Skip to main content
Erschienen in: BMC Cancer 1/2015

Open Access 01.12.2015 | Research article

The existence of Th22, pure Th17 and Th1 cells in CIN and Cervical Cancer along with their frequency variation in different stages of cervical cancer

verfasst von: Wenjing Zhang, Xinli Tian, Fidia Mumtahana, Jun Jiao, Teng Zhang, Kimiko Della Croce, Daoxin Ma, Beihua Kong, Baoxia Cui

Erschienen in: BMC Cancer | Ausgabe 1/2015

Abstract

Background

Recently, it is found that T-helper (Th) 22 cells are involved in different types of autoimmune and tumor diseases. But, till now, no study has been carried out to understand the involvement of these cells in cervical cancer (CC).

Methods

Flow cytometry was used to determine the expression of interferon gamma (IFN-γ), Interleukin-22 (IL-22), IL-17 in the peripheral blood of healthy controls (HC), CIN and cervical cancer patients. From peripheral blood mononuclear cells (PBMCs), mRNA expression levels of Aryl hydrocarbon receptor (AHR), RAR-related orphan receptor C (RORC), TNF-α and IL-6 were respectively determined. Using the method of ELISA, plasma concentrations of IL-22, IL-17 and TNF-α were examined.

Results

Th22 and Th17 cells were elevated in CC and CIN patients. Th1 cells and the plasma concentrations of IL-22 in CC patients were significantly increased compared with HC. In CC patients, an increased prevalence of Th22 cells was associated with lymph node metastases. There was a positive correlation between Th22 and Th17 cells, but an approximately negative correlation between Th22 and Th1 cells in CC patients. The mRNA expression of RORC, TNF-α and IL-6 was significantly high in CC patients.

Conclusions

Our results indicate that there is a higher circulatory frequency of Th22, Th17 and Th1 cells in CC which may conjointly participate in the pathogenesis and growth of CC.
Hinweise
Wenjing Zhang and Xinli Tian contributed equally to this work.

Competing interests

The authors declare no conflicts of interest.

Authors’ contribution

Conceived and designed the experiments: BXC, WJZ and XLT. Collected samples: WJZ, XLT and JJ. Performed the experiments: WJZ and XLT. Analyzed the data: XLT, JJ and TZ; Contributed reagents/materials/analysis tools: DXM and BHK. Wrote the paper: WJZ and XLT. Edited the paper: FM and KDC. All authors read and approved the final manuscript.
Abkürzungen
AHR
Aryl hydrocarbon receptor
CC
Cervical cancer
CIN
Cervical intraepithelial neoplasia
HC
Healthy control
HPV
Human papilloma virus
PB
Peripheral blood
PBMCs
Peripheral blood mononuclear cells
PCR
polymerase chain reaction
RORC
RAR-related orphan receptor C
SD
Standard deviation
STAT
signal transducer and activator of transcription
Th
T helper cell
TNF
Tumor necrosis factor
Treg
The regulatory T cells

Background

Cervical cancer (CC) is one of the leading gynecological cancers in developing countries. The main etiology behind this occurrence is the persistent infection of high-risk human papillomavirus (HPV) [13]. Even if the incidence of HPV is high, with the help of cell mediated immunity, it can be cleared spontaneously [46]. A very few cases may develop into advanced CC from precancerous lesions which may indicate a substantial role of immune regulation in the controlling of HPV associated lesions and cancer progression [7].
We know that T helper (Th) cells, one subgroup of lymphocytes, have an essential role in the immune system. Recently it was demonstrated that Th cells such as Th1, Th2, Th17, Treg cells, participate in the pathogenesis and progression of different solid tumors [710]. A newly discovered T cell subset - Th22 cells, which were detected in autoimmune and inflammatory diseases, have the ability to secrete IL-22 and TNF-α, but do not express IL-4 (Th2 marker), IL-17 (Th17 marker) or IFN-γ (Th1 marker). In the human body (in the presence of IL-6 or/and TNF-α) the naive CD4+cells differentiate into Th22 cells with the aid of plasmacytoid dendritic cells, AHR and RORC [11, 12]. It is known that Th22 is a distinct subset with novel characteristics compared to other Th cells (Th17, Th2 and Th1 cells). It is demonstrated that Th22 cells play an important role in the pathogenesis of inflammatory diseases and autoimmunity diseases such as psoriasis, Graves’ disease and rheumatoid arthritis. [1315]. However, the nature of Th22 cells are not properly umderstood in human cancer. Recently some studies concluded that Th22 cells contribute to the the progression of hepatocellular and gastric carcinoma which indicates that Th22 cells may be involved in the development of tumors. [1618].
IL-22 which belongs to the IL-10 cytokine family is mainly an effector cytokine of Th22 cells. IL-22 maintains its function by binding to a heterodimeric transmembrane receptor complex consisting of IL-10R2 and IL-22R1, and activates Janus kinase (signal transducers and activators of transcription signaling pathways which acts with a dual role in inflammatory and autoimmune diseases [1921]). It is seen that IL-22 leads to tumor proliferation, apoptosis suppression and metastasis promotion by activation of STAT3 in colon cancer [22]. Reversely, IL-22 exerts a protective role in mucosal wound healing acceleration by inducing STAT3-dependent expression in ulcerative colitis [23, 24].
To the best of our knowledge, no previous study has shown data that considers Th22 cells and their association with Th17 or Th1 in cervical cancer. To examine the possible status of these cells in the pathophysiology of CC, we measured the frequency of peripheral Th22, Th17, Th1, mRNA expression levels of RORC, AHR, IL-6, TNF-α in PBMCs along with plasma concentrations of IL-22, IL-17 and TNF-α in PB of CC, CIN patients and HC for assessing their relevance.

