Skip to main content
Erschienen in: Current Heart Failure Reports 5/2020

20.07.2020 | Translational Research in Heart Failure (J. Backs and M. van den Hoogenhof, Section Editors)

The Role of TGF—β Signaling in Cardiomyocyte Proliferation

verfasst von: Daniel W. Sorensen, Jop H. van Berlo

Erschienen in: Current Heart Failure Reports | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The loss of contractile function after heart injury remains one of the major healthcare issues of our time. One strategy to deal with this problem would be to increase the number of cardiomyocytes to enhance cardiac function. In the last couple of years, reactivation of cardiomyocyte proliferation has repeatedly demonstrated to aid in functional recovery after cardiac injury.

Recent Findings

The Tgf-β superfamily plays key roles during development of the heart and populating the embryonic heart with cardiomyocytes. In this review, we discuss the role of Tgf-β signaling in regulating cardiomyocyte proliferation during development and in the setting of cardiac regeneration.

Summary

Although various pathways to induce cardiomyocyte proliferation have been established, the extent to which cardiomyocyte proliferation requires or involves activation of the Tgf-β superfamily is not entirely clear. More research is needed to better understand cross-talk between pathways that regulate cardiomyocyte proliferation.
Literatur
1.
Zurück zum Zitat Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.PubMed Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.PubMed
2.
Zurück zum Zitat Konkel L. Assessing a medley of metals: combined exposures and incident coronary heart disease. Environ Health Perspect. 2018;126(3):034002.PubMedPubMedCentral Konkel L. Assessing a medley of metals: combined exposures and incident coronary heart disease. Environ Health Perspect. 2018;126(3):034002.PubMedPubMedCentral
3.
Zurück zum Zitat Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.PubMed Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.PubMed
4.
Zurück zum Zitat Schaufelberger M, Swedberg K, Köster M, Rosén M, Rosengren A. Decreasing one-year mortality and hospitalization rates for heart failure in Sweden: data from the Swedish hospital discharge registry 1988 to 2000. Eur Heart J. 2004;25(4):300–7.PubMed Schaufelberger M, Swedberg K, Köster M, Rosén M, Rosengren A. Decreasing one-year mortality and hospitalization rates for heart failure in Sweden: data from the Swedish hospital discharge registry 1988 to 2000. Eur Heart J. 2004;25(4):300–7.PubMed
5.
Zurück zum Zitat Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin S-CJ, et al. C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41.PubMedPubMedCentral Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin S-CJ, et al. C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41.PubMedPubMedCentral
6.
Zurück zum Zitat Neidig LE, Weinberger F, Palpant NJ, Mignone J, Martinson AM, Sorensen DW, et al. Evidence for minimal cardiogenic potential of stem cell antigen 1–positive cells in the adult mouse heart. Circulation. 2018;138(25):2960–2.PubMedPubMedCentral Neidig LE, Weinberger F, Palpant NJ, Mignone J, Martinson AM, Sorensen DW, et al. Evidence for minimal cardiogenic potential of stem cell antigen 1–positive cells in the adult mouse heart. Circulation. 2018;138(25):2960–2.PubMedPubMedCentral
7.
Zurück zum Zitat Weinberger F, Eschenhagen T. Heart Regeneration: From Mouse to Human. Current Opinion in Physiology. 2019. Weinberger F, Eschenhagen T. Heart Regeneration: From Mouse to Human. Current Opinion in Physiology. 2019.
8.
Zurück zum Zitat Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci. 2018;115(52):E12245–E54.PubMed Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci. 2018;115(52):E12245–E54.PubMed
10.
Zurück zum Zitat Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–40.PubMedPubMedCentral Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–40.PubMedPubMedCentral
11.
Zurück zum Zitat Liao S, Dong W, Lv L, Guo H, Yang J, Zhao H, et al. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci. 2017;7(1):70.PubMedPubMedCentral Liao S, Dong W, Lv L, Guo H, Yang J, Zhao H, et al. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci. 2017;7(1):70.PubMedPubMedCentral
12.
Zurück zum Zitat Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.PubMedPubMedCentral Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.PubMedPubMedCentral
13.
