Skip to main content
Erschienen in: Seminars in Immunopathology 4/2019

17.05.2019 | Review

The role of interleukin-6 in glucose homeostasis and lipid metabolism

verfasst von: Louise Lang Lehrskov, Regitse Højgaard Christensen

Erschienen in: Seminars in Immunopathology | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Low-grade inflammation is recognized as an important factor in the development and progression of a multitude of diseases including type 2 diabetes mellitus and cardiovascular disease. The potential of using antibody-based therapies that neutralize key players of low-grade inflammation has gained scientific momentum as a novel therapeutic strategy in metabolic diseases. As interleukin-6 (IL-6) is traditionally considered a key pro-inflammatory factor, the potential of expanding the use of anti-IL-6 therapies to metabolic diseases is intriguing. However, IL-6 is a molecule of a very pleiotropic nature that regulates many aspects of not only inflammation but also metabolism. In this review, we give a brief overview of the pro- and anti-inflammatory aspects of IL-6 and provide an update on its role in metabolic regulation, with a specific focus on glucose homeostasis and adipose tissue metabolism. Finally, we shall discuss the metabolic implications and clinical potential of blocking IL-6 signaling, focusing on glucose homeostasis and lipid metabolism.
Literatur
2.
Zurück zum Zitat Pedersen BK, Akerström TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098CrossRefPubMed Pedersen BK, Akerström TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098CrossRefPubMed
4.
Zurück zum Zitat Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149:1–38PubMed Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149:1–38PubMed
5.
Zurück zum Zitat Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J Clin Endocrinol Metab 82:4196–4200PubMed Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J Clin Endocrinol Metab 82:4196–4200PubMed
6.
Zurück zum Zitat De Rossi M, Bernasconi P, Baggi F, de Waal Malefyt R, Mantegazza R (2000) Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 12:1329–1335CrossRefPubMed De Rossi M, Bernasconi P, Baggi F, de Waal Malefyt R, Mantegazza R (2000) Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 12:1329–1335CrossRefPubMed
7.
Zurück zum Zitat Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406CrossRefPubMed Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406CrossRefPubMed
8.
Zurück zum Zitat Hojman P, Brolin C, Nørgaard-Christensen N, Dethlefsen C, Lauenborg B, Olsen CK, Åbom MM, Krag TO, Gehl J, Pedersen BK (2019) IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. Am J Physiol Endocrinol Metab 19. https://doi.org/10.1152/ajpendo.00414.2018 Hojman P, Brolin C, Nørgaard-Christensen N, Dethlefsen C, Lauenborg B, Olsen CK, Åbom MM, Krag TO, Gehl J, Pedersen BK (2019) IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. Am J Physiol Endocrinol Metab 19. https://​doi.​org/​10.​1152/​ajpendo.​00414.​2018
9.
Zurück zum Zitat Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the proinflammatory activities of IL-6. Int J Biol Sci 8:1237–1247CrossRefPubMedPubMedCentral Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the proinflammatory activities of IL-6. Int J Biol Sci 8:1237–1247CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157CrossRefPubMed Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157CrossRefPubMed
12.
Zurück zum Zitat Heinrich PC, Behrmann I, Haan S, Hermanns HM, Uller-newen GM (2003) Principles of IL 6 type cytokine signaling and its regulating. Biochem J 20:1–20CrossRef Heinrich PC, Behrmann I, Haan S, Hermanns HM, Uller-newen GM (2003) Principles of IL 6 type cytokine signaling and its regulating. Biochem J 20:1–20CrossRef
13.
Zurück zum Zitat Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT, Chang C (2003) Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 305:462–469CrossRefPubMed Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT, Chang C (2003) Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 305:462–469CrossRefPubMed
14.
Zurück zum Zitat Zhong Z, Wen Z, Darnell JE (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6 author. Science. 264:95–98CrossRefPubMed Zhong Z, Wen Z, Darnell JE (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6 author. Science. 264:95–98CrossRefPubMed
15.
