Skip to main content
Erschienen in: Journal of Interventional Cardiac Electrophysiology 1/2014

01.01.2014 | REVIEWS

The infrahisian conduction system and endocavitary cardiac structures: relevance for the invasive electrophysiologist

verfasst von: Faisal F. Syed, Jo Jo Hai, Nirusha Lachman, Christopher V. DeSimone, Samuel J. Asirvatham

Erschienen in: Journal of Interventional Cardiac Electrophysiology | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Excerpt

With the increasing acceptability and use of catheterization ablation for ventricular tachycardia, detailed anatomic studies have been done to improve the safety and efficacy for energy delivery in and around critical cardiac structures [17]. More recently, ventricular fibrillation and certain forms of monomorphic ventricular tachycardia have required ablation in either the infrahisian conduction system or endocavitary cardiac structure, such as the papillary muscle, false tendons, and the right ventricular moderator band [813]. In this review, we explain the critical details of structure and structure–function relations of the infrahisian tissue and the cardiac endocavitary structures. We approach the structures as a single unit with endocavitary structures routinely having a rich network of the distal His-Purkinje system. In addition, several commonly applied cardiac mapping maneuvers, including parahisian pacing and pacemapping, rely on understanding conduction tissue anatomy and active myocardium within the cavity for correct interpretation. Throughout the text are interspersed boxes that tabulate and summarize key anatomic pieces of information for the invasive electrophysiologist. …
Literatur
1.
Zurück zum Zitat Asirvatham, S. J. (2009). Correlative anatomy for the invasive electrophysiologist: outflow tract and supravalvar arrhythmia. [Review]. Journal of Cardiovascular Electrophysiology, 20(8), 955–968.PubMedCrossRef Asirvatham, S. J. (2009). Correlative anatomy for the invasive electrophysiologist: outflow tract and supravalvar arrhythmia. [Review]. Journal of Cardiovascular Electrophysiology, 20(8), 955–968.PubMedCrossRef
2.
Zurück zum Zitat Asirvatham, S. J. (2009). Correlative anatomy and electrophysiology for the interventional electrophysiologist: right atrial flutter. Journal of Cardiovascular Electrophysiology, 20(1), 113–122.PubMedCrossRef Asirvatham, S. J. (2009). Correlative anatomy and electrophysiology for the interventional electrophysiologist: right atrial flutter. Journal of Cardiovascular Electrophysiology, 20(1), 113–122.PubMedCrossRef
3.
Zurück zum Zitat Lachman, N., Syed, F. F., Habib, A., Kapa, S., Bisco, S. E., Venkatachalam, K. L., et al. (2011). Correlative anatomy for the electrophysiologist, part II: cardiac ganglia, phrenic nerve, coronary venous system. Journal of Cardiovascular Electrophysiology, 22(1), 104–110.PubMedCrossRef Lachman, N., Syed, F. F., Habib, A., Kapa, S., Bisco, S. E., Venkatachalam, K. L., et al. (2011). Correlative anatomy for the electrophysiologist, part II: cardiac ganglia, phrenic nerve, coronary venous system. Journal of Cardiovascular Electrophysiology, 22(1), 104–110.PubMedCrossRef
4.
Zurück zum Zitat Macedo, P. G., Kapa, S., Mears, J. A., Fratianni, A., & Asirvatham, S. J. (2010). Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part I: pulmonary vein ostia, superior vena cava, vein of Marshall. Journal of Cardiovascular Electrophysiology, 21(6), 721–730.PubMedCrossRef Macedo, P. G., Kapa, S., Mears, J. A., Fratianni, A., & Asirvatham, S. J. (2010). Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part I: pulmonary vein ostia, superior vena cava, vein of Marshall. Journal of Cardiovascular Electrophysiology, 21(6), 721–730.PubMedCrossRef
5.
Zurück zum Zitat Macedo, P. G., Kapa, S., Mears, J. A., Fratianni, A., & Asirvatham, S. J. (2010). Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation. Journal of Cardiovascular Electrophysiology, 21(7), 829–836.PubMed Macedo, P. G., Kapa, S., Mears, J. A., Fratianni, A., & Asirvatham, S. J. (2010). Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation. Journal of Cardiovascular Electrophysiology, 21(7), 829–836.PubMed
6.
Zurück zum Zitat Ho, S. Y. (2009). Structure and anatomy of the aortic root. [Research Support, Non-U.S. Gov’t Review]. European Journal of Echocardiography, 10(1), i3–i10.PubMedCrossRef Ho, S. Y. (2009). Structure and anatomy of the aortic root. [Research Support, Non-U.S. Gov’t Review]. European Journal of Echocardiography, 10(1), i3–i10.PubMedCrossRef
7.
Zurück zum Zitat Gami, A. S., Noheria, A., Lachman, N., Edwards, W. D., Friedman, P. A., Talreja, D., et al. (2011). Anatomical correlates relevant to ablation above the semilunar valves for the cardiac electrophysiologist: a study of 603 hearts. Journal of Interventional Cardiac Electrophysiology, 30(1), 5–15.PubMedCrossRef Gami, A. S., Noheria, A., Lachman, N., Edwards, W. D., Friedman, P. A., Talreja, D., et al. (2011). Anatomical correlates relevant to ablation above the semilunar valves for the cardiac electrophysiologist: a study of 603 hearts. Journal of Interventional Cardiac Electrophysiology, 30(1), 5–15.PubMedCrossRef
8.
Zurück zum Zitat Haissaguerre, M., Shah, D. C., Jais, P., Shoda, M., Kautzner, J., Arentz, T., et al. (2002). Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet, 359(9307), 677–678.PubMedCrossRef Haissaguerre, M., Shah, D. C., Jais, P., Shoda, M., Kautzner, J., Arentz, T., et al. (2002). Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet, 359(9307), 677–678.PubMedCrossRef
9.
