Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2014

01.03.2014 | NON-THEMATIC REVIEW

The promise of sonodynamic therapy

verfasst von: Matthew Trendowski

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Sonodynamic therapy is a potential cancer treatment modality that has been gaining support due to its effectiveness in both in vitro and in vivo studies. The therapeutic method combines ultrasonic irradiation with drugs known as sonosensitizers that amplify its ability to inflict preferential damage on malignant cells. This is based on the idea that ultrasonic waves have the ability to exhibit profound physical and chemical changes on cellular structure. The mechanisms by which ultrasound (US) disrupts cellular functioning can be further amplified when sonosensitizers are applied. Combining multiple sonosensitizers with US to create a substantial synergistic effect could be an effective method for destroying tumorigenic growths, while decreasing the likelihood of drug resistance.
Literatur
1.
Zurück zum Zitat Kuroki, M., Hachimine, K., Abe, H., Shibaguchi, H., Kuroki, M., Maekawa, S., Yanagisawa, J., Kinugasa, T., Tanaka, T., & Yamashita, Y. (2007). Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Research, 27(6A), 3673–3677.PubMed Kuroki, M., Hachimine, K., Abe, H., Shibaguchi, H., Kuroki, M., Maekawa, S., Yanagisawa, J., Kinugasa, T., Tanaka, T., & Yamashita, Y. (2007). Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Research, 27(6A), 3673–3677.PubMed
2.
Zurück zum Zitat Meng, Q., Chen, B., Wu, W., Shao, Z., Gao, F., & Zhao, H. (2008). Enhanced antitumor effects of low-frequency ultrasound combined with adriamycin on human leukemia multidrug resistance cell line K562/A02. Chinese Journal of Cancer, 27(11), 436–439. Meng, Q., Chen, B., Wu, W., Shao, Z., Gao, F., & Zhao, H. (2008). Enhanced antitumor effects of low-frequency ultrasound combined with adriamycin on human leukemia multidrug resistance cell line K562/A02. Chinese Journal of Cancer, 27(11), 436–439.
3.
Zurück zum Zitat Miller, M. W., Luque, A. E., Battaglia, L. F., Mazza, S., & Everbach, E. C. (2003). Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 1. HIV macrocytosis. Ultrasound in Medicine and Biology, 29(1), 77–91.PubMedCrossRef Miller, M. W., Luque, A. E., Battaglia, L. F., Mazza, S., & Everbach, E. C. (2003). Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 1. HIV macrocytosis. Ultrasound in Medicine and Biology, 29(1), 77–91.PubMedCrossRef
4.
Zurück zum Zitat Zhao, Y., Lu, C., Zhou, Z., Jin, Z., Sun, C., Xu, Y., Gao, H., Tian, J., Gao, F., Tang, Q., Xiang, Q., Li, X., & Li, W. (2011). Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: An in vivo experiment. Journal of Drug Targeting, 19(2), 154–160.PubMedCrossRef Zhao, Y., Lu, C., Zhou, Z., Jin, Z., Sun, C., Xu, Y., Gao, H., Tian, J., Gao, F., Tang, Q., Xiang, Q., Li, X., & Li, W. (2011). Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: An in vivo experiment. Journal of Drug Targeting, 19(2), 154–160.PubMedCrossRef
5.
Zurück zum Zitat Rosenthal, I., Sostaric, J. Z., & Riesz, P. (2004). Sonodynamic therapy—A review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry, 11(6), 349–363.PubMed Rosenthal, I., Sostaric, J. Z., & Riesz, P. (2004). Sonodynamic therapy—A review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry, 11(6), 349–363.PubMed
6.
Zurück zum Zitat Bai, W., Shen, E., & Hu, B. (2012). Induction of the apoptosis of cancer cell by sonodynamic therapy: A review. Chinese Journal of Cancer Research, 24(4), 368–373.PubMedCentralPubMedCrossRef Bai, W., Shen, E., & Hu, B. (2012). Induction of the apoptosis of cancer cell by sonodynamic therapy: A review. Chinese Journal of Cancer Research, 24(4), 368–373.PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Masui, T., Ota, I., Kanno, M., Yane, K., & Hosoi, H. (2013). Low-intensity ultrasound enhances the anticancer activity of cetuximab in human head and neck cancer cells. Experimental and Therapeutic Medicine, 5(1), 11–16.PubMedCentralPubMed Masui, T., Ota, I., Kanno, M., Yane, K., & Hosoi, H. (2013). Low-intensity ultrasound enhances the anticancer activity of cetuximab in human head and neck cancer cells. Experimental and Therapeutic Medicine, 5(1), 11–16.PubMedCentralPubMed
8.