Zurück zum Zitat Barton BE (1997) IL-6: insights into novel biological activities. Clin Immunol Immunopathol 85:16–20CrossRefPubMed Barton BE (1997) IL-6: insights into novel biological activities. Clin Immunol Immunopathol 85:16–20CrossRefPubMed
17.
Zurück zum Zitat Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334CrossRefPubMedPubMedCentral Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zhang YH, Lin JX, Vilcek J (1990) Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol 10:3818–3823CrossRefPubMedPubMedCentral Zhang YH, Lin JX, Vilcek J (1990) Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol 10:3818–3823CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Shimizu H, Mitomo K, Watanabe T, Okamoto S, Yamamoto K (1990) Involvement of a NF-kappa B-like transcription factor in the activation of the interleukin-6 gene by inflammatory lymphokines. Mol Cell Biol 10:561–568CrossRefPubMedPubMedCentral Shimizu H, Mitomo K, Watanabe T, Okamoto S, Yamamoto K (1990) Involvement of a NF-kappa B-like transcription factor in the activation of the interleukin-6 gene by inflammatory lymphokines. Mol Cell Biol 10:561–568CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Benatti FB, Pedersen BK (2015) Exercise as an anti-inflammatory therapy for rheumatic diseases - myokine regulation. Nat Rev Rheumatol 11:86–97CrossRefPubMed Benatti FB, Pedersen BK (2015) Exercise as an anti-inflammatory therapy for rheumatic diseases - myokine regulation. Nat Rev Rheumatol 11:86–97CrossRefPubMed
21.
Zurück zum Zitat Unver N, McAllister F (2018) IL-6 family cytokines: key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev 41:10–17CrossRefPubMedPubMedCentral Unver N, McAllister F (2018) IL-6 family cytokines: key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev 41:10–17CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat T.W., D. C (2000) Function of C-reactive protein. Ann Med 32:274–278CrossRef T.W., D. C (2000) Function of C-reactive protein. Ann Med 32:274–278CrossRef
23.
Zurück zum Zitat Wilund KR (2007) Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease? Clin Sci (Lond) 112:543–555CrossRef Wilund KR (2007) Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease? Clin Sci (Lond) 112:543–555CrossRef
24.
Zurück zum Zitat Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835CrossRefPubMed Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835CrossRefPubMed
25.
Zurück zum Zitat Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185CrossRefPubMed Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185CrossRefPubMed
28.
Zurück zum Zitat Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13:465–476CrossRefPubMed Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13:465–476CrossRefPubMed
29.
Zurück zum Zitat Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2015) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Metab 285:E433–E437 Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2015) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Metab 285:E433–E437
30.
Zurück zum Zitat Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B, Pedersen BK (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639CrossRefPubMedPubMedCentral Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B, Pedersen BK (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P (2001) Exercise and cytokines with particular focus on muscle derived IL-6. Exerc Immunol Rev 7:18–31PubMed Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P (2001) Exercise and cytokines with particular focus on muscle derived IL-6. Exerc Immunol Rev 7:18–31PubMed
32.
Zurück zum Zitat Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24:113–119CrossRefPubMed Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24:113–119CrossRefPubMed
33.
Zurück zum Zitat Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen B (1998) Evidence that IL-6 is produced in skeletal muscle during intense long-term muscle activity. J Physiol 508:949–953CrossRefPubMedPubMedCentral Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen B (1998) Evidence that IL-6 is produced in skeletal muscle during intense long-term muscle activity. J Physiol 508:949–953CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242CrossRefPubMedPubMedCentral Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Fischer C (2006) Interleukin-6 in acute exercise and training: what is the biological relevance. Exerc Immunol Rev 12:6–33PubMed Fischer C (2006) Interleukin-6 in acute exercise and training: what is the biological relevance. Exerc Immunol Rev 12:6–33PubMed
36.
Zurück zum Zitat Helge JW, Stallknecht B, Pedersen BK, Galbo H, Kiens B, Richter EA (2003) The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J Physiol 546:299–305CrossRefPubMed Helge JW, Stallknecht B, Pedersen BK, Galbo H, Kiens B, Richter EA (2003) The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J Physiol 546:299–305CrossRefPubMed
37.