Zurück zum Zitat Haissaguerre, M., Shoda, M., Jais, P., Nogami, A., Shah, D. C., Kautzner, J., et al. (2002). Mapping and ablation of idiopathic ventricular fibrillation. Circulation, 106(8), 962–967.PubMedCrossRef Haissaguerre, M., Shoda, M., Jais, P., Nogami, A., Shah, D. C., Kautzner, J., et al. (2002). Mapping and ablation of idiopathic ventricular fibrillation. Circulation, 106(8), 962–967.PubMedCrossRef
10.
Zurück zum Zitat Abouezzeddine, O., Suleiman, M., Buescher, T., Kapa, S., Friedman, P. A., Jahangir, A., et al. (2010). Relevance of endocavitary structures in ablation procedures for ventricular tachycardia. Journal of Cardiovascular Electrophysiology, 21(3), 245–254.PubMedCrossRef Abouezzeddine, O., Suleiman, M., Buescher, T., Kapa, S., Friedman, P. A., Jahangir, A., et al. (2010). Relevance of endocavitary structures in ablation procedures for ventricular tachycardia. Journal of Cardiovascular Electrophysiology, 21(3), 245–254.PubMedCrossRef
11.
Zurück zum Zitat Doppalapudi, H., Yamada, T., McElderry, H. T., Plumb, V. J., Epstein, A. E., & Kay, G. N. (2008). Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circulation. Arrhythmia and Electrophysiology, 1(1), 23–29.PubMedCrossRef Doppalapudi, H., Yamada, T., McElderry, H. T., Plumb, V. J., Epstein, A. E., & Kay, G. N. (2008). Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circulation. Arrhythmia and Electrophysiology, 1(1), 23–29.PubMedCrossRef
12.
Zurück zum Zitat Madhavan, M., & Asirvatham, S. J. (2010). The fourth dimension: endocavitary ventricular tachycardia. Circulation. Arrhythmia and Electrophysiology, 3(4), 302–304.PubMedCrossRef Madhavan, M., & Asirvatham, S. J. (2010). The fourth dimension: endocavitary ventricular tachycardia. Circulation. Arrhythmia and Electrophysiology, 3(4), 302–304.PubMedCrossRef
13.
Zurück zum Zitat Srivathsan, K., Gami, A. S., Ackerman, M. J., & Asirvatham, S. J. (2007). Treatment of ventricular fibrillation in a patient with prior diagnosis of long QT syndrome: importance of precise electrophysiologic diagnosis to successfully ablate the trigger. Heart Rhythm, 4(8), 1090–1093.PubMedCrossRef Srivathsan, K., Gami, A. S., Ackerman, M. J., & Asirvatham, S. J. (2007). Treatment of ventricular fibrillation in a patient with prior diagnosis of long QT syndrome: importance of precise electrophysiologic diagnosis to successfully ablate the trigger. Heart Rhythm, 4(8), 1090–1093.PubMedCrossRef
14.
Zurück zum Zitat Oosthoek, P. W., Viragh, S., Lamers, W. H., & Moorman, A. F. (1993). Immunohistochemical delineation of the conduction system. II: The atrioventricular node and Purkinje fibers. Circulation Research, 73(3), 482–491.PubMedCrossRef Oosthoek, P. W., Viragh, S., Lamers, W. H., & Moorman, A. F. (1993). Immunohistochemical delineation of the conduction system. II: The atrioventricular node and Purkinje fibers. Circulation Research, 73(3), 482–491.PubMedCrossRef
15.
Zurück zum Zitat Ono, N., Yamaguchi, T., Ishikawa, H., Arakawa, M., Takahashi, N., Saikawa, T., et al. (2009). Morphological varieties of the Purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy. Archives of Histology and Cytology, 72(3), 139–149.PubMedCrossRef Ono, N., Yamaguchi, T., Ishikawa, H., Arakawa, M., Takahashi, N., Saikawa, T., et al. (2009). Morphological varieties of the Purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy. Archives of Histology and Cytology, 72(3), 139–149.PubMedCrossRef
16.
Zurück zum Zitat Desplantez, T., Dupont, E., Severs, N. J., & Weingart, R. (2007). Gap junction channels and cardiac impulse propagation. Journal of Membrane Biology, 218(1–3), 13–28.PubMedCrossRef Desplantez, T., Dupont, E., Severs, N. J., & Weingart, R. (2007). Gap junction channels and cardiac impulse propagation. Journal of Membrane Biology, 218(1–3), 13–28.PubMedCrossRef
17.
Zurück zum Zitat Nogami, A. (2011). Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing and Clinical Electrophysiology, 34(8), 1034–1049.PubMedCrossRef Nogami, A. (2011). Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing and Clinical Electrophysiology, 34(8), 1034–1049.PubMedCrossRef
18.
Zurück zum Zitat Scheinman, M. M. (2009). Role of the His-Purkinje system in the genesis of cardiac arrhythmia. Heart Rhythm, 6(7), 1050–1058.PubMedCrossRef Scheinman, M. M. (2009). Role of the His-Purkinje system in the genesis of cardiac arrhythmia. Heart Rhythm, 6(7), 1050–1058.PubMedCrossRef
19.
Zurück zum Zitat Nogami, A. (2011). Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing and Clinical Electrophysiology, 34(5), 624–650.PubMedCrossRef Nogami, A. (2011). Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing and Clinical Electrophysiology, 34(5), 624–650.PubMedCrossRef
20.
Zurück zum Zitat Waller, B. F., Gering, L. E., Branyas, N. A., & Slack, J. D. (1993). Anatomy, histology, and pathology of the cardiac conduction system: Part II. Clinical Cardiology, 16(4), 347–352.PubMedCrossRef Waller, B. F., Gering, L. E., Branyas, N. A., & Slack, J. D. (1993). Anatomy, histology, and pathology of the cardiac conduction system: Part II. Clinical Cardiology, 16(4), 347–352.PubMedCrossRef
21.
