Skip to main content
Erschienen in: Annals of Nuclear Medicine 12/2020

03.11.2020 | Original Article

The quantification of PET–CT radiotracers to determine minimal scan time using quadratic formulation

verfasst von: Mohamad Aminudin Said, Marianie Musarudin, Nur Farahiyah Zulkaffli

Erschienen in: Annals of Nuclear Medicine | Ausgabe 12/2020

Einloggen, um Zugang zu erhalten

Abstract

Objective

18F is the most extensively used radioisotope in current clinical practices of PET imaging. This selection is based on the several criteria of pure PET radioisotopes with an optimum half-life, and low positron energy that contributes to a smaller positron range. In addition to 18F, other radioisotopes such as 68Ga and 124I are currently gained much attention with the increase in interest in new PET tracers entering the clinical trials. This study aims to determine the minimal scan time per bed position (Tmin) for the 124I and 68Ga based on the quantitative differences in PET imaging of 68Ga and 124I relative to 18F.

Methods

The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%.

Results

Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied.

Conclusion

We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.
Literatur
1.
Zurück zum Zitat Jessica EM, James RH. Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol. 2015;2(2):159–68.CrossRef Jessica EM, James RH. Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol. 2015;2(2):159–68.CrossRef
2.
Zurück zum Zitat Wimmer I, Pichler R. Thyroid cancer: advances in diagnosis and therapy FDG PET in thyroid cancer. London: IntechOpen; 2016. Wimmer I, Pichler R. Thyroid cancer: advances in diagnosis and therapy FDG PET in thyroid cancer. London: IntechOpen; 2016.
3.
Zurück zum Zitat Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.CrossRef Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.CrossRef
4.
Zurück zum Zitat Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S10–8.CrossRef Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S10–8.CrossRef
5.
Zurück zum Zitat Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51(4):610–7.CrossRef Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51(4):610–7.CrossRef
7.
Zurück zum Zitat Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievement and future challenges. Imaging Med. 2010;2(5):529–45.CrossRef Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievement and future challenges. Imaging Med. 2010;2(5):529–45.CrossRef
8.
Zurück zum Zitat Koopman D, van Osch JAC, Jager PL, Tenbergen CJA, Knollema S, Slump CH, et al. Technical note: how to determine the FDG activity for tumour PET imaging that satisfies European guidelines. EJNMMI Phys. 2016;3(1):22.CrossRef Koopman D, van Osch JAC, Jager PL, Tenbergen CJA, Knollema S, Slump CH, et al. Technical note: how to determine the FDG activity for tumour PET imaging that satisfies European guidelines. EJNMMI Phys. 2016;3(1):22.CrossRef
9.
Zurück zum Zitat Buvat I, Frey E, Green A, Ljungberg M. Quantitative nuclear medicine imaging: concepts, requirements and methods. Human health reports. Vienna: International Atomic Energy Agency; 2014. Buvat I, Frey E, Green A, Ljungberg M. Quantitative nuclear medicine imaging: concepts, requirements and methods. Human health reports. Vienna: International Atomic Energy Agency; 2014.
10.
Zurück zum Zitat Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed
11.
Zurück zum Zitat Ziegler S, Jakoby BW, Braun H, Paulus DH, Quick HH. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI Phys. 2015;2(1):18.CrossRef Ziegler S, Jakoby BW, Braun H, Paulus DH, Quick HH. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI Phys. 2015;2(1):18.CrossRef
12.
Zurück zum Zitat Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS ONE. 2013;8(2):e55742.CrossRef Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS ONE. 2013;8(2):e55742.CrossRef
13.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRef
14.
Zurück zum Zitat Musarudin M, Muhammad SSH, Said M. Implementation of quadratic dose protocol for 18F-FDG whole-body PET imaging using a BGO-based PET/CT scanner, GE Discovery ST. Iran J Nucl Med. 2019;27(2):73–80. Musarudin M, Muhammad SSH, Said M. Implementation of quadratic dose protocol for 18F-FDG whole-body PET imaging using a BGO-based PET/CT scanner, GE Discovery ST. Iran J Nucl Med. 2019;27(2):73–80.
15.
Zurück zum Zitat Fukukita H, Suzuki K, Matsumoto K, Terauchi T, Daisaki H, Ikari Y, et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of version 2.0. Ann Nucl Med. 2014;28:693–705.CrossRef Fukukita H, Suzuki K, Matsumoto K, Terauchi T, Daisaki H, Ikari Y, et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of version 2.0. Ann Nucl Med. 2014;28:693–705.CrossRef
Metadaten
Titel
The quantification of PET–CT radiotracers to determine minimal scan time using quadratic formulation
verfasst von
Mohamad Aminudin Said
Marianie Musarudin
Nur Farahiyah Zulkaffli
Publikationsdatum
03.11.2020
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 12/2020
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01543-x

Weitere Artikel der Ausgabe 12/2020

Annals of Nuclear Medicine 12/2020 Zur Ausgabe