Zurück zum Zitat Pedersen BK (2013) Muscle as a secretory organ. Compr Physiol 3:1337–1362PubMed Pedersen BK (2013) Muscle as a secretory organ. Compr Physiol 3:1337–1362PubMed
38.
Zurück zum Zitat Ullum H et al (1994) Bicycle exercise enhances plasma IL-6 but does not change IL-1α, IL-1β, IL-6, or TNF-α pre-mRNA in BMNC. Cytokines:93–97 Ullum H et al (1994) Bicycle exercise enhances plasma IL-6 but does not change IL-1α, IL-1β, IL-6, or TNF-α pre-mRNA in BMNC. Cytokines:93–97
39.
Zurück zum Zitat Ostrowski K, Hermann C, Bangash A, Schjerling P, Nielsen JN, Pedersen BK (1998) A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol 513:889–894CrossRefPubMedPubMedCentral Ostrowski K, Hermann C, Bangash A, Schjerling P, Nielsen JN, Pedersen BK (1998) A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol 513:889–894CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 17:884–886CrossRefPubMed Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 17:884–886CrossRefPubMed
41.
Zurück zum Zitat Gershenwald JE, Fong YM, Fahey TJ, Calvano SE, Chizzonite R, Kilian PL, Lowry SF, Moldawer LL (1990) Interleukin 1 receptor blockade attenuates the host inflammatory response. Proc Natl Acad Sci U S A 87:4966–4970CrossRefPubMedPubMedCentral Gershenwald JE, Fong YM, Fahey TJ, Calvano SE, Chizzonite R, Kilian PL, Lowry SF, Moldawer LL (1990) Interleukin 1 receptor blockade attenuates the host inflammatory response. Proc Natl Acad Sci U S A 87:4966–4970CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Petersen AMW, Pedersen BK (2006) The role of IL-6 in mediating the anti-inflammatory effects of exercise. J Physiol Pharmacol 57:43–51PubMed Petersen AMW, Pedersen BK (2006) The role of IL-6 in mediating the anti-inflammatory effects of exercise. J Physiol Pharmacol 57:43–51PubMed
43.
Zurück zum Zitat Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437CrossRefPubMed Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437CrossRefPubMed
44.
Zurück zum Zitat Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79CrossRefPubMed Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79CrossRefPubMed
45.
Zurück zum Zitat Matthews VB, Allen TL, Risis S, Chan MHS, Henstridge DC, Watson N, Zaffino LA, Babb JR, Boon J, Meikle PJ, Jowett JB, Watt MJ, Jansson JO, Bruce CR, Febbraio MA (2010) Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53:2431–2441CrossRefPubMed Matthews VB, Allen TL, Risis S, Chan MHS, Henstridge DC, Watson N, Zaffino LA, Babb JR, Boon J, Meikle PJ, Jowett JB, Watt MJ, Jansson JO, Bruce CR, Febbraio MA (2010) Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53:2431–2441CrossRefPubMed
46.
Zurück zum Zitat Kristiansen OP, Mandrup-poulsen T (2005) The good, the bad, or the indifferent? Diabetes 54:114–124CrossRef Kristiansen OP, Mandrup-poulsen T (2005) The good, the bad, or the indifferent? Diabetes 54:114–124CrossRef
47.
Zurück zum Zitat Pedersen BK, Febbraio M a (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465CrossRefPubMed Pedersen BK, Febbraio M a (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465CrossRefPubMed
48.
Zurück zum Zitat Kim H-J, Higashimori T, Park SY, Choi H, Dong J, Kim YJ, Noh HL, Cho YR, Cline G, Kim YB, Kim JK (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53:1060–1067CrossRefPubMed Kim H-J, Higashimori T, Park SY, Choi H, Dong J, Kim YJ, Noh HL, Cho YR, Cline G, Kim YB, Kim JK (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53:1060–1067CrossRefPubMed
49.