Zurück zum Zitat Wang, P., Wang, X., & Liu, Q. (2012). Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound. Tumori, 98(4), 523–531.PubMed Wang, P., Wang, X., & Liu, Q. (2012). Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound. Tumori, 98(4), 523–531.PubMed
9.
Zurück zum Zitat Wang, X., Liu, Q., Wang, Z., Wang, P., Hao, Q., & Li, C. (2009). Bioeffects of low-energy continuous ultrasound on isolated sarcoma 180 cells. Chemotherapy, 55(4), 253–261.PubMedCrossRef Wang, X., Liu, Q., Wang, Z., Wang, P., Hao, Q., & Li, C. (2009). Bioeffects of low-energy continuous ultrasound on isolated sarcoma 180 cells. Chemotherapy, 55(4), 253–261.PubMedCrossRef
10.
Zurück zum Zitat Schuster, A., Schwab, M., Bischof, M., Klotz, M., Lemor, R., Degel, C., & Schäfer, K. H. (2013). Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy, 195, 57–67.PubMedCrossRef Schuster, A., Schwab, M., Bischof, M., Klotz, M., Lemor, R., Degel, C., & Schäfer, K. H. (2013). Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy, 195, 57–67.PubMedCrossRef
11.
Zurück zum Zitat Chen, W., Brayman, A. A., Matula, T. J., Crum, L. A., & Miller, M. W. (2003). The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound in Medicine and Biology, 29(5), 739–748.PubMedCrossRef Chen, W., Brayman, A. A., Matula, T. J., Crum, L. A., & Miller, M. W. (2003). The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound in Medicine and Biology, 29(5), 739–748.PubMedCrossRef
12.
Zurück zum Zitat Lagneaux, L., Cordemans de Meulenaer, E., Delforge, A., Dejeneffe, M., Massy, M., Moerman, C., Hannecart, B., Canivet, Y., Lepeltier, M., & Bron, D. (2002). Ultrasonic low-energy treatment: A novel approach to induce apoptosis in human leukemic cells. Experimental Hematology, 30, 1293–1301.PubMedCrossRef Lagneaux, L., Cordemans de Meulenaer, E., Delforge, A., Dejeneffe, M., Massy, M., Moerman, C., Hannecart, B., Canivet, Y., Lepeltier, M., & Bron, D. (2002). Ultrasonic low-energy treatment: A novel approach to induce apoptosis in human leukemic cells. Experimental Hematology, 30, 1293–1301.PubMedCrossRef
13.
Zurück zum Zitat Shibaguchi, H., Tsuru, H., Kuroki, M., & Kuroki, M. (2011). Sonodynamic cancer therapy: A non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer Research, 31(7), 2425–2459.PubMed Shibaguchi, H., Tsuru, H., Kuroki, M., & Kuroki, M. (2011). Sonodynamic cancer therapy: A non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer Research, 31(7), 2425–2459.PubMed
14.
Zurück zum Zitat Goertz, D. E., Todorova, M., Mortazavi, O., Agache, V., Chen, B., Karshafian, R., & Hynynen, K. (2012). Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One, 7(12), 1–11.CrossRef Goertz, D. E., Todorova, M., Mortazavi, O., Agache, V., Chen, B., Karshafian, R., & Hynynen, K. (2012). Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One, 7(12), 1–11.CrossRef
15.
Zurück zum Zitat Lee, N. G., Berry, J. L., Lee, T. C., Wang, A. T., Honowitz, S., Murphree, A. L., Varshney, N., Hinton, D. R., & Fawzi, A. A. (2011). Sonoporation enhances chemotherapeutic efficacy in retinoblastoma cells in vitro. Investigative Ophthalmology & Visual Science, 52(6), 3868–3873.CrossRef Lee, N. G., Berry, J. L., Lee, T. C., Wang, A. T., Honowitz, S., Murphree, A. L., Varshney, N., Hinton, D. R., & Fawzi, A. A. (2011). Sonoporation enhances chemotherapeutic efficacy in retinoblastoma cells in vitro. Investigative Ophthalmology & Visual Science, 52(6), 3868–3873.CrossRef
16.
