966;275:169–76.PubMedCrossRef
7.
Zurück zum Zitat Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G. Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 2008;120:70–4.PubMedCrossRef Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G. Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 2008;120:70–4.PubMedCrossRef
8.
Zurück zum Zitat Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594–603.PubMedCrossRef Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594–603.PubMedCrossRef
9.
Zurück zum Zitat Metzgeroth G, Dinter D, Schultheis B, Dorn-Beineke A, Lutz K, Leismann O, et al. Deferasirox in MDS patients with transfusion-caused iron overload—a phase-II study. Ann Hematol. 2009;88:301–10.PubMedCrossRef Metzgeroth G, Dinter D, Schultheis B, Dorn-Beineke A, Lutz K, Leismann O, et al. Deferasirox in MDS patients with transfusion-caused iron overload—a phase-II study. Ann Hematol. 2009;88:301–10.PubMedCrossRef
10.
Zurück zum Zitat Jensen PD, Heickendorff L, Pedersen B, Bendix-Hansen K, Jensen FT, Christensen T, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol. 1996;94:288–99.PubMedCrossRef Jensen PD, Heickendorff L, Pedersen B, Bendix-Hansen K, Jensen FT, Christensen T, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol. 1996;94:288–99.PubMedCrossRef
11.
Zurück zum Zitat Di Tucci AA, Murru R, Alberti D, Rabault B, Deplano S, Angelucci E. Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, ICL670). Eur J Haematol. 2007;78:540–2.PubMedCrossRef Di Tucci AA, Murru R, Alberti D, Rabault B, Deplano S, Angelucci E. Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, ICL670). Eur J Haematol. 2007;78:540–2.PubMedCrossRef
12.
Zurück zum Zitat Zhu H, Bannenberg GL, Moldéus P, Shertzer HG. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol. 1994;68:582–7.PubMedCrossRef Zhu H, Bannenberg GL, Moldéus P, Shertzer HG. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol. 1994;68:582–7.PubMedCrossRef
13.
Zurück zum Zitat Ohashi T, Kakimoto K, Sokawa Y, Taketani S. Semi-quantitative estimation of heme/hemoprotein with dichlorodihydrofluorescein diacetate. Anal Biochem. 2002;308:392–5.PubMedCrossRef Ohashi T, Kakimoto K, Sokawa Y, Taketani S. Semi-quantitative estimation of heme/hemoprotein with dichlorodihydrofluorescein diacetate. Anal Biochem. 2002;308:392–5.PubMedCrossRef
14.
Zurück zum Zitat Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescein with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002;511:21–7.PubMedCrossRef Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescein with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002;511:21–7.PubMedCrossRef
15.
Zurück zum Zitat de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98:1577–84.PubMedCrossRef de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98:1577–84.PubMedCrossRef
16.
Zurück zum Zitat Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood. 2001;98:3261–73.PubMedCrossRef Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood. 2001;98:3261–73.PubMedCrossRef
17.
Zurück zum Zitat Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas–FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.PubMedCrossRef Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas–FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.PubMedCrossRef
18.
Zurück zum Zitat Juvonen E, Sahlstedt L, Parkkinen J, Ruutu T. Inhibition of erythroid and granulocyte-macrophage colony formation by non-transferrin-bound iron in vitro: protective effect of apotransferrin. Eur J Haematol. 2007;79:126–31.PubMedCrossRef Juvonen E, Sahlstedt L, Parkkinen J, Ruutu T. Inhibition of erythroid and granulocyte-macrophage colony formation by non-transferrin-bound iron in vitro: protective effect of apotransferrin. Eur J Haematol. 2007;79:126–31.PubMedCrossRef
19.
Zurück zum Zitat Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–9.PubMedCrossRef Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–9.PubMedCrossRef
20.
Zurück zum Zitat Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.PubMed Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.PubMed
21.
Zurück zum Zitat Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.PubMedCrossRef Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.PubMedCrossRef
22.
Zurück zum Zitat Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.PubMedCrossRef Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.PubMedCrossRef
23.
Zurück zum Zitat Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.PubMedCrossRef Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.PubMedCrossRef
24.
Zurück zum Zitat Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.PubMed Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.PubMed
25.
Zurück zum Zitat Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61–6.PubMedCrossRef Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61–6.PubMedCrossRef
26.
Zurück zum Zitat Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16:647–52.PubMedCrossRef Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16:647–52.PubMedCrossRef
27.
Zurück zum Zitat Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta. 2008;1777:877–81.PubMedCrossRef Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta. 2008;1777:877–81.PubMedCrossRef
28.
Zurück zum Zitat Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275:37159–66.PubMedCrossRef Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275:37159–66.PubMedCrossRef
29.
Zurück zum Zitat Pan Z, Voehringer DW, Meyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ. 1999;6:683–8.PubMedCrossRef Pan Z, Voehringer DW, Meyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ. 1999;6:683–8.PubMedCrossRef
30.
Zurück zum Zitat Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500:114–8.PubMedCrossRef Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500:114–8.PubMedCrossRef
31.
Zurück zum Zitat Suto D, Sato K, Ohba Y, Yoshimura T, Fujii J. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J. 2005;392:399–406.PubMedCrossRef Suto D, Sato K, Ohba Y, Yoshimura T, Fujii J. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J. 2005;392:399–406.PubMedCrossRef
32.
Zurück zum Zitat al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82:431–6.PubMedCrossRef al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82:431–6.PubMedCrossRef
33.
Zurück zum Zitat Marsh JH, Hundert M, Schulman P. Deferoxamine-induced restoration of haematopoiesis in myelofibrosis secondary to myelodysplasia. Br J Haematol. 1990;76:148–9.PubMedCrossRef Marsh JH, Hundert M, Schulman P. Deferoxamine-induced restoration of haematopoiesis in myelofibrosis secondary to myelodysplasia. Br J Haematol. 1990;76:148–9.PubMedCrossRef
34.
Zurück zum Zitat Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedCrossRef Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedCrossRef
35.
Zurück zum Zitat van de Loosdrecht AA, Brada SJ, Blom NR, Hendriks DW, Smit JW, van den Berg E, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis. Leuk Res. 2001;25:385–93.PubMedCrossRef van de Loosdrecht AA, Brada SJ, Blom NR, Hendriks DW, Smit JW, van den Berg E, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis. Leuk Res. 2001;25:385–93.PubMedCrossRef
Metadaten
Titel
The effect of iron overload and chelation on erythroid differentiation
verfasst von
Kazuki Taoka
Keiki Kumano
Fumihiko Nakamura
Masataka Hosoi
Susumu Goyama
Yoichi Imai
Akira Hangaishi
Mineo Kurokawa
Publikationsdatum
01.02.2012
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 2/2012
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-011-0988-3

Weitere Artikel der Ausgabe 2/2012

International Journal of Hematology 2/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.