Zurück zum Zitat Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11:183–190CrossRefPubMedPubMedCentral Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11:183–190CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278:13740–13746CrossRefPubMed Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278:13740–13746CrossRefPubMed
51.
Zurück zum Zitat Kraakman MJ, Allen TL, Whitham M, Iliades P, Kammoun HL, Estevez E, Lancaster GI, Febbraio MA (2013) Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes Metab 15:170–175CrossRefPubMed Kraakman MJ, Allen TL, Whitham M, Iliades P, Kammoun HL, Estevez E, Lancaster GI, Febbraio MA (2013) Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes Metab 15:170–175CrossRefPubMed
52.
Zurück zum Zitat Ellingsgaard H, Ehses JA, Hammar EB, van Lommel L, Quintens R, Martens G, Kerr-Conte J, Pattou F, Berney T, Pipeleers D, Halban PA, Schuit FC, Donath MY (2008) Interleukin-6 regulates pancreatic α-cell mass expansion. Proc Natl Acad Sci 105:13163–13168CrossRefPubMedPubMedCentral Ellingsgaard H, Ehses JA, Hammar EB, van Lommel L, Quintens R, Martens G, Kerr-Conte J, Pattou F, Berney T, Pipeleers D, Halban PA, Schuit FC, Donath MY (2008) Interleukin-6 regulates pancreatic α-cell mass expansion. Proc Natl Acad Sci 105:13163–13168CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AMK, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AMK, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Timper K, Dalmas E, Dror E, Rütti S, Thienel C, Sauter NS, Bouzakri K, Bédat B, Pattou F, Kerr-Conte J, Böni-Schnetzler M, Donath MY (2016) Glucose-dependent insulinotropic peptide stimulates glucagon-like peptide 1 production by pancreatic islets via interleukin 6, produced by α cells. Gastroenterology 151:165–179CrossRefPubMed Timper K, Dalmas E, Dror E, Rütti S, Thienel C, Sauter NS, Bouzakri K, Bédat B, Pattou F, Kerr-Conte J, Böni-Schnetzler M, Donath MY (2016) Glucose-dependent insulinotropic peptide stimulates glucagon-like peptide 1 production by pancreatic islets via interleukin 6, produced by α cells. Gastroenterology 151:165–179CrossRefPubMed
55.
Zurück zum Zitat Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430CrossRefPubMedPubMedCentral Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, Rose-John S, Wunderlich FT, Brüning JC (2017) IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep 19:267–280CrossRefPubMed Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, Rose-John S, Wunderlich FT, Brüning JC (2017) IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep 19:267–280CrossRefPubMed
57.
Zurück zum Zitat Wunderlich FT, Ströhle P, Könner AC, Gruber S, Tovar S, Brönneke HS, Juntti-Berggren L, Li LS, van Rooijen N, Libert C, Berggren PO, Brüning JC (2010) Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab 12:237–249CrossRefPubMed Wunderlich FT, Ströhle P, Könner AC, Gruber S, Tovar S, Brönneke HS, Juntti-Berggren L, Li LS, van Rooijen N, Libert C, Berggren PO, Brüning JC (2010) Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab 12:237–249CrossRefPubMed
58.
Zurück zum Zitat Carey AL, Bruce CR, Sacchetti M, Anderson MJ, Olsen DB, Saltin B, Hawley JA, Febbraio MA (2004) Interleukin-6 and tumor necrosis factor-α are not increased in patients with type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 47:1029–1037PubMed Carey AL, Bruce CR, Sacchetti M, Anderson MJ, Olsen DB, Saltin B, Hawley JA, Febbraio MA (2004) Interleukin-6 and tumor necrosis factor-α are not increased in patients with type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 47:1029–1037PubMed
59.