Zurück zum Zitat Anderson, R. H., Becker, A. E., Brechenmacher, C., Davies, M. J., & Rossi, L. (1975). The human atrioventricular junctional area. A morphological study of the A-V node and bundle. European Journal of Cardiology, 3(1), 11–25.PubMed Anderson, R. H., Becker, A. E., Brechenmacher, C., Davies, M. J., & Rossi, L. (1975). The human atrioventricular junctional area. A morphological study of the A-V node and bundle. European Journal of Cardiology, 3(1), 11–25.PubMed
22.
Zurück zum Zitat Massing, G. K., & James, T. N. (1976). Anatomical configuration of the His bundle and bundle branches in the human heart. [Research Support, U.S. Gov’t, P.H.S.]. Circulation, 53(4), 609–621.PubMedCrossRef Massing, G. K., & James, T. N. (1976). Anatomical configuration of the His bundle and bundle branches in the human heart. [Research Support, U.S. Gov’t, P.H.S.]. Circulation, 53(4), 609–621.PubMedCrossRef
24.
Zurück zum Zitat Loukas, M., Klaassen, Z., Tubbs, R. S., Derderian, T., Paling, D., Chow, D., et al. (2010). Anatomical observations of the moderator band. Clinical Anatomy, 23(4), 443–450.PubMedCrossRef Loukas, M., Klaassen, Z., Tubbs, R. S., Derderian, T., Paling, D., Chow, D., et al. (2010). Anatomical observations of the moderator band. Clinical Anatomy, 23(4), 443–450.PubMedCrossRef
25.
Zurück zum Zitat Widran, J., & Lev, M. (1951). The dissection of the atrioventricular node, bundle and bundle branches in the human heart. Circulation, 4(6), 863–867.PubMedCrossRef Widran, J., & Lev, M. (1951). The dissection of the atrioventricular node, bundle and bundle branches in the human heart. Circulation, 4(6), 863–867.PubMedCrossRef
26.
Zurück zum Zitat Demoulin, J. C., & Kulbertus, H. E. (1973). Left hemiblocks revisited from the histopathological viewpoint. American Heart Journal, 86(5), 712–713.PubMedCrossRef Demoulin, J. C., & Kulbertus, H. E. (1973). Left hemiblocks revisited from the histopathological viewpoint. American Heart Journal, 86(5), 712–713.PubMedCrossRef
27.
Zurück zum Zitat Kulbertus, H. E. (1975). Concept of left hemiblocks revisited. A histopathological and experimental study. Advances in Cardiology, 14, 126–135.PubMed Kulbertus, H. E. (1975). Concept of left hemiblocks revisited. A histopathological and experimental study. Advances in Cardiology, 14, 126–135.PubMed
28.
29.
Zurück zum Zitat Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912.PubMedCrossRef Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912.PubMedCrossRef
30.
Zurück zum Zitat Canale, E., Fujiwara, T., & Campbell, G. R. (1983). The demonstration of close nerve-Purkinje fibre contacts in false tendons of sheep heart. Cell and Tissue Research, 230(1), 105–111.PubMedCrossRef Canale, E., Fujiwara, T., & Campbell, G. R. (1983). The demonstration of close nerve-Purkinje fibre contacts in false tendons of sheep heart. Cell and Tissue Research, 230(1), 105–111.PubMedCrossRef
31.
Zurück zum Zitat Tawara, S. (1906). Das reizleitungssystem des säugetierherzens. Eine anatomisch-histologishe studie über das atrioventikularbündel and die purinkeschen fäden. Jena: Gustav Fischer. Tawara, S. (1906). Das reizleitungssystem des säugetierherzens. Eine anatomisch-histologishe studie über das atrioventikularbündel and die purinkeschen fäden. Jena: Gustav Fischer.
32.
Zurück zum Zitat Joyner, R. W., Ramza, B. M., & Tan, R. C. (1990). Effects of stimulation frequency on Purkinje-ventricular conduction. Annals of the New York Academy of Sciences, 591, 38–50.PubMedCrossRef Joyner, R. W., Ramza, B. M., & Tan, R. C. (1990). Effects of stimulation frequency on Purkinje-ventricular conduction. Annals of the New York Academy of Sciences, 591, 38–50.PubMedCrossRef
33.
Zurück zum Zitat Berenfeld, O., & Jalife, J. (1998). Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circulation Research, 82(10), 1063–1077.PubMedCrossRef Berenfeld, O., & Jalife, J. (1998). Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circulation Research, 82(10), 1063–1077.PubMedCrossRef
34.
Zurück zum Zitat Gilmour, R. F., Jr., Evans, J. J., & Zipes, D. P. (1984). Purkinje-muscle coupling and endocardial response to hyperkalemia, hypoxia, and acidosis. American Journal of Physiology, 247(2 Pt 2), H303–H311.PubMed Gilmour, R. F., Jr., Evans, J. J., & Zipes, D. P. (1984). Purkinje-muscle coupling and endocardial response to hyperkalemia, hypoxia, and acidosis. American Journal of Physiology, 247(2 Pt 2), H303–H311.PubMed
35.
Zurück zum Zitat Li, Z. Y., Wang, Y. H., Maldonado, C., & Kupersmith, J. (1994). Role of junctional zone cells between Purkinje fibres and ventricular muscle in arrhythmogenesis. Cardiovascular Research, 28(8), 1277–1284.PubMedCrossRef Li, Z. Y., Wang, Y. H., Maldonado, C., & Kupersmith, J. (1994). Role of junctional zone cells between Purkinje fibres and ventricular muscle in arrhythmogenesis. Cardiovascular Research, 28(8), 1277–1284.PubMedCrossRef
36.
Zurück zum Zitat Saffitz, J. E., & Schuessler, R. B. (2000). Connexin-40, bundle-branch block, and propagation at the Purkinje-myocyte junction. Circulation Research, 87(10), 835–836.PubMedCrossRef Saffitz, J. E., & Schuessler, R. B. (2000). Connexin-40, bundle-branch block, and propagation at the Purkinje-myocyte junction. Circulation Research, 87(10), 835–836.PubMedCrossRef
37.