Methods

Patients and controls

Six-one pathologically confirmed CC patients (age 24 –60 years, median 48 years) and 38 CIN patients (age 27–61 years, median 42 years) were enrolled in this study. All the patients of CIN group have biopsy results of CINIII. Before the study none of the patients had received anticancer treatment.
Thirty-two healthy women with normal results of pap smear (TCT) and HPV (HC2) tests served as controls (age 22–47 years, median 27 years).They are from our Gynecologic Clinic and Regular Physical Examination Center.
The participants with simultaneous active or chronic infection, autoimmune disease, diabetes, or a history of other malignant tumors or connective tissue diseases were excluded. The characteristics of the patients are given in Table 1. The clinical stage of CC patients was based on FIGO 2009 criteria. Informed written consent was obtained from each participant. Medical Ethical Committee of Qilu Hospital, Shandong University, China provided the ethical approval for the study.
Table 1
Clinical characteristics of CC patients
Characteristics
Category
N = 61(%)
FIGO stage
  
 
IA
10 (16)
 
IB
37 (61)
 
IIA
9 (15)
 
IIB
5 (8)
Histology type
  
 
SCC
54(88)
 
ADC
4(7)
 
Unknown
3(5)
Tumor differentiation
  
 
Well
9(15)
 
Moderate
11(18)
 
Poor
33(54)
 
Unknown
8(13)
Lymph node metastases
 
 
Positive
11(18)
 
Negative
48(79)
 
Unknown
2(3)
Tumor size(cm)
  
 
<4
43(70)
 
≥4
18(30)
Vasoinvasion
  
 
Yes
12(20)
 
No
44(72)
 
Unknown
5(8)
Abbreviation: FIGO, International Federation of Gynecologists and Obstetricians; SCC,
squamous cell carcinoma; ADC, adenocarcinoma.

Flow Cytometric Analysis

Intracellular cytokines were evaluated by flow cytometry to identify the cytokine-producing cells. Briefly, heparinized peripheral whole blood (200 μl) with an equal volume of Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma Chemical, St Louis, MO, USA) was incubated for 4 h at 37 °C and 5 % CO2 in the presence of 25 ng/ml of phorbolmyristate acetate (PMA), 1 μg/ml of ionomycin and 1.7 μg/ml of Monensin (all from Alexis Biochemicals, San Diego, CA, USA). After incubation, the cells were stained with anti-CD4-PE-Cy5 monoclonal antibodies at room temperature (RT) in the dark for 15 minutes to delimitate CD4+ T cells. Then, to fix the cells, 100 μl Reagent A (FIX &PERM Kit, MultiSciences Biotech Co., Ltd.) was added to each sample at RT in the dark for 15 min. After washing the cells with 3 ml PBS, 100 μl of Reagent B (FIX &PERM Kit, MultiSciences Biotech Co., Ltd.) and the recommended dose of anti-IL17A-PE and anti-IL22-APC and anti-IFNγ-FITC monoclonal antibody were added to each sample after fixation and permeabilization. Samples were then incubated at RT in the dark for 15 min to stain IL-17, IL-22 and IFN-γ. Isotype controls were used to correct compensation and confirm antibody specificity. After washing the cells with 3 ml PBS, we added 300 μl PBS to re-suspend the cells for cytometric analysis. Stained cells were analyzed by flow cytometric analysis using a FACS cytometer equipped with Cell Quest software (BD Bioscience Pharmingen). All antibodies mentioned above were from eBioscience (San Diego, CA, USA). Th17, Th22 and Th1 cells are defined as CD4+IFNγˉIL17+IL22ˉ, CD4+IFNγˉIL17ˉIL22+ and CD4+IFNγ+ cells respectively.

