Skip to main content
Erschienen in: Current Hepatology Reports 2/2019

16.05.2019 | Portal Hypertension (J Gonzalez-Abraldes and E Tsochatzis, Section Editors)

The Role of Hepatic and Splanchnic Lymphatic System in Portal Hypertension and Ascites

verfasst von: Jordi Ribera, Bernat Córdoba-Jover, Irene Portolés, Manuel Morales-Ruiz

Erschienen in: Current Hepatology Reports | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The lymphatic network plays a major role in maintaining tissue fluid homeostasis. Therefore, several pathological conditions associated with edema formation result in deficient lymphatic function. However, traditionally, the lymphatic system has been underestimated until recent years when it has been noticed the importance of this system in chronic liver disease. This review highlights the knowledge of lymphatic biology in the context of portal hypertension and liver cirrhosis.

Recent Findings

Among different roles of lymphatic system in liver disease, two remarkable ones are the contribution in ascites accumulation and the hepatic lymphangiogenesis in portal hypertension which is regulated by sympathetic nerves.

Summary

The identification of novel pathological mechanisms has focused efforts into correction of structural changes and function affecting lymphatic vessels in liver disease. Despite the knowledge gained, we still have to face many unresolved questions concerning the role played by the lymphatic system in chronic liver disease and the design of therapeutic targeting.
Literatur
1.
Zurück zum Zitat Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009;335:97–108.CrossRefPubMed Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009;335:97–108.CrossRefPubMed
2.
Zurück zum Zitat Olszewski WL. The innate reaction of the human skin lymphatic system to foreign and self-antigens. Lymphat Res Biol. 2005;3:50–7.CrossRefPubMed Olszewski WL. The innate reaction of the human skin lymphatic system to foreign and self-antigens. Lymphat Res Biol. 2005;3:50–7.CrossRefPubMed
3.
Zurück zum Zitat Bruyè F, Noël AS. Lymphangiogenesis: in vitro and in vivo models. FASEB J. 2010;24:8–21.CrossRef Bruyè F, Noël AS. Lymphangiogenesis: in vitro and in vivo models. FASEB J. 2010;24:8–21.CrossRef
4.
Zurück zum Zitat Halin C, Detmar M. An unexpected connection: lymph node lymphangiogenesis and dendritic cell migration. Immunity. 2006;24:129–31.CrossRefPubMed Halin C, Detmar M. An unexpected connection: lymph node lymphangiogenesis and dendritic cell migration. Immunity. 2006;24:129–31.CrossRefPubMed
5.
Zurück zum Zitat Szuba A, Rockson SG. Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997;2:321–6.CrossRefPubMed Szuba A, Rockson SG. Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997;2:321–6.CrossRefPubMed
6.
Zurück zum Zitat Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann N Y Acad Sci. 2008;1131:50–74.CrossRefPubMed Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann N Y Acad Sci. 2008;1131:50–74.CrossRefPubMed
7.
9.
Zurück zum Zitat Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32:629–44.CrossRefPubMedPubMedCentral Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32:629–44.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Yang Y, García-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 2012;120:2340–8.CrossRefPubMedPubMedCentral Yang Y, García-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 2012;120:2340–8.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12:711–6.CrossRefPubMed Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12:711–6.CrossRefPubMed
12.
Zurück zum Zitat Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N, Papoutsi M, et al. Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn. 2006;235:1554–62.CrossRefPubMed Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N, Papoutsi M, et al. Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn. 2006;235:1554–62.CrossRefPubMed
13.