Zurück zum Zitat Tinkov, S., Coester, C., Serba, S., Geis, N. A., Katus, H. A., Winter, G., & Bekeredjian, R. (2010). New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization. Journal of Controlled Release, 148(3), 368–372.PubMedCrossRef Tinkov, S., Coester, C., Serba, S., Geis, N. A., Katus, H. A., Winter, G., & Bekeredjian, R. (2010). New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization. Journal of Controlled Release, 148(3), 368–372.PubMedCrossRef
17.
Zurück zum Zitat Gao, Z., Zheng, J., Yang, B., Wang, Z., Fan, H., Lv, Y., Li, H., Jia, L., & Cao, W. (2013). Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Letters, 335(1), 93–99.PubMedCrossRef Gao, Z., Zheng, J., Yang, B., Wang, Z., Fan, H., Lv, Y., Li, H., Jia, L., & Cao, W. (2013). Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Letters, 335(1), 93–99.PubMedCrossRef
18.
Zurück zum Zitat Mizrahi, N., Zhou, E. H., Lenormand, G., Krishnan, R., Weihs, D., Butler, J. P., Weitz, D. A., Fredberg, J. J., & Kimmel, E. (2012). Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter, 8(8), 2438–2443.PubMedCentralPubMedCrossRef Mizrahi, N., Zhou, E. H., Lenormand, G., Krishnan, R., Weihs, D., Butler, J. P., Weitz, D. A., Fredberg, J. J., & Kimmel, E. (2012). Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter, 8(8), 2438–2443.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Honda, H., Kondo, T., Zhao, Q., Feril, L. B., Jr., & Kitatgawa, H. (2004). Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound in Medicine and Biology, 30(5), 683–692.PubMedCrossRef Honda, H., Kondo, T., Zhao, Q., Feril, L. B., Jr., & Kitatgawa, H. (2004). Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound in Medicine and Biology, 30(5), 683–692.PubMedCrossRef
20.
Zurück zum Zitat Feng, Y., Tian, Z., & Wan, M. (2010). Bioeffects of low-intensity ultrasound in vitro: Apoptosis, protein profile alteration, and potential molecular mechanism. Journal of Ultrasound in Medicine, 29(6), 963–974.PubMed Feng, Y., Tian, Z., & Wan, M. (2010). Bioeffects of low-intensity ultrasound in vitro: Apoptosis, protein profile alteration, and potential molecular mechanism. Journal of Ultrasound in Medicine, 29(6), 963–974.PubMed
21.
Zurück zum Zitat Feng, Y., Tian, Z. M., Wan, M. X., & Zheng, Z. B. (2008). Low intensity ultrasound-induced apoptosis in human gastric carcinoma cells. World Journal of Gastroenterology, 14(31), 4873–4879.PubMedCentralPubMedCrossRef Feng, Y., Tian, Z. M., Wan, M. X., & Zheng, Z. B. (2008). Low intensity ultrasound-induced apoptosis in human gastric carcinoma cells. World Journal of Gastroenterology, 14(31), 4873–4879.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Hassan, M. A., Campbell, P., & Kondo, T. (2010). The role of Ca(2+) in ultrasound-elicited bioeffects: Progress, perspectives and prospects. Drug Discovery Today, 15(21-22), 892–906.PubMedCrossRef Hassan, M. A., Campbell, P., & Kondo, T. (2010). The role of Ca(2+) in ultrasound-elicited bioeffects: Progress, perspectives and prospects. Drug Discovery Today, 15(21-22), 892–906.PubMedCrossRef
23.
Zurück zum Zitat Ashush, H., Rozenszajn, L. A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D., & Rosenschein, U. (2000). Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Research, 60(4), 1014–1020.PubMed Ashush, H., Rozenszajn, L. A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D., & Rosenschein, U. (2000). Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Research, 60(4), 1014–1020.PubMed
24.
Zurück zum Zitat Firestein, F., Rozenszajn, L. A., Shemesh-Darvish, L., Elimelech, R., Radnay, J., & Rosenschein, U. (2003). Induction of apoptosis by ultrasound application in human malignant lymphoid cells: Role of mitochondria–caspase pathway activation. Annals of the New York Academy of Sciences, 1010, 163–166.PubMedCrossRef Firestein, F., Rozenszajn, L. A., Shemesh-Darvish, L., Elimelech, R., Radnay, J., & Rosenschein, U. (2003). Induction of apoptosis by ultrasound application in human malignant lymphoid cells: Role of mitochondria–caspase pathway activation. Annals of the New York Academy of Sciences, 1010, 163–166.PubMedCrossRef
25.