Zurück zum Zitat Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park S-Y, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci. 2013;110(4):1446–51.PubMed Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park S-Y, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci. 2013;110(4):1446–51.PubMed
14.
Zurück zum Zitat Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.PubMed Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.PubMed
15.
Zurück zum Zitat von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci. 2012;109(7):2394–9. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci. 2012;109(7):2394–9.
16.
Zurück zum Zitat Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70.PubMedPubMedCentral Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70.PubMedPubMedCentral
17.
Zurück zum Zitat Mohamed TM, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–16 e12.PubMedPubMedCentral Mohamed TM, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–16 e12.PubMedPubMedCentral
18.
Zurück zum Zitat Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin D. Latent TGF-β binding proteins. Int J Biochem Cell Biol. 2005;37(1):38–41.PubMed Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin D. Latent TGF-β binding proteins. Int J Biochem Cell Biol. 2005;37(1):38–41.PubMed
19.
Zurück zum Zitat Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, et al. Latent TGF-β structure and activation. Nature. 2011;474(7351):343–9.PubMedPubMedCentral Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, et al. Latent TGF-β structure and activation. Nature. 2011;474(7351):343–9.PubMedPubMedCentral
20.
Zurück zum Zitat Zhang YE, Newfeld SJ. Meeting report–TGF-β superfamily: signaling in development and disease. The Company of Biologists Ltd; 2013. Zhang YE, Newfeld SJ. Meeting report–TGF-β superfamily: signaling in development and disease. The Company of Biologists Ltd; 2013.
21.
Zurück zum Zitat Moustakas A, Heldin C-H. The regulation of TGFβ signal transduction. Development. 2009;136(22):3699–714.PubMed Moustakas A, Heldin C-H. The regulation of TGFβ signal transduction. Development. 2009;136(22):3699–714.PubMed
22.
23.
Zurück zum Zitat Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development. 2018;145(14):dev164194.PubMed Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development. 2018;145(14):dev164194.PubMed
24.
Zurück zum Zitat Wu C-C, Kruse F, Vasudevarao MD, Junker JP, Zebrowski DC, Fischer K, et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev Cell. 2016;36(1):36–49.PubMed Wu C-C, Kruse F, Vasudevarao MD, Junker JP, Zebrowski DC, Fischer K, et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev Cell. 2016;36(1):36–49.PubMed
25.
Zurück zum Zitat Prados B, Gómez-Apiñániz P, Papoutsi T, Luxán G, Zaffran S, Pérez-Pomares JM, et al. Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity. Cell Death Dis. 2018;9(3):1–15. Prados B, Gómez-Apiñániz P, Papoutsi T, Luxán G, Zaffran S, Pérez-Pomares JM, et al. Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity. Cell Death Dis. 2018;9(3):1–15.
26.
Zurück zum Zitat Ebelt H, Hillebrand I, Arlt S, Zhang Y, Kostin S, Neuhaus H, et al. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock. 2013;39(4):353–60.PubMed Ebelt H, Hillebrand I, Arlt S, Zhang Y, Kostin S, Neuhaus H, et al. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock. 2013;39(4):353–60.PubMed
27.
Zurück zum Zitat Chakraborty S, Sengupta A, Yutzey KE. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol. 2013;62:203–13.PubMed Chakraborty S, Sengupta A, Yutzey KE. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol. 2013;62:203–13.PubMed
28.
Zurück zum Zitat Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131(9):2219–31.PubMedPubMedCentral Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131(9):2219–31.PubMedPubMedCentral
29.
Zurück zum Zitat Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8(8):a022053.PubMedPubMedCentral Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8(8):a022053.PubMedPubMedCentral
30.
Zurück zum Zitat Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol. 2002;191(1):1–16.PubMed Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol. 2002;191(1):1–16.PubMed
31.
Zurück zum Zitat Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, et al. ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One. 2011;6(7):e22606.PubMedPubMedCentral Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, et al. ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One. 2011;6(7):e22606.PubMedPubMedCentral
32.