Zurück zum Zitat Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM, et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell. 2014;31:690–706.CrossRefPubMedPubMedCentral Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM, et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell. 2014;31:690–706.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat • Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B, Fruttiger M, et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 2015;10:1708–21 This study demonstrates that part of the mesenteric lymphatic vasculature develops from cKit lineage cells of hemogenic endothelial origin, breaking the current dogma that all mammalian lymphatic vessels form by sprouting from veins. CrossRefPubMed • Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B, Fruttiger M, et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 2015;10:1708–21 This study demonstrates that part of the mesenteric lymphatic vasculature develops from cKit lineage cells of hemogenic endothelial origin, breaking the current dogma that all mammalian lymphatic vessels form by sprouting from veins. CrossRefPubMed
15.
Zurück zum Zitat Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–7.CrossRefPubMedPubMedCentral Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–7.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K, John SWM, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res. 2015;116:1649–54.CrossRefPubMed Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K, John SWM, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res. 2015;116:1649–54.CrossRefPubMed
17.
Zurück zum Zitat Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78.CrossRefPubMed Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78.CrossRefPubMed
18.
Zurück zum Zitat Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–13.CrossRefPubMedPubMedCentral Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–13.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Escobedo N, Oliver G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol. 2016;32:677–91.CrossRefPubMed Escobedo N, Oliver G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol. 2016;32:677–91.CrossRefPubMed
20.
Zurück zum Zitat Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells. 2009;14:425–34.CrossRefPubMed Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells. 2009;14:425–34.CrossRefPubMed
21.
Zurück zum Zitat • Ma W, Oliver G. Lymphatic endothelial cell plasticity in development and disease. Physiology. 2017;32:444–52 A review where the authors provide an overview of the molecular mechanisms promoting lymphatic cell fate specification in the mammalian embryo and summarize available data suggesting that lymphatic EC fate is reprogrammable in normal and pathological settings. CrossRefPubMedPubMedCentral • Ma W, Oliver G. Lymphatic endothelial cell plasticity in development and disease. Physiology. 2017;32:444–52 A review where the authors provide an overview of the molecular mechanisms promoting lymphatic cell fate specification in the mammalian embryo and summarize available data suggesting that lymphatic EC fate is reprogrammable in normal and pathological settings. CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–89.CrossRef Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–89.CrossRef
23.
Zurück zum Zitat Schacht V, Ramirez MI, Hong Y-K, Hirakawa S, Feng D, Harvey N, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22:3546–56.CrossRefPubMedPubMedCentral Schacht V, Ramirez MI, Hong Y-K, Hirakawa S, Feng D, Harvey N, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22:3546–56.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Karpanen T, Wirzenius M, Mäkinen T, Veikkola T, Haisma HJ, Achen MG, et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol. 2006;169:708–18.CrossRefPubMedPubMedCentral Karpanen T, Wirzenius M, Mäkinen T, Veikkola T, Haisma HJ, Achen MG, et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol. 2006;169:708–18.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME, Finkelstein D, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–87.CrossRefPubMedPubMedCentral Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME, Finkelstein D, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–87.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 2008;118:40–50.CrossRefPubMed Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 2008;118:40–50.CrossRefPubMed
27.