Quantitative real-time PCR analysis

Trizol (Invitrogen, America) was used for isolation of Total RNA from PBMCs. For reverse transcription reaction the Prime Script RT reagent kit (Perfect Real Time; Takara) was used according to the instruction of the manufacturer. Reverse transcription reaction was done at 37 °C for 15 minutes, followed by 85 °C for 5 seconds. Real-time PCR was done by Applied Biosystems 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The primers are shown as follows: AHR forward: CAA ATC CTT CCA AGC GGC ATA; reverse: CGC TGA GCC TAA GAA CTG AAA G; RORC forward: TTT TCC GAG GAT GAG ATT GC; reverse: CTT TCC ACA TGC TGG CTA CA; TNF-α forward: CGA GTG ACA AGC CTG TAG C, reverse: GGT GTG GGT GAG GAG CAC AT; GAPDH forward: GCT CTC TGC TCC TCC TGT TC, reverse: GTT GAC TCC GAC CTT CAC CT; IL-6 forward: TTC TCC ACA AGC GCC TTC GGT CCA, reverse: AGG GCT GAG ATG CCG TCG AGG ATG TA. All experiments were conducted in triplicate. For calculation of amplification efficiency of the PCR products Applied Biosystems System software was used. The results were signified relative to the number of GAPDH transcripts used as a reference control.

IL-22, IL-17 and TNF-α Enzyme-linked Immunosorbent Assay (ELISA)

Heparin-anticoagulant vacutainer tubes were used for collection of PB. For cytokines determination plasma was attained from all the subjects by centrifugation and stored at a temperature of −80 °C. A quantitative sandwich enzyme immunoassay technique was used for plasma level determination of IL-22, IL-17 and TNF-α according to the manufacturer’s instructions (eBioscience, San Diego, CA, USA).

Statistical analysis

Mean ± SD or median (range) were used for expression of values. Distribution of the data was obtained from Kolmogorov-Smirnov test (K-S test). ANOVA and Newman-Kuels multiple comparison tests were used for the assessment of normal distribution data. Kruskal-Wallis test (H test) and Nemenyi tests were used for unusual data. Assessment of Correlation analysis was obtained from Pearson correlation. A p value less than 0.5 was considered statistically significant. All tests were performed by SPSS 17.0 software.

Results

Elevated Th22 and Th17 cells in PB of CIN and CC patients

The percentage of Th22 cells (CD4+IFNγˉIL17ˉIL22+ T cells, pure Th22 cells) and Th17 cells (CD4+IFNγˉIL17+IL22ˉ T cells, pure Th17 cells) of CIN (Th22: 1.27 ± 0.56 %, p = 0.001; Th17: 3.10 ± 1.40 %, p < 0.001) and CC patients (Th22: 1.75 % ± 0.704 %, p < 0.001; Th17: 3.35 ± 1.34, p < 0.001) significantly increased compared with HC (Th22: 0.77 % ± 0.36 %; Th17: 1.78 ± 0.80 % ). Besides, significant difference was also found in Th22 cells between CIN and CC patients (p < 0.001), but none in Th17 cells (Fig. 2a and b).

Elevated Th1 cells in PB of CC patients

Significantly elevated frequencies of Th1 cells were found in CC (7.95 % ± 3.95 %) compared with HC (4.98 % ± 2.92 %, p < 0.001) and CIN patients (6.23 % ± 2.52 %, p = 0.015). However, no significant difference was found between HC and CIN patients (p > 0.05) (Fig. 2c).
A typical dot plot of the percentage of Th1 cells, Th22 cells and Th17 cells in representative patients and HC is shown in Fig. 1.