Zurück zum Zitat Su, X., Wang, P., Wang, X., Cao, B., Li, L., & Liu, Q. (2013). Apoptosis of U937 cells induced by hematoporphyrin monomethyl ether-mediated sonodynamic action. Cancer Biotherapy and Radiopharmaceuticals, 28, 207–217.PubMedCentralPubMedCrossRef Su, X., Wang, P., Wang, X., Cao, B., Li, L., & Liu, Q. (2013). Apoptosis of U937 cells induced by hematoporphyrin monomethyl ether-mediated sonodynamic action. Cancer Biotherapy and Radiopharmaceuticals, 28, 207–217.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Wang, X., Wang, P., Zhang, K., Su, X., Hou, J., & Liu, Q. (2013). Initiation of autophagy and apoptosis by sonodynamic therapy in murine leukemia L1210 cells. Toxicology In Vitro, 27(4), 1247–1259.PubMedCrossRef Wang, X., Wang, P., Zhang, K., Su, X., Hou, J., & Liu, Q. (2013). Initiation of autophagy and apoptosis by sonodynamic therapy in murine leukemia L1210 cells. Toxicology In Vitro, 27(4), 1247–1259.PubMedCrossRef
27.
Zurück zum Zitat Takeuchi, S., Udagawa, Y., Oku, Y., Fujii, T., Nishimura, H., & Kawashima, N. (2006). Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure. Ultrasonics, 44, 345–348.CrossRef Takeuchi, S., Udagawa, Y., Oku, Y., Fujii, T., Nishimura, H., & Kawashima, N. (2006). Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure. Ultrasonics, 44, 345–348.CrossRef
28.
Zurück zum Zitat Ozben, T. (2007). Oxidative stress and apoptosis: Impact on cancer therapy. Journal of Pharmaceutical Sciences, 96(9), 2181–2196.PubMedCrossRef Ozben, T. (2007). Oxidative stress and apoptosis: Impact on cancer therapy. Journal of Pharmaceutical Sciences, 96(9), 2181–2196.PubMedCrossRef
29.
Zurück zum Zitat Davis, W., Jr., Ronai, Z., & Tew, K. (2001). Cellular thiols and reactive oxygen species in drug-induced apoptosis. Journal of Pharmacology and Experimental Therapeutics, 296(1), 1–6.PubMed Davis, W., Jr., Ronai, Z., & Tew, K. (2001). Cellular thiols and reactive oxygen species in drug-induced apoptosis. Journal of Pharmacology and Experimental Therapeutics, 296(1), 1–6.PubMed
30.
Zurück zum Zitat Hassan, M. A., Furusawa, Y., Minemura, M., Rapoport, N., Sugiyama, T., & Kondo, T. (2012). Ultrasound-induced new cellular mechanism involved in drug resistance. PLoS One, 7(12), e48291.PubMedCentralPubMedCrossRef Hassan, M. A., Furusawa, Y., Minemura, M., Rapoport, N., Sugiyama, T., & Kondo, T. (2012). Ultrasound-induced new cellular mechanism involved in drug resistance. PLoS One, 7(12), e48291.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Yoshida, T., Kondo, T., Ogawa, R., Feril, L. B., Jr., Zhao, Q. L., Watanabe, A., & Tsukada, K. (2008). Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemotherapy and Pharmacology, 61(4), 559–567.PubMedCrossRef Yoshida, T., Kondo, T., Ogawa, R., Feril, L. B., Jr., Zhao, Q. L., Watanabe, A., & Tsukada, K. (2008). Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemotherapy and Pharmacology, 61(4), 559–567.PubMedCrossRef
32.
Zurück zum Zitat Tsuru, H., Shibaguchi, H., Kuroki, M., Yamashita, Y., & Kuroki, M. (2012). Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radical Biology and Medicine, 53(3), 464–472.PubMedCrossRef Tsuru, H., Shibaguchi, H., Kuroki, M., Yamashita, Y., & Kuroki, M. (2012). Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radical Biology and Medicine, 53(3), 464–472.PubMedCrossRef
33.