Zurück zum Zitat Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V, Kitajewski J, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2013;140:2365–76.CrossRefPubMedPubMedCentral Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V, Kitajewski J, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2013;140:2365–76.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Pedrioli DML, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, et al. miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. Mol Cell Biol. 2010;30:3620–34.CrossRefPubMed Pedrioli DML, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, et al. miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. Mol Cell Biol. 2010;30:3620–34.CrossRefPubMed
29.
Zurück zum Zitat Kazenwadel J, Michael MZ, Harvey NL. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood. 2010;116:2395–401.CrossRefPubMed Kazenwadel J, Michael MZ, Harvey NL. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood. 2010;116:2395–401.CrossRefPubMed
30.
Zurück zum Zitat Seo M, Choi J-S, Rho C, Joo C-K, Lee S. MicroRNA miR-466 inhibits lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci. 2015;22:3.CrossRefPubMedPubMedCentral Seo M, Choi J-S, Rho C, Joo C-K, Lee S. MicroRNA miR-466 inhibits lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci. 2015;22:3.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Abtahian F, Guerriero A, Sebzda E, Lu M-M, Zhou R, Mocsai A, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299:247–51.CrossRefPubMedPubMedCentral Abtahian F, Guerriero A, Sebzda E, Lu M-M, Zhou R, Mocsai A, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299:247–51.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Sebzda E, Hibbard C, Sweeney S, Abtahian F, Bezman N, Clemens G, et al. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell. 2006;11:349–61.CrossRefPubMed Sebzda E, Hibbard C, Sweeney S, Abtahian F, Bezman N, Clemens G, et al. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell. 2006;11:349–61.CrossRefPubMed
33.
Zurück zum Zitat Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J. 2008;411:133–40.CrossRefPubMedPubMedCentral Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J. 2008;411:133–40.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282:25993–6001.CrossRef Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282:25993–6001.CrossRef
35.
Zurück zum Zitat Bäckhed F, Crawford PA, O’Donnell D, Gordon JI. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci U S A. 2007;104:606–11.CrossRefPubMedPubMedCentral Bäckhed F, Crawford PA, O’Donnell D, Gordon JI. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci U S A. 2007;104:606–11.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Julenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2005;15:153–64.CrossRefPubMed Julenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2005;15:153–64.CrossRefPubMed
38.
Zurück zum Zitat •• Tanaka M, Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2:733–49 This article reviews the current knowledge of the structure, function, and markers of the hepatic lymphatic vascular system as well as factors associated with hepatic lymphangiogenesis and compares liver lymphatics with those in other tissues. CrossRefPubMedPubMedCentral •• Tanaka M, Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2:733–49 This article reviews the current knowledge of the structure, function, and markers of the hepatic lymphatic vascular system as well as factors associated with hepatic lymphangiogenesis and compares liver lymphatics with those in other tissues. CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec Adv Integr Anat Evol Biol. 2008;291:643–52.CrossRef Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec Adv Integr Anat Evol Biol. 2008;291:643–52.CrossRef
40.
Zurück zum Zitat • Tanaka M, Iwakiri Y. Lymphatics in the liver. Curr Opin Immunol. 2018;53:137–42 A review article addressing the potential role of lymphatic endothelial cells in the health and the disease of the liver. CrossRefPubMed • Tanaka M, Iwakiri Y. Lymphatics in the liver. Curr Opin Immunol. 2018;53:137–42 A review article addressing the potential role of lymphatic endothelial cells in the health and the disease of the liver. CrossRefPubMed
41.