Zurück zum Zitat Lang Lehrskov L, Lyngbaek MP, Soederlund L, Legaard GE, Ehses JA, Heywood SE, Wewer Albrechtsen NJ, Holst JJ, Karstoft K, Pedersen BK, Ellingsgaard H (2018) Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab 27:1201–1211.e3CrossRefPubMed Lang Lehrskov L, Lyngbaek MP, Soederlund L, Legaard GE, Ehses JA, Heywood SE, Wewer Albrechtsen NJ, Holst JJ, Karstoft K, Pedersen BK, Ellingsgaard H (2018) Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab 27:1201–1211.e3CrossRefPubMed
60.
Zurück zum Zitat Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura SI, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76CrossRefPubMed Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura SI, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76CrossRefPubMed
61.
Zurück zum Zitat Van Snick J et al (1988) cDNA cloning of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol 18:193–197CrossRefPubMed Van Snick J et al (1988) cDNA cloning of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol 18:193–197CrossRefPubMed
62.
Zurück zum Zitat Knudsen SH, Pedersen BK (2015) Targeting inflammation through a physical active lifestyle and pharmaceuticals for the treatment of type 2 diabetes. Curr Diab Rep 15(1–9):82CrossRefPubMed Knudsen SH, Pedersen BK (2015) Targeting inflammation through a physical active lifestyle and pharmaceuticals for the treatment of type 2 diabetes. Curr Diab Rep 15(1–9):82CrossRefPubMed
63.
Zurück zum Zitat Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697CrossRefPubMed Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697CrossRefPubMed
64.
Zurück zum Zitat Karstoft K, Pedersen BK (2016) Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 94:146–150CrossRefPubMed Karstoft K, Pedersen BK (2016) Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 94:146–150CrossRefPubMed
65.
Zurück zum Zitat Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP (1997) Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J.Clin.Endocrinol.Metab 82:4167–4170CrossRefPubMed Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP (1997) Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J.Clin.Endocrinol.Metab 82:4167–4170CrossRefPubMed
66.
Zurück zum Zitat Stouthard J et al (1995) Endocrinologic and metabolic effects of interleukin-6 in humans. Am J Phys 268:E813–E819 Stouthard J et al (1995) Endocrinologic and metabolic effects of interleukin-6 in humans. Am J Phys 268:E813–E819
67.
Zurück zum Zitat Lyngsø D, Simonsen L, Bülow J (2002) Interleukin-6 production in human subcutaneous abdominal adipose tissue: the effect of exercise. J Physiol 543:373–378CrossRefPubMedPubMedCentral Lyngsø D, Simonsen L, Bülow J (2002) Interleukin-6 production in human subcutaneous abdominal adipose tissue: the effect of exercise. J Physiol 543:373–378CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Petersen a MW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162CrossRefPubMed Petersen a MW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162CrossRefPubMed
69.
Zurück zum Zitat Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53:1643–1648CrossRefPubMed Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53:1643–1648CrossRefPubMed
70.
Zurück zum Zitat Harder-Lauridsen NM et al (2014) Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Metab 306:E769–E778 Harder-Lauridsen NM et al (2014) Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Metab 306:E769–E778
71.
Zurück zum Zitat Fève B, Bastard J-P (2009) The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5:305–311CrossRefPubMed Fève B, Bastard J-P (2009) The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5:305–311CrossRefPubMed
72.
Zurück zum Zitat Sadagurski M, Norquay L, Farhang J, D’Aquino K, Copps K, White MF (2010) Human IL6 enhances leptin action in mice. Diabetologia 53:525–535CrossRefPubMed Sadagurski M, Norquay L, Farhang J, D’Aquino K, Copps K, White MF (2010) Human IL6 enhances leptin action in mice. Diabetologia 53:525–535CrossRefPubMed
74.
Zurück zum Zitat Petersen EW et al (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Circulation 102:E155–E162 Petersen EW et al (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Circulation 102:E155–E162
75.
Zurück zum Zitat Van Hall G et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010CrossRefPubMed Van Hall G et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010CrossRefPubMed
76.
77.
Zurück zum Zitat Nishimoto N et al (2005) Humanized anti – interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106:2627–2633CrossRefPubMed Nishimoto N et al (2005) Humanized anti – interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106:2627–2633CrossRefPubMed
78.