Zurück zum Zitat Tranum-Jensen, J., Wilde, A. A., Vermeulen, J. T., & Janse, M. J. (1991). Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circulation Research, 69(2), 429–437.PubMedCrossRef Tranum-Jensen, J., Wilde, A. A., Vermeulen, J. T., & Janse, M. J. (1991). Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circulation Research, 69(2), 429–437.PubMedCrossRef
38.
Zurück zum Zitat Anter, E., Buxton, A. E., Silverstein, J. R., & Josephson, M. E. (2013). Idiopathic ventricular fibrillation originating from the moderator band. Journal of Cardiovascular Electrophysiology, 24(1), 97–100.PubMedCrossRef Anter, E., Buxton, A. E., Silverstein, J. R., & Josephson, M. E. (2013). Idiopathic ventricular fibrillation originating from the moderator band. Journal of Cardiovascular Electrophysiology, 24(1), 97–100.PubMedCrossRef
39.
Zurück zum Zitat Liu, X. K., Barrett, R., Packer, D. L., & Asirvatham, S. J. (2008). Successful management of recurrent ventricular tachycardia by electrical isolation of anterolateral papillary muscle. Heart Rhythm, 5(3), 479–482.PubMedCrossRef Liu, X. K., Barrett, R., Packer, D. L., & Asirvatham, S. J. (2008). Successful management of recurrent ventricular tachycardia by electrical isolation of anterolateral papillary muscle. Heart Rhythm, 5(3), 479–482.PubMedCrossRef
40.
Zurück zum Zitat Yamada, T., Doppalapudi, H., McElderry, H. T., Okada, T., Murakami, Y., Inden, Y., et al. (2010). Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: relevance for catheter ablation. Circulation. Arrhythmia and Electrophysiology, 3(4), 324–331.PubMedCrossRef Yamada, T., Doppalapudi, H., McElderry, H. T., Okada, T., Murakami, Y., Inden, Y., et al. (2010). Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: relevance for catheter ablation. Circulation. Arrhythmia and Electrophysiology, 3(4), 324–331.PubMedCrossRef
41.
Zurück zum Zitat Crawford, T., Mueller, G., Good, E., Jongnarangsin, K., Chugh, A., Pelosi, F., Jr., et al. (2010). Ventricular arrhythmias originating from papillary muscles in the right ventricle. Heart Rhythm, 7(6), 725–730.PubMedCrossRef Crawford, T., Mueller, G., Good, E., Jongnarangsin, K., Chugh, A., Pelosi, F., Jr., et al. (2010). Ventricular arrhythmias originating from papillary muscles in the right ventricle. Heart Rhythm, 7(6), 725–730.PubMedCrossRef
42.
Zurück zum Zitat Sriram, C. S., Syed, F. F., Ferguson, M. E., Johnson, J. N., Enriquez-Sarano, M., Cetta, F., et al. (2013). Malignant Bileaflet Mitral Valve Prolapse Syndrome in Patients With Otherwise Idiopathic Out-of-Hospital Cardiac Arrest. Journal of the American College of Cardiology, 62(3), 222–230.PubMedCrossRef Sriram, C. S., Syed, F. F., Ferguson, M. E., Johnson, J. N., Enriquez-Sarano, M., Cetta, F., et al. (2013). Malignant Bileaflet Mitral Valve Prolapse Syndrome in Patients With Otherwise Idiopathic Out-of-Hospital Cardiac Arrest. Journal of the American College of Cardiology, 62(3), 222–230.PubMedCrossRef
43.
Zurück zum Zitat Victor, S., & Nayak, V. M. (1995). Variations in the papillary muscles of the normal mitral valve and their surgical relevance. Journal of Cardiac Surgery, 10(5), 597–607.PubMedCrossRef Victor, S., & Nayak, V. M. (1995). Variations in the papillary muscles of the normal mitral valve and their surgical relevance. Journal of Cardiac Surgery, 10(5), 597–607.PubMedCrossRef
44.
Zurück zum Zitat Nigri, G. R., Di Dio, L. J., & Baptista, C. A. (2001). Papillary muscles and tendinous cords of the right ventricle of the human heart: morphological characteristics. Surgical and Radiologic Anatomy, 23(1), 45–49.PubMedCrossRef Nigri, G. R., Di Dio, L. J., & Baptista, C. A. (2001). Papillary muscles and tendinous cords of the right ventricle of the human heart: morphological characteristics. Surgical and Radiologic Anatomy, 23(1), 45–49.PubMedCrossRef
45.
Zurück zum Zitat Han, Y., Peters, D. C., Salton, C. J., Bzymek, D., Nezafat, R., Goddu, B., et al. (2008). Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC. Cardiovascular Imaging, 1(3), 294–303.PubMedCrossRef Han, Y., Peters, D. C., Salton, C. J., Bzymek, D., Nezafat, R., Goddu, B., et al. (2008). Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC. Cardiovascular Imaging, 1(3), 294–303.PubMedCrossRef
46.
Zurück zum Zitat Myerburg, R. J., Nilsson, K., & Gelband, H. (1972). Physiology of canine intraventricular conduction and endocardial excitation. Circulation Research, 30(2), 217–243.PubMedCrossRef Myerburg, R. J., Nilsson, K., & Gelband, H. (1972). Physiology of canine intraventricular conduction and endocardial excitation. Circulation Research, 30(2), 217–243.PubMedCrossRef
47.
Zurück zum Zitat Veenstra, R. D., Joyner, R. W., & Rawling, D. A. (1984). Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the Purkinje-ventricular conduction delay. Circulation Research, 54(5), 500–515.PubMedCrossRef Veenstra, R. D., Joyner, R. W., & Rawling, D. A. (1984). Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the Purkinje-ventricular conduction delay. Circulation Research, 54(5), 500–515.PubMedCrossRef
48.