Zurück zum Zitat Yumita, N., Iwase, Y., Nishi, K., Komatsu, H., Takeda, K., Onodera, K., Fukai, T., Ikeda, T., Umemura, S., Okudaira, K., & Momose, Y. (2012). Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics, 2(9), 880–888.PubMedCentralPubMedCrossRef Yumita, N., Iwase, Y., Nishi, K., Komatsu, H., Takeda, K., Onodera, K., Fukai, T., Ikeda, T., Umemura, S., Okudaira, K., & Momose, Y. (2012). Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics, 2(9), 880–888.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Dai, S., Hu, S., & Wu, C. (2009). Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro. Acta Neurochirurgica, 151(12), 1655–1661.PubMedCrossRef Dai, S., Hu, S., & Wu, C. (2009). Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro. Acta Neurochirurgica, 151(12), 1655–1661.PubMedCrossRef
35.
Zurück zum Zitat Liang, L., Xie, S., Jiang, L., Jin, H., Li, S., & Liu, J. (2013). The combined effects of hematoporphyrin monomethyl ether–SDT and doxorubicin on the proliferation of QBC939 cell lines. Ultrasound in Medicine and Biology, 39(1), 146–160.PubMedCrossRef Liang, L., Xie, S., Jiang, L., Jin, H., Li, S., & Liu, J. (2013). The combined effects of hematoporphyrin monomethyl ether–SDT and doxorubicin on the proliferation of QBC939 cell lines. Ultrasound in Medicine and Biology, 39(1), 146–160.PubMedCrossRef
36.
Zurück zum Zitat Yumita, N., Iwase, Y., Nishi, K., Ikeda, T., Umemura, S., Sakata, I., & Momose, Y. (2010). Sonodynamically induced cell damage and membrane lipid peroxidation by novel porphyrin derivative, DCPH-P-Na(I). Anticancer Research, 30(6), 2241–2246.PubMed Yumita, N., Iwase, Y., Nishi, K., Ikeda, T., Umemura, S., Sakata, I., & Momose, Y. (2010). Sonodynamically induced cell damage and membrane lipid peroxidation by novel porphyrin derivative, DCPH-P-Na(I). Anticancer Research, 30(6), 2241–2246.PubMed
37.
Zurück zum Zitat Hao, Q., Liu, Q., Wang, X., Wang, P., Li, T., & Tong, W. Y. (2009). Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells. Cancer Biotherapy and Radiopharmaceuticals, 24(1), 41–48.PubMedCrossRef Hao, Q., Liu, Q., Wang, X., Wang, P., Li, T., & Tong, W. Y. (2009). Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells. Cancer Biotherapy and Radiopharmaceuticals, 24(1), 41–48.PubMedCrossRef
38.
Zurück zum Zitat Torres, C. (2007). Effects in cell viability of probe sonication cytochalasin-B treated U937 human leukemia cells. Syracuse University ARISE Program, pp. 1–12. Torres, C. (2007). Effects in cell viability of probe sonication cytochalasin-B treated U937 human leukemia cells. Syracuse University ARISE Program, pp. 1–12.
39.
Zurück zum Zitat Skorpíková, J., Dolníková, M., Hrazdira, I., & Janisch, R. (2001). Changes in microtubules and microfilaments due to a combined effect of ultrasound and cytostatics in HeLa cells. Folia Biologica, 47(4), 143–147.PubMed Skorpíková, J., Dolníková, M., Hrazdira, I., & Janisch, R. (2001). Changes in microtubules and microfilaments due to a combined effect of ultrasound and cytostatics in HeLa cells. Folia Biologica, 47(4), 143–147.PubMed
40.
Zurück zum Zitat Todorova, M., Agache, V., Mortazavi, O., Chen, B., Karshafian, R., Hynynen, K., Man, S., Kerbel, R. S., & Goertz, D. E. (2013). Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulates microbubbles. International Journal of Cancer, 132(12), 2956–2966.CrossRef Todorova, M., Agache, V., Mortazavi, O., Chen, B., Karshafian, R., Hynynen, K., Man, S., Kerbel, R. S., & Goertz, D. E. (2013). Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulates microbubbles. International Journal of Cancer, 132(12), 2956–2966.CrossRef
Metadaten
Titel
The promise of sonodynamic therapy
verfasst von
Matthew Trendowski
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9461-5

Weitere Artikel der Ausgabe 1/2014

Cancer and Metastasis Reviews 1/2014 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.