Zurück zum Zitat Päth G et al (2007) Human breast adipocytes express interleukin-6 (IL-6) and its receptor system: increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function. J Clin Endocrinol Metab 86:0–7 Päth G et al (2007) Human breast adipocytes express interleukin-6 (IL-6) and its receptor system: increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function. J Clin Endocrinol Metab 86:0–7
79.
Zurück zum Zitat Al-Khalili L et al (2006) Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 20:3364–3375CrossRefPubMed Al-Khalili L et al (2006) Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 20:3364–3375CrossRefPubMed
80.
Zurück zum Zitat Trujillo ME, Sullivan S, Harten I, Schneider SH, Greenberg AS, Fried SK (2004) Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J Clin Endocrinol Metab 89:5577–5582CrossRefPubMed Trujillo ME, Sullivan S, Harten I, Schneider SH, Greenberg AS, Fried SK (2004) Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J Clin Endocrinol Metab 89:5577–5582CrossRefPubMed
81.
Zurück zum Zitat Ruderman NB, Keller C, Richard AM, Saha AK, Luo Z, Xiang X, Giralt M, Ritov VB, Menshikova EV, Kelley DE, Hidalgo J, Pedersen BK, Kelly M (2006) Interleukin-6 regulation of AMP-activated protein kinase: potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes 55:S48–S54CrossRefPubMed Ruderman NB, Keller C, Richard AM, Saha AK, Luo Z, Xiang X, Giralt M, Ritov VB, Menshikova EV, Kelley DE, Hidalgo J, Pedersen BK, Kelly M (2006) Interleukin-6 regulation of AMP-activated protein kinase: potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes 55:S48–S54CrossRefPubMed
82.
Zurück zum Zitat Hardie DG, Ross FA, Hawley SA (2017) AMPK - a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262CrossRef Hardie DG, Ross FA, Hawley SA (2017) AMPK - a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262CrossRef
86.
Zurück zum Zitat Shetty A et al (2014) Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther 8:349–364PubMedPubMedCentral Shetty A et al (2014) Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther 8:349–364PubMedPubMedCentral
87.
Zurück zum Zitat Iking-Konert C et al (2014) Interleukin-6 inhibition as a potential therapeutic target in rheumatic diseases. Rheumatol. 73:269–276 Iking-Konert C et al (2014) Interleukin-6 inhibition as a potential therapeutic target in rheumatic diseases. Rheumatol. 73:269–276
88.
Zurück zum Zitat Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150CrossRefPubMed Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150CrossRefPubMed
89.
Zurück zum Zitat Esser N, Paquot N, Scheen AJ (2014) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24:283–307CrossRefPubMed Esser N, Paquot N, Scheen AJ (2014) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24:283–307CrossRefPubMed
90.
Zurück zum Zitat Ogata A, Morishima A, Hirano T, Hishitani Y, Hagihara K, Shima Y, Narazaki M, Tanaka T (2011) Improvement of HbA1c during treatment with humanised anti-interleukin 6 receptor antibody, tocilizumab. Ann Rheum Dis 70:1164–1165CrossRefPubMed Ogata A, Morishima A, Hirano T, Hishitani Y, Hagihara K, Shima Y, Narazaki M, Tanaka T (2011) Improvement of HbA1c during treatment with humanised anti-interleukin 6 receptor antibody, tocilizumab. Ann Rheum Dis 70:1164–1165CrossRefPubMed
91.
Zurück zum Zitat Schultz O, Oberhauser F, Saech J, Rubbert-Roth A, Hahn M, Krone W, Laudes M (2010) Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (A) levels in human subjects with rheumatoid diseases. PLoS One 5:e14328CrossRefPubMedPubMedCentral Schultz O, Oberhauser F, Saech J, Rubbert-Roth A, Hahn M, Krone W, Laudes M (2010) Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (A) levels in human subjects with rheumatoid diseases. PLoS One 5:e14328CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Ursini F, Russo E, Ruscitti P, Giacomelli R, De Sarro G (2018) The effect of non–TNF-targeted biologics and small molecules on insulin resistance in inflammatory arthritis. Autoimmun Rev 17:399–404CrossRefPubMed Ursini F, Russo E, Ruscitti P, Giacomelli R, De Sarro G (2018) The effect of non–TNF-targeted biologics and small molecules on insulin resistance in inflammatory arthritis. Autoimmun Rev 17:399–404CrossRefPubMed
93.