Zurück zum Zitat Abdulla, A. K., Frustaci, A., Martinez, J. E., Florio, R. A., Somerville, J., & Olsen, E. G. (1990). Echocardiography and pathology of left ventricular "false tendons". Chest, 98(1), 129–132.PubMedCrossRef Abdulla, A. K., Frustaci, A., Martinez, J. E., Florio, R. A., Somerville, J., & Olsen, E. G. (1990). Echocardiography and pathology of left ventricular "false tendons". Chest, 98(1), 129–132.PubMedCrossRef
49.
Zurück zum Zitat Kervancioglu, M., Ozbag, D., Kervancioglu, P., Hatipoglu, E. S., Kilinc, M., Yilmaz, F., et al. (2003). Echocardiographic and morphologic examination of left ventricular false tendons in human and animal hearts. Clinical Anatomy, 16(5), 389–395.PubMedCrossRef Kervancioglu, M., Ozbag, D., Kervancioglu, P., Hatipoglu, E. S., Kilinc, M., Yilmaz, F., et al. (2003). Echocardiographic and morphologic examination of left ventricular false tendons in human and animal hearts. Clinical Anatomy, 16(5), 389–395.PubMedCrossRef
50.
Zurück zum Zitat Loukas, M., Wartmann, C. T., Tubbs, R. S., Apaydin, N., Louis, R. G., Jr., Black, B., et al. (2008). Right ventricular false tendons, a cadaveric approach. Surgical and Radiologic Anatomy, 30(4), 317–322.PubMedCrossRef Loukas, M., Wartmann, C. T., Tubbs, R. S., Apaydin, N., Louis, R. G., Jr., Black, B., et al. (2008). Right ventricular false tendons, a cadaveric approach. Surgical and Radiologic Anatomy, 30(4), 317–322.PubMedCrossRef
51.
Zurück zum Zitat Luetmer, P. H., Edwards, W. D., Seward, J. B., & Tajik, A. J. (1986). Incidence and distribution of left ventricular false tendons: an autopsy study of 483 normal human hearts. Journal of the American College of Cardiology, 8(1), 179–183.PubMedCrossRef Luetmer, P. H., Edwards, W. D., Seward, J. B., & Tajik, A. J. (1986). Incidence and distribution of left ventricular false tendons: an autopsy study of 483 normal human hearts. Journal of the American College of Cardiology, 8(1), 179–183.PubMedCrossRef
52.
Zurück zum Zitat Suwa, M., Hirota, Y., Kaku, K., Yoneda, Y., Nakayama, A., Kawamura, K., et al. (1988). Prevalence of the coexistence of left ventricular false tendons and premature ventricular complexes in apparently healthy subjects: a prospective study in the general population. Journal of the American College of Cardiology, 12(4), 910–914.PubMedCrossRef Suwa, M., Hirota, Y., Kaku, K., Yoneda, Y., Nakayama, A., Kawamura, K., et al. (1988). Prevalence of the coexistence of left ventricular false tendons and premature ventricular complexes in apparently healthy subjects: a prospective study in the general population. Journal of the American College of Cardiology, 12(4), 910–914.PubMedCrossRef
53.
Zurück zum Zitat Suwa, M., Hirota, Y., Nagao, H., Kino, M., & Kawamura, K. (1984). Incidence of the coexistence of left ventricular false tendons and premature ventricular contractions in apparently healthy subjects. Circulation, 70(5), 793–798.PubMedCrossRef Suwa, M., Hirota, Y., Nagao, H., Kino, M., & Kawamura, K. (1984). Incidence of the coexistence of left ventricular false tendons and premature ventricular contractions in apparently healthy subjects. Circulation, 70(5), 793–798.PubMedCrossRef
54.
Zurück zum Zitat Kuznetsov, V. A., Kuznetsova, N. I., Loginov, O. L., Osokin, S. A., Shalaev, S. V., & Gizatulina, T. P. (1992). Relationship between ventricular arrhythmias and left ventricular false tendons in acute myocardial infarction. Revista Portuguesa de Cardiologia, 11(12), 1125–1131.PubMed Kuznetsov, V. A., Kuznetsova, N. I., Loginov, O. L., Osokin, S. A., Shalaev, S. V., & Gizatulina, T. P. (1992). Relationship between ventricular arrhythmias and left ventricular false tendons in acute myocardial infarction. Revista Portuguesa de Cardiologia, 11(12), 1125–1131.PubMed
55.
Zurück zum Zitat Thakur, R. K., Klein, G. J., Sivaram, C. A., Zardini, M., Schleinkofer, D. E., Nakagawa, H., et al. (1996). Anatomic substrate for idiopathic left ventricular tachycardia. Circulation, 93(3), 497–501.PubMedCrossRef Thakur, R. K., Klein, G. J., Sivaram, C. A., Zardini, M., Schleinkofer, D. E., Nakagawa, H., et al. (1996). Anatomic substrate for idiopathic left ventricular tachycardia. Circulation, 93(3), 497–501.PubMedCrossRef
56.
Zurück zum Zitat Akhtar, M., Gilbert, C., Wolf, F. G., & Schmidt, D. H. (1978). Reentry within the His-Purkinje system. Elucidation of reentrant circuit using right bundle branch and His bundle recordings. Circulation, 58(2), 295–304.PubMedCrossRef Akhtar, M., Gilbert, C., Wolf, F. G., & Schmidt, D. H. (1978). Reentry within the His-Purkinje system. Elucidation of reentrant circuit using right bundle branch and His bundle recordings. Circulation, 58(2), 295–304.PubMedCrossRef
57.
Zurück zum Zitat Bogun, F., Good, E., Reich, S., Elmouchi, D., Igic, P., Tschopp, D., et al. (2006). Role of Purkinje fibers in post-infarction ventricular tachycardia. Journal of the American College of Cardiology, 48(12), 2500–2507.PubMedCrossRef Bogun, F., Good, E., Reich, S., Elmouchi, D., Igic, P., Tschopp, D., et al. (2006). Role of Purkinje fibers in post-infarction ventricular tachycardia. Journal of the American College of Cardiology, 48(12), 2500–2507.PubMedCrossRef
58.