Comparisons of Th17/Th22 ratio

Regarding the ratio of Th17/Th22, we detected a significant decrease in CC patients (2.12 ± 1.02, p = 0.007) compared with CIN patients (3.09 ± 2.60) (Fig. 2d).

Correlation Analysis among Th22, Th17 and Th1 Cells in CC and CIN patients

A positive correlation was discovered among Th22 cells and Th17 cells in CC patients (r = 0.546, p < 0.0001, Pearson correlation analysis), but none in CIN patients (r = 0.163, p = 0.328). In CC patients, an approximately negative correlation was seen among Th22 and Th1 cells (r = − 0.235, p = 0.068, Pearson correlation analysis), but none in CIN patients (r = − 0.144, p = 0.388) (Fig. 3).

mRNA expression levers of AHR, RORC, TNF-α and IL-6 in CC, CIN patients and controls

There was an increased trend of AHR in CC patients (0.274 ± 0.160) and CIN patients (0.299 ± 0.16) compared with HC (0.257 ± 0.103), though both values of P were more than 0.05 (Fig. 4a).
In comparison, CC patients (0.305 ± 0.188, p = 0.002) or CIN patients (0.256 ± 0.188, p = 0.036) exhibited increased level of the RORC mRNA expression than normal controls (0.128 ± 0.099) but the CIN patients and CC patients had no important difference in between (p > 0.05) (Fig. 4b). In addition, CC patients (r = 0.60, p < 0.01, Pearson correlation) and CIN patients (r = 0.521, p = 0.015, Pearson correlation) had a positive correlation between RORC and Th17 cells. Furthermore, CC patients (r = 0.612, p < 0.01, Pearson correlation) and CIN patients (r = 0.509, p = 0.018, Pearson correlation) showed a positive correlation between RORC and Th22 cells (Fig. 5).
The CC patients (median, 0.369; range, 0.016 – 1.59) showed TNF-α mRNA expression significantly high in comparison with HC (0.264 ± 0.28, p = 0.043) and CIN patients (median, 0.193; range, 0.009 – 4.27, p = 0.015) but CIN patients and HC did not show any significant high level of this expression (Fig. 4c).
The HC (median, 0.029; range, 0.002 -- 0.139) had lower IL-6 mRNA expression in PBMCs than the CC patients (median, 0.101; range, 0.006 – 0.763, p = 0.001) and CIN patients (median, 0.085; range, 0.003 – 1.74, p = 0.019) but CIN patients and CC patients had no significant difference in between (p > 0.05) (Fig. 4).

Correlation on the frequencies of Th17 and Th22 cells with clinical characters in CC patients

CC patients with lymph node metastasis exhibited profoundly increased frequency of Th22 cells (2.20 ± 0.85 %, n = 11) compared to CC patients without lymph node metastases (1.68 ± 0.64 %, p = 0.026, n = 48) (Fig. 6). No significant diversity was detected among Th22, Th17 and Th1 cells frequency and other prognostic factors including clinical stage, tumor size and vasoinvasion in CC patients (p > 0.05).

Increased IL-22 concentrations in plasma of CC patients

The CIN or CC patients and HC all showed plasma IL-22, IL17 and TNF-α. Significantly higher levels of IL-22 were revealed in CC patients (median 37.46; range 24.84 – 120.06 pg/ml, n = 31, p = 0.039) than those in HC (median 26.8; range 11.3-42.7 pg/ml, n = 19) (Fig. 7a). No remarkable diversities were found among CIN patients (CIN: median 31.17; range 20.93 - 82.68 pg/ml, n = 22, p > 0.05) and CC patients or CIN patients and HC.
However, concentration of plasma IL-17 and TNF-α were found similar in HC, CIN and CC patients (p > 0.05) (Fig. 7b and c).