Zurück zum Zitat Castañeda S, Remuzgo-Martínez S, López-Mejías R, Genre F, Calvo-Alén J, Llorente I, Aurrecoechea E, Ortiz AM, Triguero A, Blanco R, Llorca J, González-Gay MA (2018) Rapid beneficial effect of the IL-6 receptor blockade on insulin resistance and insulin sensitivity in non-diabetic patients with rheumatoid arthritis. Clin Exp Rheumatol Castañeda S, Remuzgo-Martínez S, López-Mejías R, Genre F, Calvo-Alén J, Llorente I, Aurrecoechea E, Ortiz AM, Triguero A, Blanco R, Llorca J, González-Gay MA (2018) Rapid beneficial effect of the IL-6 receptor blockade on insulin resistance and insulin sensitivity in non-diabetic patients with rheumatoid arthritis. Clin Exp Rheumatol
94.
Zurück zum Zitat Otsuka Y, Kiyohara C, Kashiwado Y, Sawabe T, Nagano S, Kimoto Y, Ayano M, Mitoma H, Akahoshi M, Arinobu Y, Niiro H, Akashi K, Horiuchi T (2018) Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study. PLoS One 13:e0196368CrossRefPubMedPubMedCentral Otsuka Y, Kiyohara C, Kashiwado Y, Sawabe T, Nagano S, Kimoto Y, Ayano M, Mitoma H, Akahoshi M, Arinobu Y, Niiro H, Akashi K, Horiuchi T (2018) Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study. PLoS One 13:e0196368CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, Glynn RJ, Libby P, Ridker PM (2018) Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol 71:2392–2401CrossRefPubMed Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, Glynn RJ, Libby P, Ridker PM (2018) Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol 71:2392–2401CrossRefPubMed
96.
Zurück zum Zitat Choy E, Sattar N (2009) Interpreting lipid levels in the context of high-grade inflammatory states with a focus on rheumatoid arthritis: a challenge to conventional cardiovascular risk actions. Ann Rheum Dis 68:460–469CrossRefPubMed Choy E, Sattar N (2009) Interpreting lipid levels in the context of high-grade inflammatory states with a focus on rheumatoid arthritis: a challenge to conventional cardiovascular risk actions. Ann Rheum Dis 68:460–469CrossRefPubMed
97.
Zurück zum Zitat Wedell-Neergaard A-S et al (2018) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab:1–12 Wedell-Neergaard A-S et al (2018) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab:1–12
98.
Zurück zum Zitat Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, Woodworth T, Alten R (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371:987–997CrossRefPubMed Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, Woodworth T, Alten R (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371:987–997CrossRefPubMed
99.
Zurück zum Zitat Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, Woodworth T, Gomez-Reino JJ (2008) Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum 58:2968–2980CrossRefPubMed Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, Woodworth T, Gomez-Reino JJ (2008) Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum 58:2968–2980CrossRefPubMed
100.
Zurück zum Zitat Rao VU, Pavlov A, Klearman M, Musselman D, Giles JT, Bathon JM, Sattar N, Lee JS (2015) An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheum 67:372–380CrossRef Rao VU, Pavlov A, Klearman M, Musselman D, Giles JT, Bathon JM, Sattar N, Lee JS (2015) An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheum 67:372–380CrossRef
Metadaten
Titel
The role of interleukin-6 in glucose homeostasis and lipid metabolism
verfasst von
Louise Lang Lehrskov
Regitse Højgaard Christensen
Publikationsdatum
17.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 4/2019
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-019-00747-2

Weitere Artikel der Ausgabe 4/2019

Seminars in Immunopathology 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.