Zurück zum Zitat Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. Elife. 2016;5:e20125.PubMedPubMedCentral Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. Elife. 2016;5:e20125.PubMedPubMedCentral
33.
Zurück zum Zitat Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci. 2006;103(42):15546–51.PubMed Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci. 2006;103(42):15546–51.PubMed
34.
Zurück zum Zitat Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem. 2008;283(45):31246–55.PubMedPubMedCentral Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem. 2008;283(45):31246–55.PubMedPubMedCentral
35.
Zurück zum Zitat Khalil N. TGF-β: from latent to active. Microbes Infect. 1999;1(15):1255–63.PubMed Khalil N. TGF-β: from latent to active. Microbes Infect. 1999;1(15):1255–63.PubMed
36.
Zurück zum Zitat Bettinger DA, Yager DR, Diegelmann RF, Cohen IK. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg. 1996;98(5):827–33.PubMed Bettinger DA, Yager DR, Diegelmann RF, Cohen IK. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg. 1996;98(5):827–33.PubMed
37.
Zurück zum Zitat Saltis J, Agrotis A, Bobik A. TGF-beta 1 potentiates growth factor-stimulated proliferation of vascular smooth muscle cells in genetic hypertension. Am J Phys Cell Phys. 1992;263(2):C420–C8. Saltis J, Agrotis A, Bobik A. TGF-beta 1 potentiates growth factor-stimulated proliferation of vascular smooth muscle cells in genetic hypertension. Am J Phys Cell Phys. 1992;263(2):C420–C8.
38.
Zurück zum Zitat Huang SS, Huang JS. TGF-β control of cell proliferation. J Cell Biochem. 2005;96(3):447–62.PubMed Huang SS, Huang JS. TGF-β control of cell proliferation. J Cell Biochem. 2005;96(3):447–62.PubMed
39.
Zurück zum Zitat Takehara K, LeRoy EC, Grotendorst GR. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell. 1987;49(3):415–22.PubMed Takehara K, LeRoy EC, Grotendorst GR. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell. 1987;49(3):415–22.PubMed
40.
Zurück zum Zitat Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74(2):184–95.PubMed Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74(2):184–95.PubMed
41.
Zurück zum Zitat Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.PubMedPubMedCentral Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.PubMedPubMedCentral
42.
Zurück zum Zitat Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, et al. Transforming growth factor–β3 is required for secondary palate fusion. Nat Genet. 1995;11(4):409–14.PubMed Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, et al. Transforming growth factor–β3 is required for secondary palate fusion. Nat Genet. 1995;11(4):409–14.PubMed
43.
Zurück zum Zitat Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF–β3 indicates defects of epithelial–mesenchymal interaction. Nat Genet. 1995;11(4):415–21.PubMed Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF–β3 indicates defects of epithelial–mesenchymal interaction. Nat Genet. 1995;11(4):415–21.PubMed
44.
Zurück zum Zitat Stanford L, Ormsby I, Gittenberger-de Groot A, Sariola H, Friedman R. TGFb2 knockout mice have multiple developmental defects that are non-overlapping with other TGFb phenotypes. Development. 1997;124:2569–670. Stanford L, Ormsby I, Gittenberger-de Groot A, Sariola H, Friedman R. TGFb2 knockout mice have multiple developmental defects that are non-overlapping with other TGFb phenotypes. Development. 1997;124:2569–670.
45.
Zurück zum Zitat McKoy G, Bicknell KA, Patel K, Brooks G. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. Cardiovasc Res. 2007;74(2):304–12.PubMed McKoy G, Bicknell KA, Patel K, Brooks G. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. Cardiovasc Res. 2007;74(2):304–12.PubMed
46.
Zurück zum Zitat Cohn RD, Liang H-Y, Shetty R, Abraham T, Wagner KR. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord. 2007;17(4):290–6.PubMedPubMedCentral Cohn RD, Liang H-Y, Shetty R, Abraham T, Wagner KR. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord. 2007;17(4):290–6.PubMedPubMedCentral
47.
Zurück zum Zitat Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 2010;121(3):419–25.PubMedPubMedCentral Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 2010;121(3):419–25.PubMedPubMedCentral
48.
Zurück zum Zitat Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev Biol. 2008;322(1):208–18.PubMedPubMedCentral Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev Biol. 2008;322(1):208–18.PubMedPubMedCentral
49.
Zurück zum Zitat Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62(1):65–74.PubMed Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62(1):65–74.PubMed
50.