Discussion

Persistent infection with HPV is the main cause of CC and CIN [25, 26]. That CIN and CC arise more frequently in immunosuppressive women indicates that elimination of HPV is related to immunity function. In the evolution of these diseases, local or systemic immune mechanisms abnormalities may be involved [27, 28]. A vast and dynamic crosstalk among immune cells, along with cytokines turmoil has been regarded as a crucial element of cancer pathophysiology [29]. In our current study, we focused on immune cells, mainly three subtypes of T helper cells- Th1, Th17 and Th22 cells and their probable role in CC and CIN.
Interferon (IFN)-γ causes activation of immune cells in the tumor microenvironment. It is known that Th1 cells, the main source of IFN-γ, have a powerful anti-tumor function. To enhance the function of antigen presenting cells, tumor antigen specific CD4+Th1 cells can travel to the tumor site and secrete inflammatory cytokines and modulate the microenvironment [30]. It was observed that for cancer inhibition and better outcomes, Th1 adaptive immunity is essential [31]. In our study, we demonstrated a significant elevated frequency of Th1 cells in CC patients, compared to CIN patients and HC, which is consistent with other previous studies of the involvement of Th1 cells in tumors.
It was noticed that another two inflammatory cell subgroups, Th17 and Th22 cells are involved in viral infection and mucosal immunity [32, 33, 34]. In our previous study, we saw that there was a significant increase of Th17 cells (CD4+IL17+ cells) in CIN and CC patients [8, 11]. In order to exclude multiple positive cells Th17 cells are defined as CD4+IFNγIL17+IL22 cells, which also were called as “pure Th17 cells”. Th22 cells are now defined as CD4+IL17ˉIL22+IFNγ cells, which is an independent subset of T helper cells from Th1 and Th17 cells [3537]. In the current study, we evaluate the frequencies of pure Th17 and Th22 cells to confirm the probable role of these two famous types of T helper cells in PB of CIN and CC by flow cytometry. As expected, increased frequencies of Th17 and Th22 cells were found in both CIN and CC compared to HC. Moreover, the increased change of Th22 cells in CC was much higher than that of CIN. It suggested that as cervical precancerous lesion occurs, Th22 cells might gradually elevate from CIN to CC. However, no significant difference of Th17 cells was found between CIN and CC. But the data indeed shows that there are frequencies of Th17 and Th22 cells changed in the tumorigenesis of both CIN and CC which indicate these two types of cells may paticipate in tumor immunity.
IL-22 is known to have a relationship with virus-infection reactions and whose receptor is confined to non-hematopoietic cells (mainly epithelial cells). Previously it was considered that IL-22 is a cytokine of Th17 cells. Now it is considered as the characteristic product of Th22 cells. Our study also revealed elevated levels of plasma IL-22 in CC patients. Additionally, expression of a series of molecules, which are responsible for cellular differentiation and survival was triggered by IL-22 [38, 39]. In our study, a raised level of plasma IL-22 was found, which indicated that Th22 cells, the main T helper cells which product IL-22, may be involved in the process of CC. However, plasma IL-17 did not show a significant change. This might be due to the fact that concentration of IL-17 was too low to present the change, as it showed low levels in both of CC and HC. In addition, there was a positive correlation between the frequencies of Th17 and Th22 cells in CC patients, suggesting that differentiation of Th22 cells may be linked to Th17 cells or even Th22 cells might partly derive from Th17 cells. This derivation may partly explain the type of IL22+Th17 cells. However, no correlation was found in CIN III or HC. One reason for this is that the frequencies level of Th17 and Th22 cells are very low, hence the difference between detected results and real conditions multiplied and distorted the statistic results. Another reason is that, in a normal situation, Th17 and Th22 cells are derived from a different origin and induced by different stimuli. However, when cancer appears, inflammatory cells show a partly inter-related differentiation, which also causes elevated frequency of IL22+Th17 cells during the process.
It was seen that RORC is the key transcription factor directing Th17 lineage and modulates the polarization of Th22 cells [12, 40]. In our study we noticed a notably elevated expression of RORC in CIN and CC patients. Also, the expression of RORC is positively correlated with both Th22 and Th17 cells. It is assumed that in CIN and CC patients the differentiation of Th22 and Th17 cells is mainly regulated by RORC. We previously found that IL-6, which promoted differentiation of Th22 cells, is highly expressed in CIN and CC patients [11, 12, 19]. Elevated IL-6 mRNA expression was found in CIN and CC patients compared to HC. The data showed that, in CC and CIN patients, immune environment may be more suitable for polarization of Th22 cells.
However, no significance was found in AHR expression. Although AHR is the most important transcription factor of Th22 cells, AHR pathway is not unique. It is demonstrated that TGF-β could inhibit IL-22 secreting of Th17 cells by AHR-independent pathways. In our study of CIN and CC, no significant change was found. The explanation for increase of Th22 cells may not be caused by AHR (transcription level), but others pathways, such like stimulation and transformation.
Referring to clinic factors, in CC patients, lymph node metastases were found to correlate with aggregation of Th22 cells. Again, a positive association between Th22 cells and Th17 cells was also observed. Consequently, it is imaginable that co-increased levels of Th22 and Th17 cells along with pro-inflammatory cytokines may play a synergistic role in the progression of CC. Nevertheless, there was an approximately negative correlation between Th1 cells and Th22 cells in CC patients. This argues that the beneficial Th1 cells gradually declined while more Th22 was produced toward disease progression. However, the interaction among these three different cells demands further investigation.

