Skip to main content
Erschienen in: European Journal of Epidemiology 5/2015

01.05.2015 | METHODS

The impact of exposure-biased sampling designs on detection of gene–environment interactions in case–control studies with potential exposure misclassification

verfasst von: Stephanie L. Stenzel, Jaeil Ahn, Philip S. Boonstra, Stephen B. Gruber, Bhramar Mukherjee

Erschienen in: European Journal of Epidemiology | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Abstract

With limited funding and biological specimen availability, choosing an optimal sampling design to maximize power for detecting gene-by-environment (G–E) interactions is critical. Exposure-enriched sampling is often used to select subjects with rare exposures for genotyping to enhance power for tests of G–E effects. However, exposure misclassification (MC) combined with biased sampling can affect characteristics of tests for G–E interaction and joint tests for marginal association and G–E interaction. Here, we characterize the impact of exposure-biased sampling under conditions of perfect exposure information and exposure MC on properties of several methods for conducting inference. We assess the Type I error, power, bias, and mean squared error properties of case-only, case–control, and empirical Bayes methods for testing/estimating G–E interaction and a joint test for marginal G (or E) effect and G–E interaction across three biased sampling schemes. Properties are evaluated via empirical simulation studies. With perfect exposure information, exposure-enriched sampling schemes enhance power as compared to random selection of subjects irrespective of exposure prevalence but yield bias in estimation of the G–E interaction and marginal E parameters. Exposure MC modifies the relative performance of sampling designs when compared to the case of perfect exposure information. Those conducting G–E interaction studies should be aware of exposure MC properties and the prevalence of exposure when choosing an ideal sampling scheme and method for characterizing G–E interactions and joint effects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet. 2005;6:287–98.PubMedCrossRef Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet. 2005;6:287–98.PubMedCrossRef
3.
Zurück zum Zitat Dai JY, Logsdon BA, Huang Y, et al. Simultaneously testing for marginal genetic association and gene–environment interaction. Am J Epidemiol. 2012;176:164–73.PubMedCentralPubMedCrossRef Dai JY, Logsdon BA, Huang Y, et al. Simultaneously testing for marginal genetic association and gene–environment interaction. Am J Epidemiol. 2012;176:164–73.PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene–environment interaction to detect genetic associations. Hum Hered. 2007;63:111–9.PubMedCrossRef Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene–environment interaction to detect genetic associations. Hum Hered. 2007;63:111–9.PubMedCrossRef
5.
Zurück zum Zitat Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case–control studies. Stat Med. 1994;13:153–62.PubMedCrossRef Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case–control studies. Stat Med. 1994;13:153–62.PubMedCrossRef
6.
Zurück zum Zitat Chatterjee N, Carroll RJ. Semiparametric maximum likelihood estimation exploiting gene–environment independence in case–control studies. Biometrika. 2005;92:399–418.CrossRef Chatterjee N, Carroll RJ. Semiparametric maximum likelihood estimation exploiting gene–environment independence in case–control studies. Biometrika. 2005;92:399–418.CrossRef
7.
Zurück zum Zitat Mukherjee B, Chatterjee N. Exploiting gene–environment independence for analysis of case–control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics. 2008;64:685–94.PubMedCrossRef Mukherjee B, Chatterjee N. Exploiting gene–environment independence for analysis of case–control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics. 2008;64:685–94.PubMedCrossRef
8.
Zurück zum Zitat Mukherjee B, Ahn J, Gruber SB, Chatterjee N. Testing gene–environment interaction in large-scale case–control association studies: possible choices and comparisons. Am J Epidemiol. 2012;175:177–90.PubMedCentralPubMedCrossRef Mukherjee B, Ahn J, Gruber SB, Chatterjee N. Testing gene–environment interaction in large-scale case–control association studies: possible choices and comparisons. Am J Epidemiol. 2012;175:177–90.PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Oexle K, Meitinger T. Sampling GWAS subjects from risk populations. Genet Epidemiol. 2011;35:148–53.PubMedCrossRef Oexle K, Meitinger T. Sampling GWAS subjects from risk populations. Genet Epidemiol. 2011;35:148–53.PubMedCrossRef
10.
Zurück zum Zitat Chen J, Kang G, Vanderweele T, Zhang C, Mukherjee B. Efficient designs of gene–environment interaction studies: implications of Hardy–Weinberg equilibrium and gene–environment independence. Stat Med. 2012;31:2516–30.PubMedCentralPubMedCrossRef Chen J, Kang G, Vanderweele T, Zhang C, Mukherjee B. Efficient designs of gene–environment interaction studies: implications of Hardy–Weinberg equilibrium and gene–environment independence. Stat Med. 2012;31:2516–30.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Garcia-Closas M, Rothman N, Lubin J. Misclassification in case–control studies of gene–environment interactions: assessment of bias and sample size. Cancer Epidemiol Biomark Prev. 1999;8:1043–50. Garcia-Closas M, Rothman N, Lubin J. Misclassification in case–control studies of gene–environment interactions: assessment of bias and sample size. Cancer Epidemiol Biomark Prev. 1999;8:1043–50.
12.