Zurück zum Zitat Chablais F, Jaźwińska A. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development. 2012;139(11):1921–30.PubMed Chablais F, Jaźwińska A. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development. 2012;139(11):1921–30.PubMed
51.
Zurück zum Zitat Pfefferli C, Jaźwińska A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat Commun. 2017;8(1):1–16. Pfefferli C, Jaźwińska A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat Commun. 2017;8(1):1–16.
52.
Zurück zum Zitat Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105(10):934–47.PubMedPubMedCentral Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105(10):934–47.PubMedPubMedCentral
53.
Zurück zum Zitat Kühn B, Del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.PubMed Kühn B, Del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.PubMed
54.
Zurück zum Zitat Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. 2009;104(1):e1–7.PubMed Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. 2009;104(1):e1–7.PubMed
55.
Zurück zum Zitat López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Phys Heart Circ Phys. 2010;299(4):H959–H74. López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Phys Heart Circ Phys. 2010;299(4):H959–H74.
56.
Zurück zum Zitat Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):42–53.PubMed Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):42–53.PubMed
57.
Zurück zum Zitat Dogra D, Ahuja S, Kim H-T, Rasouli SJ, Stainier DY, Reischauer S. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat Commun. 2017;8(1):1–15. Dogra D, Ahuja S, Kim H-T, Rasouli SJ, Stainier DY, Reischauer S. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat Commun. 2017;8(1):1–15.
58.
Zurück zum Zitat Yang J, Wang J, Zeng Z, Qiao L, Zhuang L, Jiang L, et al. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish. Differentiation. 2016;92(4):161–8.PubMed Yang J, Wang J, Zeng Z, Qiao L, Zhuang L, Jiang L, et al. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish. Differentiation. 2016;92(4):161–8.PubMed
59.
Zurück zum Zitat Qi X, Yang G, Yang L, Lan Y, Weng T, Wang J, et al. Essential role of Smad4 in maintaining cardiomyocyte proliferation during murine embryonic heart development. Dev Biol. 2007;311(1):136–46.PubMed Qi X, Yang G, Yang L, Lan Y, Weng T, Wang J, et al. Essential role of Smad4 in maintaining cardiomyocyte proliferation during murine embryonic heart development. Dev Biol. 2007;311(1):136–46.PubMed
60.
Zurück zum Zitat Zhao M, New L, Kravchenko VV, Kato Y, Gram H, Di Padova F, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999;19(1):21–30.PubMedPubMedCentral Zhao M, New L, Kravchenko VV, Kato Y, Gram H, Di Padova F, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999;19(1):21–30.PubMedPubMedCentral
61.
Zurück zum Zitat Chen S, Qiong Y, Gardner DG. A role for p38 mitogen-activated protein kinase and c-myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension. 2006;47(2):252–8.PubMed Chen S, Qiong Y, Gardner DG. A role for p38 mitogen-activated protein kinase and c-myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension. 2006;47(2):252–8.PubMed
62.
Zurück zum Zitat Balakrishnan S, Sadasivam M, Kannan A, Panneerselvam A, Prahalathan C. Glucose modulates Pax6 expression through the JNK/p38 MAP kinase pathway in pancreatic beta-cells. Life Sci. 2014;109(1):1–7.PubMed Balakrishnan S, Sadasivam M, Kannan A, Panneerselvam A, Prahalathan C. Glucose modulates Pax6 expression through the JNK/p38 MAP kinase pathway in pancreatic beta-cells. Life Sci. 2014;109(1):1–7.PubMed
63.
Zurück zum Zitat Matsumoto-Ida M, Takimoto Y, Aoyama T, Akao M, Takeda T, Kita T. Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Phys Heart Circ Phys. 2006;290(2):H709–H15. Matsumoto-Ida M, Takimoto Y, Aoyama T, Akao M, Takeda T, Kita T. Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Phys Heart Circ Phys. 2006;290(2):H709–H15.
64.
Zurück zum Zitat Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, et al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage–specific manner with pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):624–33.PubMedPubMedCentral Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, et al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage–specific manner with pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):624–33.PubMedPubMedCentral
65.
Zurück zum Zitat Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.PubMedPubMedCentral Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.PubMedPubMedCentral
66.