Zurück zum Zitat Hayashi, M., Kobayashi, Y., Iwasaki, Y. K., Morita, N., Miyauchi, Y., Kato, T., et al. (2006). Novel mechanism of postinfarction ventricular tachycardia originating in surviving left posterior Purkinje fibers. Heart Rhythm, 3(8), 908–918.PubMedCrossRef Hayashi, M., Kobayashi, Y., Iwasaki, Y. K., Morita, N., Miyauchi, Y., Kato, T., et al. (2006). Novel mechanism of postinfarction ventricular tachycardia originating in surviving left posterior Purkinje fibers. Heart Rhythm, 3(8), 908–918.PubMedCrossRef
59.
Zurück zum Zitat Dun, W., & Boyden, P. A. (2008). The Purkinje cell; 2008 style. Journal of Molecular and Cellular Cardiology, 45(5), 617–624.PubMedCrossRef Dun, W., & Boyden, P. A. (2008). The Purkinje cell; 2008 style. Journal of Molecular and Cellular Cardiology, 45(5), 617–624.PubMedCrossRef
60.
Zurück zum Zitat Peters, N. S., & Wit, A. L. (1998). Myocardial architecture and ventricular arrhythmogenesis. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Circulation, 97(17), 1746–1754.PubMedCrossRef Peters, N. S., & Wit, A. L. (1998). Myocardial architecture and ventricular arrhythmogenesis. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Circulation, 97(17), 1746–1754.PubMedCrossRef
61.
Zurück zum Zitat Xie, Y., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2010). So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophysical Journal, 99(5), 1408–1415.PubMedCentralPubMedCrossRef Xie, Y., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2010). So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophysical Journal, 99(5), 1408–1415.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Szumowski, L., Sanders, P., Walczak, F., Hocini, M., Jais, P., Kepski, R., et al. (2004). Mapping and ablation of polymorphic ventricular tachycardia after myocardial infarction. Journal of the American College of Cardiology, 44(8), 1700–1706.PubMedCrossRef Szumowski, L., Sanders, P., Walczak, F., Hocini, M., Jais, P., Kepski, R., et al. (2004). Mapping and ablation of polymorphic ventricular tachycardia after myocardial infarction. Journal of the American College of Cardiology, 44(8), 1700–1706.PubMedCrossRef
63.
Zurück zum Zitat Tabereaux, P. B., Walcott, G. P., Rogers, J. M., Kim, J., Dosdall, D. J., Robertson, P. G., et al. (2007). Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation, 116(10), 1113–1119.PubMedCrossRef Tabereaux, P. B., Walcott, G. P., Rogers, J. M., Kim, J., Dosdall, D. J., Robertson, P. G., et al. (2007). Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation, 116(10), 1113–1119.PubMedCrossRef
64.
Zurück zum Zitat Dosdall, D. J., Cheng, K. A., Huang, J., Allison, J. S., Allred, J. D., Smith, W. M., et al. (2007). Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm, 4(6), 758–765.PubMedCentralPubMedCrossRef Dosdall, D. J., Cheng, K. A., Huang, J., Allison, J. S., Allred, J. D., Smith, W. M., et al. (2007). Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm, 4(6), 758–765.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Janse, M. J., van Capelle, F. J., Morsink, H., Kleber, A. G., Wilms-Schopman, F., Cardinal, R., et al. (1980). Flow of "injury" current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circulation Research, 47(2), 151–165.PubMedCrossRef Janse, M. J., van Capelle, F. J., Morsink, H., Kleber, A. G., Wilms-Schopman, F., Cardinal, R., et al. (1980). Flow of "injury" current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circulation Research, 47(2), 151–165.PubMedCrossRef
66.
Zurück zum Zitat Janse, M. J., Kleber, A. G., Capucci, A., Coronel, R., & Wilms-Schopman, F. (1986). Electrophysiological basis for arrhythmias caused by acute ischemia. Role of the subendocardium. Journal of Molecular and Cellular Cardiology, 18(4), 339–355.PubMedCrossRef Janse, M. J., Kleber, A. G., Capucci, A., Coronel, R., & Wilms-Schopman, F. (1986). Electrophysiological basis for arrhythmias caused by acute ischemia. Role of the subendocardium. Journal of Molecular and Cellular Cardiology, 18(4), 339–355.PubMedCrossRef
67.
Zurück zum Zitat Damiano, R. J., Jr., Smith, P. K., Tripp, H. F., Jr., Asano, T., Small, K. W., Lowe, J. E., et al. (1986). The effect of chemical ablation of the endocardium on ventricular fibrillation threshold. Circulation, 74(3), 645–652.PubMedCrossRef Damiano, R. J., Jr., Smith, P. K., Tripp, H. F., Jr., Asano, T., Small, K. W., Lowe, J. E., et al. (1986). The effect of chemical ablation of the endocardium on ventricular fibrillation threshold. Circulation, 74(3), 645–652.PubMedCrossRef
68.
Zurück zum Zitat Haissaguerre, M., Extramiana, F., Hocini, M., Cauchemez, B., Jais, P., Cabrera, J. A., et al. (2003). Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation, 108(8), 925–928.PubMedCrossRef Haissaguerre, M., Extramiana, F., Hocini, M., Cauchemez, B., Jais, P., Cabrera, J. A., et al. (2003). Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation, 108(8), 925–928.PubMedCrossRef
69.
Zurück zum Zitat Cerrone, M., Noujaim, S. F., Tolkacheva, E. G., Talkachou, A., O’Connell, R., Berenfeld, O., et al. (2007). Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation Research, 101(10), 1039–1048.PubMedCentralPubMedCrossRef Cerrone, M., Noujaim, S. F., Tolkacheva, E. G., Talkachou, A., O’Connell, R., Berenfeld, O., et al. (2007). Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation Research, 101(10), 1039–1048.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Harris, B. S., Baicu, C. F., Haghshenas, N., Kasiganesan, H., Scholz, D., Rackley, M. S., et al. (2012). Remodeling of the peripheral cardiac conduction system in response to pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 302(8), H1712–H1725.PubMedCrossRef Harris, B. S., Baicu, C. F., Haghshenas, N., Kasiganesan, H., Scholz, D., Rackley, M. S., et al. (2012). Remodeling of the peripheral cardiac conduction system in response to pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 302(8), H1712–H1725.PubMedCrossRef
71.