Conclusion

It is seen that patients with CC possess a high frequency of circulating Th22 cells, Th17 cells and Th1 cells. The higher prevalence of Th22 cells was found in patients with advanced CC, arguing an important role for this T-cell subtype in the growth and acceleration of CC. For a better understanding of this development (i.e., regulation and function of these cells in CC) more extensive experiments are needed which may lead to the evolution of promising therapeutic strategy for CC patients.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81172486, 81470319 and 81072122).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare no conflicts of interest.

Authors’ contribution

Conceived and designed the experiments: BXC, WJZ and XLT. Collected samples: WJZ, XLT and JJ. Performed the experiments: WJZ and XLT. Analyzed the data: XLT, JJ and TZ; Contributed reagents/materials/analysis tools: DXM and BHK. Wrote the paper: WJZ and XLT. Edited the paper: FM and KDC. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMed
2.
Zurück zum Zitat Das BC, Sharma JK, Gopalakrishna V, Luthra UK. Analysis by polymerase chain reaction of the physical state of human papillomavirus type16 DNA in cervical preneoplastic and neoplastic lesions. J Gen Virol. 1992;73:2327–36.CrossRefPubMed Das BC, Sharma JK, Gopalakrishna V, Luthra UK. Analysis by polymerase chain reaction of the physical state of human papillomavirus type16 DNA in cervical preneoplastic and neoplastic lesions. J Gen Virol. 1992;73:2327–36.CrossRefPubMed
3.
Zurück zum Zitat Bosh FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55:244–65.CrossRef Bosh FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55:244–65.CrossRef
4.
Zurück zum Zitat Sheu BC, Chang WC, Lin HH, Chow SN, Huang SC. Immune concept of human papillomaviruses and related antigens in local cancer milieu of human cervical neoplasia. J Obstet Gynaecol Res. 2007;33:103–13.CrossRefPubMed Sheu BC, Chang WC, Lin HH, Chow SN, Huang SC. Immune concept of human papillomaviruses and related antigens in local cancer milieu of human cervical neoplasia. J Obstet Gynaecol Res. 2007;33:103–13.CrossRefPubMed
5.
Zurück zum Zitat Hebner CM, Laimins LA. Humanpapilloma viruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 2006;16:83–97.CrossRefPubMed Hebner CM, Laimins LA. Humanpapilloma viruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 2006;16:83–97.CrossRefPubMed
6.
Zurück zum Zitat Nguyen HH, Broker TR, Chow LT, Alvarez RD, Vu HL, Andrasi J, et al. Immune responses to human papillomavirus in genital tract of women with cervical cancer. Gynecol Oncol. 2005;96:452–61.CrossRefPubMed Nguyen HH, Broker TR, Chow LT, Alvarez RD, Vu HL, Andrasi J, et al. Immune responses to human papillomavirus in genital tract of women with cervical cancer. Gynecol Oncol. 2005;96:452–61.CrossRefPubMed
7.
Zurück zum Zitat Cheng WF, Lee CN, Su YN, Chang MC, Hsiao WC, Chen CA, et al. Induction of human papillomavirus type 16-specific immunologic responses in a normal and an human papillomavirus-infected populations. Immunology. 2005;115:136–49.CrossRefPubMedPubMedCentral Cheng WF, Lee CN, Su YN, Chang MC, Hsiao WC, Chen CA, et al. Induction of human papillomavirus type 16-specific immunologic responses in a normal and an human papillomavirus-infected populations. Immunology. 2005;115:136–49.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Zhang Y, Ma D, Zhang Y, Tian Y, Wang X, Qiao Y, et al. The imbalance of Th17/Treg in patients with uterine cervical cancer. Clin Chim Acta. 2011;412:894–900.CrossRefPubMed Zhang Y, Ma D, Zhang Y, Tian Y, Wang X, Qiao Y, et al. The imbalance of Th17/Treg in patients with uterine cervical cancer. Clin Chim Acta. 2011;412:894–900.CrossRefPubMed
9.
Zurück zum Zitat Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, Wind AD. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123:2873–92.CrossRefPubMedPubMedCentral Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, Wind AD. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123:2873–92.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Goedeqebuure PS, Eberlein TJ. The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors. Immunol Res. 1995;14:119–31.CrossRef Goedeqebuure PS, Eberlein TJ. The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors. Immunol Res. 1995;14:119–31.CrossRef
11.