Zurück zum Zitat Dumont AE, Mulholland JH. Alterations in thoracic duct lymph flow in hepatic cirrhosis: significance in portal hypertension. Ann Surg. 1962;156:668–75.CrossRefPubMedPubMedCentral Dumont AE, Mulholland JH. Alterations in thoracic duct lymph flow in hepatic cirrhosis: significance in portal hypertension. Ann Surg. 1962;156:668–75.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Witte CL, Witte MH, Dumont AE, Frist J, Cole WR. Lymph protein in hepatic cirrhosis and experimental hepatic and portal venous hypertension. Ann Surg. 1968;168:567–77.CrossRefPubMedPubMedCentral Witte CL, Witte MH, Dumont AE, Frist J, Cole WR. Lymph protein in hepatic cirrhosis and experimental hepatic and portal venous hypertension. Ann Surg. 1968;168:567–77.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.CrossRefPubMed Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.CrossRefPubMed
44.
Zurück zum Zitat Tugues S, Morales-Ruiz M, Fernandez-Varo G, Ros J, Arteta D, Muñoz-Luque J, et al. Microarray analysis of endothelial differentially expressed genes in liver of cirrhotic rats. Gastroenterology. 2005;129:1686–95.CrossRefPubMed Tugues S, Morales-Ruiz M, Fernandez-Varo G, Ros J, Arteta D, Muñoz-Luque J, et al. Microarray analysis of endothelial differentially expressed genes in liver of cirrhotic rats. Gastroenterology. 2005;129:1686–95.CrossRefPubMed
45.
47.
Zurück zum Zitat • Tanaka M, Utsumi T, Saruwatari J, Zhang PP, Morales-Ruiz M, Iwakiri Y, et al. The sympathetic nervous system is a novel regulator of hepatic lymphangiogenesis in portal hypertension. Hepatology. 2018;68:772A Abstract indicating a link between sympathetic nervous system activation and liver lymphangiogenesis, sympathetic nerves are a key regulator of hepatic lymphangiogenesis by secreting VEGF-C in rats with portal hypertension. • Tanaka M, Utsumi T, Saruwatari J, Zhang PP, Morales-Ruiz M, Iwakiri Y, et al. The sympathetic nervous system is a novel regulator of hepatic lymphangiogenesis in portal hypertension. Hepatology. 2018;68:772A Abstract indicating a link between sympathetic nervous system activation and liver lymphangiogenesis, sympathetic nerves are a key regulator of hepatic lymphangiogenesis by secreting VEGF-C in rats with portal hypertension.
48.
Zurück zum Zitat Dumont AE, Mulholland JH. Flow rate and composition of thoracic-duct lymph in patients with cirrhosis. N Engl J Med. 1960;263:471–4.CrossRefPubMed Dumont AE, Mulholland JH. Flow rate and composition of thoracic-duct lymph in patients with cirrhosis. N Engl J Med. 1960;263:471–4.CrossRefPubMed
49.
Zurück zum Zitat Sadek AM, Ismail AM, Aboul Enein A, Hassanein E, Massoud OG, El-Assi MH. Percutaneous trans hepatic lymphography: evaluation in schistosomal hepatic fibrosis. Lymphology. 1976;9:47–52.PubMed Sadek AM, Ismail AM, Aboul Enein A, Hassanein E, Massoud OG, El-Assi MH. Percutaneous trans hepatic lymphography: evaluation in schistosomal hepatic fibrosis. Lymphology. 1976;9:47–52.PubMed
50.
Zurück zum Zitat Shimada Y. Observations on hepatic superficial lymph flow. Lymphology. 1979;12:11–3.PubMed Shimada Y. Observations on hepatic superficial lymph flow. Lymphology. 1979;12:11–3.PubMed
51.
Zurück zum Zitat Niiyama G. A scanning electron microscopic study of subcapsular lymphatic capillaries of the normal liver and the liver in Budd-Chiari syndrome after chemical digestion. Kawasaki Med J. 1994;20:37–52. Niiyama G. A scanning electron microscopic study of subcapsular lymphatic capillaries of the normal liver and the liver in Budd-Chiari syndrome after chemical digestion. Kawasaki Med J. 1994;20:37–52.
52.
Zurück zum Zitat Vollmar B, Wolf B, Siegmund S, Katsen AD, Menger MD. Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. Am J Pathol. 1997;151:169–75.PubMedPubMedCentral Vollmar B, Wolf B, Siegmund S, Katsen AD, Menger MD. Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. Am J Pathol. 1997;151:169–75.PubMedPubMedCentral
53.