Zurück zum Zitat Armiger, L. C., Urthaler, F., & James, T. N. (1979). Morphological changes in the right ventricular septomarginal trabecula (false tendon) during maturation and ageing in the dog heart. Journal of Anatomy, 129(Pt 4), 805–817.PubMed Armiger, L. C., Urthaler, F., & James, T. N. (1979). Morphological changes in the right ventricular septomarginal trabecula (false tendon) during maturation and ageing in the dog heart. Journal of Anatomy, 129(Pt 4), 805–817.PubMed
72.
Zurück zum Zitat Coghlan, H. C., Coghlan, A. R., Buckberg, G. D., & Cox, J. L. (2006). ‘The electrical spiral of the heart’: its role in the helical continuum. The hypothesis of the anisotropic conducting matrix. European Journal of Cardio-Thoracic Surgery, 29(Suppl 1), S178–S187.PubMedCrossRef Coghlan, H. C., Coghlan, A. R., Buckberg, G. D., & Cox, J. L. (2006). ‘The electrical spiral of the heart’: its role in the helical continuum. The hypothesis of the anisotropic conducting matrix. European Journal of Cardio-Thoracic Surgery, 29(Suppl 1), S178–S187.PubMedCrossRef
73.
Zurück zum Zitat Forsgren, S. (1987). Marked sympathetic innervation in the regions of the bundle branches shown by catecholamine histofluorescence. Journal of Molecular and Cellular Cardiology, 19(6), 555–568.PubMedCrossRef Forsgren, S. (1987). Marked sympathetic innervation in the regions of the bundle branches shown by catecholamine histofluorescence. Journal of Molecular and Cellular Cardiology, 19(6), 555–568.PubMedCrossRef
74.
Zurück zum Zitat Forsgren, S. (1988). The distribution of terminal sympathetic nerve fibers in bundle branches and false tendons of the bovine heart. An immunohistochemical and catecholamine histofluorescence study. Anatomy and Embryology (Berlin), 177(5), 437–443.CrossRef Forsgren, S. (1988). The distribution of terminal sympathetic nerve fibers in bundle branches and false tendons of the bovine heart. An immunohistochemical and catecholamine histofluorescence study. Anatomy and Embryology (Berlin), 177(5), 437–443.CrossRef
75.
Zurück zum Zitat Fenoglio, J. J., Jr., Albala, A., Silva, F. G., Friedman, P. L., & Wit, A. L. (1976). Structural basis of ventricular arrhythmias in human myocardial infarction: a hypothesis. Human Pathology, 7(5), 547–563.PubMedCrossRef Fenoglio, J. J., Jr., Albala, A., Silva, F. G., Friedman, P. L., & Wit, A. L. (1976). Structural basis of ventricular arrhythmias in human myocardial infarction: a hypothesis. Human Pathology, 7(5), 547–563.PubMedCrossRef
76.
Zurück zum Zitat Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C. C., Miyauchi, Y., Fang, Y. H., et al. (2006). Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. Journal of Cardiovascular Electrophysiology, 17(7), 777–783.PubMedCrossRef Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C. C., Miyauchi, Y., Fang, Y. H., et al. (2006). Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. Journal of Cardiovascular Electrophysiology, 17(7), 777–783.PubMedCrossRef
77.
Zurück zum Zitat Guo, L. S., Zhou, X., Li, Y. H., Cai, J., Wei, D. M., Shi, L., et al. (2010). Alcohol ablation at the posterior papillary muscle prevents ventricular fibrillation in swine without affecting mitral valve function. Europace, 12(12), 1781–1786.PubMedCrossRef Guo, L. S., Zhou, X., Li, Y. H., Cai, J., Wei, D. M., Shi, L., et al. (2010). Alcohol ablation at the posterior papillary muscle prevents ventricular fibrillation in swine without affecting mitral valve function. Europace, 12(12), 1781–1786.PubMedCrossRef
78.
Zurück zum Zitat Kim, Y. H., Xie, F., Yashima, M., Wu, T. J., Valderrabano, M., Lee, M. H., et al. (1999). Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. [In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Circulation, 100(13), 1450–1459.PubMedCrossRef Kim, Y. H., Xie, F., Yashima, M., Wu, T. J., Valderrabano, M., Lee, M. H., et al. (1999). Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. [In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Circulation, 100(13), 1450–1459.PubMedCrossRef
79.
Zurück zum Zitat Yokokawa, M., Good, E., Desjardins, B., Crawford, T., Jongnarangsin, K., Chugh, A., et al. (2010). Predictors of successful catheter ablation of ventricular arrhythmias arising from the papillary muscles. Heart Rhythm, 7(11), 1654–1659.PubMedCentralPubMedCrossRef Yokokawa, M., Good, E., Desjardins, B., Crawford, T., Jongnarangsin, K., Chugh, A., et al. (2010). Predictors of successful catheter ablation of ventricular arrhythmias arising from the papillary muscles. Heart Rhythm, 7(11), 1654–1659.PubMedCentralPubMedCrossRef
80.