Zurück zum Zitat Hou F, Li Z, Ma D, Zhang W, Zhang Y, Zhang T, et al. Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin Chim Acta. 2012;413:1848–54.CrossRefPubMed Hou F, Li Z, Ma D, Zhang W, Zhang Y, Zhang T, et al. Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin Chim Acta. 2012;413:1848–54.CrossRefPubMed
12.
Zurück zum Zitat Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10:857–63.CrossRefPubMed Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10:857–63.CrossRefPubMed
13.
Zurück zum Zitat Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009;10:864–71.CrossRefPubMed Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009;10:864–71.CrossRefPubMed
14.
Zurück zum Zitat Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130:1373–83.CrossRefPubMed Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130:1373–83.CrossRefPubMed
15.
Zurück zum Zitat Peng D, Xu B, Wang Y, Guo H, Jiang Y. A high frequency of circulating th22 and th17 cells in patients with new onset graves' disease. PLoS One. 2013;8:e68446.CrossRefPubMedPubMedCentral Peng D, Xu B, Wang Y, Guo H, Jiang Y. A high frequency of circulating th22 and th17 cells in patients with new onset graves' disease. PLoS One. 2013;8:e68446.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 2012;7:e31000.CrossRefPubMedPubMedCentral Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 2012;7:e31000.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Qin S, Ma S, Huang X, Lu D, Zhou Y, Jiang H. Th22 cells are associated with hepatocellular carcinoma development and progression. Chin J Cancer Res. 2014;26:135–41.PubMedPubMedCentral Qin S, Ma S, Huang X, Lu D, Zhou Y, Jiang H. Th22 cells are associated with hepatocellular carcinoma development and progression. Chin J Cancer Res. 2014;26:135–41.PubMedPubMedCentral
18.
Zurück zum Zitat Liu T, Peng L, Yu P, Zhao Y, Shi Y, Mao X, et al. Increased Circulating Th22 cells and Th17 cells are Associated with Tumor Progression and Patients Survival in Human Gastric Cancer. J Clin Immunol. 2012;32:1332–9.CrossRefPubMed Liu T, Peng L, Yu P, Zhao Y, Shi Y, Mao X, et al. Increased Circulating Th22 cells and Th17 cells are Associated with Tumor Progression and Patients Survival in Human Gastric Cancer. J Clin Immunol. 2012;32:1332–9.CrossRefPubMed
19.
Zurück zum Zitat Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Guo G, et al. Increased intratumoral IL-22-producing CD4+ T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother. 2012;61:1965–75.CrossRefPubMed Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Guo G, et al. Increased intratumoral IL-22-producing CD4+ T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother. 2012;61:1965–75.CrossRefPubMed
20.
Zurück zum Zitat Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol. 2010;32:17–31.CrossRefPubMed Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol. 2010;32:17–31.CrossRefPubMed
21.
Zurück zum Zitat Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.CrossRefPubMed Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.CrossRefPubMed
22.
Zurück zum Zitat Sonnenberq GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces of IL-22. Nat Immunol. 2011;12:383–90.CrossRef Sonnenberq GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces of IL-22. Nat Immunol. 2011;12:383–90.CrossRef
23.
Zurück zum Zitat Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M, et al. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer. 2013;13:59.CrossRefPubMedPubMedCentral Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M, et al. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer. 2013;13:59.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Pickert G, Neufert C, Leppkes M. STAT3 links IL-22 signaling in intestinal epithelia cells of mucosal wound healing. J Exp Med. 2009;206:1465–72.CrossRefPubMedPubMedCentral Pickert G, Neufert C, Leppkes M. STAT3 links IL-22 signaling in intestinal epithelia cells of mucosal wound healing. J Exp Med. 2009;206:1465–72.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Wilczynski SP, Bergen S, Walker J, Liao SY, Pearlman LF. Human papillomaviruses and cervical cancer: analysis of histopathologic features associated with different viral types. Hum Pathol. 1998;19:697–704.CrossRef Wilczynski SP, Bergen S, Walker J, Liao SY, Pearlman LF. Human papillomaviruses and cervical cancer: analysis of histopathologic features associated with different viral types. Hum Pathol. 1998;19:697–704.CrossRef