Zurück zum Zitat Yamauchi Y, Michitaka K, Onji M. Morphometric analysis of lymphatic and blood vessels in human chronic viral liver diseases. Am J Pathol. 1998;153:1131–7.CrossRefPubMedPubMedCentral Yamauchi Y, Michitaka K, Onji M. Morphometric analysis of lymphatic and blood vessels in human chronic viral liver diseases. Am J Pathol. 1998;153:1131–7.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Yokomori H, Oda M, Kaneko F, Kawachi S, Tanabe M, Yoshimura K, et al. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver--re-evaluations of microlymphatic abnormalities. BMC Gastroenterol. 2010;10:131.CrossRefPubMedPubMedCentral Yokomori H, Oda M, Kaneko F, Kawachi S, Tanabe M, Yoshimura K, et al. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver--re-evaluations of microlymphatic abnormalities. BMC Gastroenterol. 2010;10:131.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Henriksen JH. Estimation of lymphatic conductance. A model based on protein-kinetic studies and haemodynamic measurements in patients with cirrhosis of the liver and in pigs. Scand J Clin Lab Invest. 1985;45:123–30.CrossRefPubMed Henriksen JH. Estimation of lymphatic conductance. A model based on protein-kinetic studies and haemodynamic measurements in patients with cirrhosis of the liver and in pigs. Scand J Clin Lab Invest. 1985;45:123–30.CrossRefPubMed
56.
Zurück zum Zitat Ribera J, Pauta M, Melgar-Lesmes P, Tugues S, Fernández-Varo G, Held KF, et al. Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats. Gut. 2013;62:138–45.CrossRefPubMed Ribera J, Pauta M, Melgar-Lesmes P, Tugues S, Fernández-Varo G, Held KF, et al. Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats. Gut. 2013;62:138–45.CrossRefPubMed
57.
Zurück zum Zitat Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.CrossRefPubMed Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.CrossRefPubMed
58.
Zurück zum Zitat Hagendoorn J, Padera TP, Kashiwagi S, Isaka N, Noda F, Lin MI, et al. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ Res. 2004;95:204–9.CrossRefPubMed Hagendoorn J, Padera TP, Kashiwagi S, Isaka N, Noda F, Lin MI, et al. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ Res. 2004;95:204–9.CrossRefPubMed
59.
Zurück zum Zitat Witte CL, Witte MH, Dumont AE. Lymph imbalance in the genesis and perpetuation of the ascites syndrome in hepatic cirrhosis. Gastroenterology. 1980;78:1059–68.CrossRefPubMed Witte CL, Witte MH, Dumont AE. Lymph imbalance in the genesis and perpetuation of the ascites syndrome in hepatic cirrhosis. Gastroenterology. 1980;78:1059–68.CrossRefPubMed
60.
Zurück zum Zitat Arroyo V. Pathophysiology, diagnosis and treatment of ascites in cirrhosis. Ann Hepatol. 2002;1:72–9.CrossRef Arroyo V. Pathophysiology, diagnosis and treatment of ascites in cirrhosis. Ann Hepatol. 2002;1:72–9.CrossRef
61.
Zurück zum Zitat Rector WG. Spontaneous chylous ascites of cirrhosis. J Clin Gastroenterol. 1984;6:369–72.PubMed Rector WG. Spontaneous chylous ascites of cirrhosis. J Clin Gastroenterol. 1984;6:369–72.PubMed
62.
Zurück zum Zitat Cheng WSC, Gough IR, Ward M, Croese J, Powell LW. Chylous ascites in cirrhosis: a case report and review of the literature. J Gastroenterol Hepatol. 1989;4:95–9.CrossRefPubMed Cheng WSC, Gough IR, Ward M, Croese J, Powell LW. Chylous ascites in cirrhosis: a case report and review of the literature. J Gastroenterol Hepatol. 1989;4:95–9.CrossRefPubMed
63.
Zurück zum Zitat Almakdisi T, Massoud S, Makdisi G. Lymphomas and chylous ascites: review of the literature. Oncologist. 2005;10:632–5.CrossRefPubMed Almakdisi T, Massoud S, Makdisi G. Lymphomas and chylous ascites: review of the literature. Oncologist. 2005;10:632–5.CrossRefPubMed
Metadaten
Titel
The Role of Hepatic and Splanchnic Lymphatic System in Portal Hypertension and Ascites
verfasst von
Jordi Ribera
Bernat Córdoba-Jover
Irene Portolés
Manuel Morales-Ruiz
Publikationsdatum
16.05.2019
Verlag
Springer US
Erschienen in
Current Hepatology Reports / Ausgabe 2/2019
Elektronische ISSN: 2195-9595
DOI
https://doi.org/10.1007/s11901-019-00460-6

Weitere Artikel der Ausgabe 2/2019

Current Hepatology Reports 2/2019 Zur Ausgabe

Hepatitis C (H Vargas and S Flamm, Section Editors)

State of the Art HCV Treatment in Children

Portal Hypertension (J Gonzalez-Abraldes and E Tsochatzis, Section Editors)

Novel Targets and Drug Development in Portal Hypertension

Autoimmune, Cholestatic, and Biliary Diseases (S Gordon and C Bowlus, Section Editors)

Management of Fatigue in Primary Biliary Cholangitis

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.