Zurück zum Zitat Rothman N, Garcia-Closas M, Stewart WT, Lubin J. The impact of misclassification in case–control studies of gene–environment interactions. IARC Sci publ. 1999;148:89–96. Rothman N, Garcia-Closas M, Stewart WT, Lubin J. The impact of misclassification in case–control studies of gene–environment interactions. IARC Sci publ. 1999;148:89–96.
13.
Zurück zum Zitat Garcia-Closas M, Thompson WD, Robins JM. Differential misclassification and the assessment of gene–environment interactions in case–control studies. Am J Epidemiol. 1998;147:426–33.PubMedCrossRef Garcia-Closas M, Thompson WD, Robins JM. Differential misclassification and the assessment of gene–environment interactions in case–control studies. Am J Epidemiol. 1998;147:426–33.PubMedCrossRef
14.
Zurück zum Zitat Lindstrom S, Yen YC, Spiegelman D, Kraft P. The impact of gene–environment dependence and misclassification in genetic association studies incorporating gene–environment interactions. Hum Hered. 2009;68:171–81.PubMedCentralPubMedCrossRef Lindstrom S, Yen YC, Spiegelman D, Kraft P. The impact of gene–environment dependence and misclassification in genetic association studies incorporating gene–environment interactions. Hum Hered. 2009;68:171–81.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Carroll RJ, Gail MH, Lubin JH. Case–control studies with errors in covariates. J Am Stat Assoc. 1993;88:185–99. Carroll RJ, Gail MH, Lubin JH. Case–control studies with errors in covariates. J Am Stat Assoc. 1993;88:185–99.
16.
Zurück zum Zitat Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 111–38. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 111–38.
17.
Zurück zum Zitat Breslow NE, Chatterjee N. Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis. J R Stat Soc Ser C (Appl Stat). 1999;48(4):457–68. doi:10.1111/1467-9876.00165.CrossRef Breslow NE, Chatterjee N. Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis. J R Stat Soc Ser C (Appl Stat). 1999;48(4):457–68. doi:10.​1111/​1467-9876.​00165.CrossRef
20.
Zurück zum Zitat Cheng KF. Analysis of case-only studies accounting for genotyping error. Ann Hum Genet. 2007;71:238–48.PubMedCrossRef Cheng KF. Analysis of case-only studies accounting for genotyping error. Ann Hum Genet. 2007;71:238–48.PubMedCrossRef
21.
Zurück zum Zitat Wong MY, Day NE, Luan JA, Wareham NJ. Estimation of magnitude in gene–environment interactions in the presence of measurement error. Stat Med. 2004;23:987–98.PubMedCrossRef Wong MY, Day NE, Luan JA, Wareham NJ. Estimation of magnitude in gene–environment interactions in the presence of measurement error. Stat Med. 2004;23:987–98.PubMedCrossRef
22.
Zurück zum Zitat Greenland S. Statistical uncertainty due to misclassification: implications for validation substudies. J Clin Epidemiol. 1988;41:1167–74.PubMedCrossRef Greenland S. Statistical uncertainty due to misclassification: implications for validation substudies. J Clin Epidemiol. 1988;41:1167–74.PubMedCrossRef
23.
Zurück zum Zitat Zhang L, Mukherjee B, Ghosh M, Gruber S, Moreno V. Accounting for error due to misclassification of exposures in case–control studies of gene–environment interaction. Stat Med. 2008;27:2756–83.PubMedCrossRef Zhang L, Mukherjee B, Ghosh M, Gruber S, Moreno V. Accounting for error due to misclassification of exposures in case–control studies of gene–environment interaction. Stat Med. 2008;27:2756–83.PubMedCrossRef
24.
Zurück zum Zitat Rice K. Full-likelihood approaches to misclassification of a binary exposure in matched case–control studies. Stat Med. 2003;22:3177–94.PubMedCrossRef Rice K. Full-likelihood approaches to misclassification of a binary exposure in matched case–control studies. Stat Med. 2003;22:3177–94.PubMedCrossRef
25.
Zurück zum Zitat Spiegelman DRB, Logan R. Estimation and inference for logistic regression with covariate misclassification and measurement error, in main study/validation study designs. J Am Stat Assoc. 2000;95:51–61.CrossRef Spiegelman DRB, Logan R. Estimation and inference for logistic regression with covariate misclassification and measurement error, in main study/validation study designs. J Am Stat Assoc. 2000;95:51–61.CrossRef
26.
Zurück zum Zitat Lobach I, Fan R, Carroll RJ. Genotype-based association mapping of complex diseases: gene–environment interactions with multiple genetic markers and measurement error in environmental exposures. Genet Epidemiol. 2010;34:792–802.PubMedCentralPubMedCrossRef Lobach I, Fan R, Carroll RJ. Genotype-based association mapping of complex diseases: gene–environment interactions with multiple genetic markers and measurement error in environmental exposures. Genet Epidemiol. 2010;34:792–802.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Lobach I, Mallick B, Carroll RJ. Semiparametric Bayesian analysis of gene–environment interactions with error in measurement of environmental covariates and missing genetic data. Stat Interface. 2011;4:305–16.PubMedCentralPubMedCrossRef Lobach I, Mallick B, Carroll RJ. Semiparametric Bayesian analysis of gene–environment interactions with error in measurement of environmental covariates and missing genetic data. Stat Interface. 2011;4:305–16.PubMedCentralPubMedCrossRef
Metadaten
Titel
The impact of exposure-biased sampling designs on detection of gene–environment interactions in case–control studies with potential exposure misclassification
verfasst von
Stephanie L. Stenzel
Jaeil Ahn
Philip S. Boonstra
Stephen B. Gruber
Bhramar Mukherjee
Publikationsdatum
01.05.2015
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 5/2015
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-014-9908-1

Weitere Artikel der Ausgabe 5/2015

European Journal of Epidemiology 5/2015 Zur Ausgabe