26.
Zurück zum Zitat Bosch FX, Manos MM, Muñoz N, Sherman M, Jansen AM, Peto J, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87:796–802.CrossRefPubMed Bosch FX, Manos MM, Muñoz N, Sherman M, Jansen AM, Peto J, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87:796–802.CrossRefPubMed
27.
Zurück zum Zitat Kosmaczewska A, Bocko D, Ciszak L, Wlodarska-Polinska I, Kornafel J, Szteblich A, et al. Desregulated expression of both costimulatory CD28 and inhibitory CTLA4 molecules in PB T cells of advanced cervical cancer patients suggests systemic immunosuppression related to disease progression. Pathol Oncol Res. 2012;18:479–89.CrossRefPubMed Kosmaczewska A, Bocko D, Ciszak L, Wlodarska-Polinska I, Kornafel J, Szteblich A, et al. Desregulated expression of both costimulatory CD28 and inhibitory CTLA4 molecules in PB T cells of advanced cervical cancer patients suggests systemic immunosuppression related to disease progression. Pathol Oncol Res. 2012;18:479–89.CrossRefPubMed
28.
Zurück zum Zitat Huang Y, Zhang J, Cui ZM, Zhao J, Zheng Y. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer. Chin J Cancer. 2013;32:289–96.CrossRefPubMedPubMedCentral Huang Y, Zhang J, Cui ZM, Zhao J, Zheng Y. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer. Chin J Cancer. 2013;32:289–96.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Cohen PA, Peng L, Plautz GE, Kim JA, Weng DE, Shu S. CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol. 2000;20:17–56.CrossRefPubMed Cohen PA, Peng L, Plautz GE, Kim JA, Weng DE, Shu S. CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol. 2000;20:17–56.CrossRefPubMed
31.
Zurück zum Zitat Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRefPubMed Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRefPubMed
32.
Zurück zum Zitat Levillayer F, Mas M, Levi-Acobas F, Brahic M, Bureau JF. Interleukin 22 is a candidate gene for Tmevp3, a locus controlling Theiler's virus-induced neurological diseases. Genetics. 2007;176:1835–44.CrossRefPubMedPubMedCentral Levillayer F, Mas M, Levi-Acobas F, Brahic M, Bureau JF. Interleukin 22 is a candidate gene for Tmevp3, a locus controlling Theiler's virus-induced neurological diseases. Genetics. 2007;176:1835–44.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ryan-Payseur B, Ali Z, Huang D, Chen CY, Yan L, Wang RC, et al. Virus infection stages and distinct Th1 or Th17/Th22 T-cell responses in malaria/SHIV coinfection correlate with different outcomes of disease. J Infect Dis. 2011;204:1450–62.CrossRefPubMedPubMedCentral Ryan-Payseur B, Ali Z, Huang D, Chen CY, Yan L, Wang RC, et al. Virus infection stages and distinct Th1 or Th17/Th22 T-cell responses in malaria/SHIV coinfection correlate with different outcomes of disease. J Infect Dis. 2011;204:1450–62.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–85.PubMedPubMedCentral Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–85.PubMedPubMedCentral
35.
Zurück zum Zitat Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMed Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMed
36.
Zurück zum Zitat Chung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 2006;16:902–7.CrossRefPubMed Chung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 2006;16:902–7.CrossRefPubMed
37.
Zurück zum Zitat Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentral Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentral
38.
39.
Zurück zum Zitat Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol. 2010;107:1–29.CrossRefPubMed Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol. 2010;107:1–29.CrossRefPubMed
40.
Zurück zum Zitat Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.CrossRefPubMed Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.CrossRefPubMed
Metadaten
Titel
The existence of Th22, pure Th17 and Th1 cells in CIN and Cervical Cancer along with their frequency variation in different stages of cervical cancer
verfasst von
Wenjing Zhang
Xinli Tian
Fidia Mumtahana
Jun Jiao
Teng Zhang
Kimiko Della Croce
Daoxin Ma
Beihua Kong
Baoxia Cui
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2015
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1767-y

Weitere Artikel der Ausgabe 1/2015

BMC Cancer 1/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.