Zurück zum Zitat Park, J., Kim, Y. H., Hwang, C., & Pak, H. N. (2012). Electroanatomical characteristics of idiopathic left ventricular tachycardia and optimal ablation target during sinus rhythm: significance of preferential conduction through Purkinje fibers. Yonsei Medical Journal, 53(2), 279–288.PubMedCentralPubMedCrossRef Park, J., Kim, Y. H., Hwang, C., & Pak, H. N. (2012). Electroanatomical characteristics of idiopathic left ventricular tachycardia and optimal ablation target during sinus rhythm: significance of preferential conduction through Purkinje fibers. Yonsei Medical Journal, 53(2), 279–288.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Nakahara, S., Toratani, N., & Takayanagi, K. (2012). Catheter ablation of ventricular tachycardia originating from the left posterior papillary muscle guided by the shadow of a multipolar catheter. Indian Pacing and Electrophysiol Journal, 12(4), 186–189. Nakahara, S., Toratani, N., & Takayanagi, K. (2012). Catheter ablation of ventricular tachycardia originating from the left posterior papillary muscle guided by the shadow of a multipolar catheter. Indian Pacing and Electrophysiol Journal, 12(4), 186–189.
82.
Zurück zum Zitat Gonzalez, R. P., Scheinman, M. M., Lesh, M. D., Helmy, I., Torres, V., & Van Hare, G. F. (1994). Clinical and electrophysiologic spectrum of fascicular tachycardias. American Heart Journal, 128(1), 147–156.PubMedCrossRef Gonzalez, R. P., Scheinman, M. M., Lesh, M. D., Helmy, I., Torres, V., & Van Hare, G. F. (1994). Clinical and electrophysiologic spectrum of fascicular tachycardias. American Heart Journal, 128(1), 147–156.PubMedCrossRef
83.
Zurück zum Zitat Del Carpio Munoz, F., Buescher, T. L., & Asirvatham, S. J. (2011). Teaching points with 3-dimensional mapping of cardiac arrhythmias: teaching point 3: when early is not early. Circulation. Arrhythmia and Electrophysiology, 4(2), e11–e14.PubMedCrossRef Del Carpio Munoz, F., Buescher, T. L., & Asirvatham, S. J. (2011). Teaching points with 3-dimensional mapping of cardiac arrhythmias: teaching point 3: when early is not early. Circulation. Arrhythmia and Electrophysiology, 4(2), e11–e14.PubMedCrossRef
84.
Zurück zum Zitat Good, E., Desjardins, B., Jongnarangsin, K., Oral, H., Chugh, A., Ebinger, M., et al. (2008). Ventricular arrhythmias originating from a papillary muscle in patients without prior infarction: a comparison with fascicular arrhythmias. Heart Rhythm, 5(11), 1530–1537.PubMedCrossRef Good, E., Desjardins, B., Jongnarangsin, K., Oral, H., Chugh, A., Ebinger, M., et al. (2008). Ventricular arrhythmias originating from a papillary muscle in patients without prior infarction: a comparison with fascicular arrhythmias. Heart Rhythm, 5(11), 1530–1537.PubMedCrossRef
85.
Zurück zum Zitat Tawara, S. (1906). Das Reizleitungssystem des Säugetierherzens. Eine anatomisch-histologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Gustav Fischer. Tawara, S. (1906). Das Reizleitungssystem des Säugetierherzens. Eine anatomisch-histologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Gustav Fischer.
86.
Zurück zum Zitat Pallante, B. A., Giovannone, S., Fang-Yu, L., Zhang, J., Liu, N., Kang, G., et al. (2010). Contactin-2 expression in the cardiac Purkinje fiber network. Circulation. Arrhythmia and Electrophysiology, 3(2), 186–194.PubMedCentralPubMedCrossRef Pallante, B. A., Giovannone, S., Fang-Yu, L., Zhang, J., Liu, N., Kang, G., et al. (2010). Contactin-2 expression in the cardiac Purkinje fiber network. Circulation. Arrhythmia and Electrophysiology, 3(2), 186–194.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Atkinson, A., Inada, S., Li, J., Tellez, J. O., Yanni, J., Sleiman, R., et al. (2011). Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. Journal of Molecular and Cellular Cardiology, 51(5), 689–701.PubMedCrossRef Atkinson, A., Inada, S., Li, J., Tellez, J. O., Yanni, J., Sleiman, R., et al. (2011). Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. Journal of Molecular and Cellular Cardiology, 51(5), 689–701.PubMedCrossRef
88.
Zurück zum Zitat Sebastian, R., Zimmerman, V., Romero, D., Sanchez-Quintana, D., & Frangi, A. F. (2013). Characterization and modeling of the peripheral cardiac conduction system. IEEE Transactions on Medical Imaging, 32(1), 45–55.PubMedCrossRef Sebastian, R., Zimmerman, V., Romero, D., Sanchez-Quintana, D., & Frangi, A. F. (2013). Characterization and modeling of the peripheral cardiac conduction system. IEEE Transactions on Medical Imaging, 32(1), 45–55.PubMedCrossRef
89.
Zurück zum Zitat Stephenson, R. S., Boyett, M. R., Hart, G., Nikolaidou, T., Cai, X., Corno, A. F., et al. (2012). Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One, 7(4), e35299.PubMedCentralPubMedCrossRef Stephenson, R. S., Boyett, M. R., Hart, G., Nikolaidou, T., Cai, X., Corno, A. F., et al. (2012). Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One, 7(4), e35299.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Gulyaeva, A. S., & Roshchevskaya, I. M. (2012). Morphology of moderator bands (septomarginal trabecula) in porcine heart ventricles. Anatomia Histologia and Embryologia, 41(5), 326–332.CrossRef Gulyaeva, A. S., & Roshchevskaya, I. M. (2012). Morphology of moderator bands (septomarginal trabecula) in porcine heart ventricles. Anatomia Histologia and Embryologia, 41(5), 326–332.CrossRef
Metadaten
Titel
The infrahisian conduction system and endocavitary cardiac structures: relevance for the invasive electrophysiologist
verfasst von
Faisal F. Syed
Jo Jo Hai
Nirusha Lachman
Christopher V. DeSimone
Samuel J. Asirvatham
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Journal of Interventional Cardiac Electrophysiology / Ausgabe 1/2014
Print ISSN: 1383-875X
Elektronische ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-013-9858-7

Weitere Artikel der Ausgabe 1/2014

Journal of Interventional Cardiac Electrophysiology 1/2014 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.