Zurück zum Zitat Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 2009;8(8):1168–75.PubMedPubMedCentral Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 2009;8(8):1168–75.PubMedPubMedCentral
67.
Zurück zum Zitat Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138(9):1795–805.PubMedPubMedCentral Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138(9):1795–805.PubMedPubMedCentral
68.
Zurück zum Zitat Tan L, Bogush N, Naib H, Perry J, Calvert JW, Martin DI, et al. Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes. Sci Rep. 2019;9(1):1–15. Tan L, Bogush N, Naib H, Perry J, Calvert JW, Martin DI, et al. Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes. Sci Rep. 2019;9(1):1–15.
69.
Zurück zum Zitat Hough C, Radu M, Doré JJ. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One. 2012;7(8):e42513.PubMedPubMedCentral Hough C, Radu M, Doré JJ. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One. 2012;7(8):e42513.PubMedPubMedCentral
70.
Zurück zum Zitat Umbarkar P, Singh AP, Gupte M, Verma VK, Galindo CL, Guo Y, et al. Cardiomyocyte SMAD4-dependent TGF-β signaling is essential to maintain adult heart homeostasis. JACC: Basic to Translational Science. 2019;4(1):41–53.PubMed Umbarkar P, Singh AP, Gupte M, Verma VK, Galindo CL, Guo Y, et al. Cardiomyocyte SMAD4-dependent TGF-β signaling is essential to maintain adult heart homeostasis. JACC: Basic to Translational Science. 2019;4(1):41–53.PubMed
71.
Zurück zum Zitat Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, et al. A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci. 2008;105(49):19264–9.PubMed Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, et al. A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci. 2008;105(49):19264–9.PubMed
72.
Zurück zum Zitat de la Cova C, Townley R, Regot S, Greenwald I. A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell. 2017;42(5):542–53 e4.PubMedPubMedCentral de la Cova C, Townley R, Regot S, Greenwald I. A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell. 2017;42(5):542–53 e4.PubMedPubMedCentral
73.
Zurück zum Zitat Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.PubMedPubMedCentral Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.PubMedPubMedCentral
74.
Zurück zum Zitat Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.PubMedPubMedCentral Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.PubMedPubMedCentral
75.
Zurück zum Zitat Yao M, Wang Y, Zhang P, Chen H, Xu Z, Jiao J, et al. BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP. J Neurosci. 2014;34(36):12039–48.PubMedPubMedCentral Yao M, Wang Y, Zhang P, Chen H, Xu Z, Jiao J, et al. BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP. J Neurosci. 2014;34(36):12039–48.PubMedPubMedCentral
76.
Zurück zum Zitat Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 2010;19(6):831–44.PubMed Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 2010;19(6):831–44.PubMed
77.
Zurück zum Zitat Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime reports. 2013;5. Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime reports. 2013;5.
78.
Zurück zum Zitat Hanna A, Frangogiannis NG. The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med. 2019;6:140.PubMedPubMedCentral Hanna A, Frangogiannis NG. The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med. 2019;6:140.PubMedPubMedCentral
Metadaten
Titel
The Role of TGF—β Signaling in Cardiomyocyte Proliferation
verfasst von
Daniel W. Sorensen
Jop H. van Berlo
Publikationsdatum
20.07.2020
Verlag
Springer US
Erschienen in
Current Heart Failure Reports / Ausgabe 5/2020
Print ISSN: 1546-9530
Elektronische ISSN: 1546-9549
DOI
https://doi.org/10.1007/s11897-020-00470-2

Weitere Artikel der Ausgabe 5/2020

Current Heart Failure Reports 5/2020 Zur Ausgabe

Ethics/Palliative Care (S Fedson, Section Editor)

Home Therapies in Advanced Heart Failure: Inotropes and Diuretics

Imaging in Heart Failure (J Schulz-Menger, Section Editor)

Myocardial Involvement in Rheumatic Disorders

Biomarkers of Heart Failure (WH Tang & J Grodin, Section Editors)

Evidence of Clonal Hematopoiesis and Risk of Heart Failure

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Dihydropyridin-Kalziumantagonisten können auf die Nieren gehen

30.04.2024 Hypertonie Nachrichten

Im Vergleich zu anderen Blutdrucksenkern sind Kalziumantagonisten vom Diyhdropyridin-Typ mit einem erhöhten Risiko für eine Mikroalbuminurie und in Abwesenheit eines RAS-Blockers auch für ein terminales Nierenversagen verbunden.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.