Skip to main content
Erschienen in: Irish Journal of Medical Science (1971 -) 1/2024

Open Access 27.05.2023 | Original Article

The utility of cemented femoral stems in modern THA: a 10-year comparative analysis of the Charnley and Exeter stems

verfasst von: Ailbhe White-Gibson, Gerard Anthony Sheridan, Adrian Cassar Ghetti, Peter Keogh, Paddy Kenny, James Patrick Cashman

Erschienen in: Irish Journal of Medical Science (1971 -) | Ausgabe 1/2024

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Total hip replacement (THR) is one of the most common surgical procedures performed worldwide. The controversy surrounding the relative merits of a cemented composite beam or cemented taper-slip stem in total hip replacement continues. Our aims primarily were to assess the 10-year outcomes of cemented stems using Charnley and Exeter prostheses with regional registry data and secondarily to assess the main predictors of revision.

Methods

We prospectively collected registry data for procedures performed between January 2005 and June 2008. Only cemented Charnley and Exeter stems were included. Patients were prospectively reviewed at 6 months, 2, 5 and 10 years. The primary outcome measure was a 10-year all-cause revision. Secondary outcomes included ‘re-revision’, ‘mortality’ and functional ‘Western Ontario and McMaster Universities Osteoarthritis Index’ (WOMAC) scores.

Results

We recorded a total of 1351 cases in the cohort, 395 Exeter and 956 Charnley stems. The overall all-cause revision rate at 10 years was 1.6%. The revision rate for Charnley stem was 1.4% and 2.3% revision rate for all Exeter stems with no significant difference noted between the two cohorts (p = 0.24). The overall time to revision was 38.3 months. WOMAC scores at 10 years were found to be insignificantly higher for Charnley stems (mean 23.8, σ = 20.11) compared to Exeter stems (mean 19.78, σ = 20.72) (p = 0.1).

Conclusion

There is no significant difference between cemented Charnley and Exeter stems; they both perform well above the international average. The decline in the use of cemented THA is not fully supported by this regional registry data.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Total hip arthroplasty (THA) is one of the most comment and successful surgical procedures performed worldwide. The total number of hip replacements recorded in the UK National Joint Registry (NJR) continues to increase totalling just under 1 million replacements since data was first collected in 2003 [1]. The first Irish National joint registry report outlined that there were 3723 hip arthroplasty cases performed from 2014 to 2019 with 379 of those revision cases. The rates of revision were reported as 1.1% at 1 year due to infection in 28% of cases and periprosthetic fracture also in 28% of cases. Cemented hip arthroplasty stems were used in 40% of cases during this time frame [2].
Cemented arthroplasty stems can be split into composite beam design and those that function with a taper slip mechanism. Composite beam stems achieve stability by interlocking at all interfaces, achieving fixation between the stem and cement. Taper-slip stems achieve stability via controlled subsidence within the cement mantle [3]. Radiostereometic analysis has shown that polished double-tapered femoral implants, such as Exeter stems, subside within cement, with no movement occurring at the cement–bone interface. [4] Despite in vitro studies demonstrating the differences in stem fixation, most in vivo reports have failed to demonstrate any significant difference in outcome or survivorship between composite beam and taper-slip designs [5, 6].
The discussion surrounding the relative merits of cemented and cementless fixation for THA continues. There is evidence to suggest that uncemented fixation methods may lead to increasing rates of periprosthetic fracture [7, 8]. Supporters of cemented fixation will note the suitability of cemented implants for all age groups and all femur types, including capacious femoral canals, regardless of local anatomy [9].
Sir John Charnley pioneered the concept of low-friction arthroplasty with his fully cemented THA design which he implanted using high molecular weight polyethylene in 1962 [10, 11]. The Charnley THA (DePuy), based on the composite beam design concept, has been considered by many to be the gold standard against which all other devices are compared [12]. There has been a trend in recent years towards uncemented stem prostheses. In 2012, in the USA, 93% of all THAs were performed using cementless stem implants [13], 70% of stem implants were cementless in Norway in 2017 [14] and 90% in Italy in the same year [15]. It has also been demonstrated in the Swedish registry that the proportion of all cemented implants has dropped from 92 to 68% from 1999 to 2012 [16].
The Charnley hip replacement demonstrated reproducible results with high survival rates due to its low friction properties [17, 18]. It emerged as a reliable solution for pain relief, and its design remains relevant decades later with a 20-year survivorship of over 80% [1921]. The original Exeter stem was first implanted in 1970 and had extremely positive long-term results [22]. The Exeter V40 stem was introduced in 2000, and long-term follow-up has demonstrated comparatively excellent results [23] functioning as a taper slip device within the PMMA mantle [24, 25].
The primary aim of our study is to assess the 10-year outcomes of cemented stems comparing Charnley and Exeter prostheses with prospectively collected regional registry data. The secondary aim was to assess the main predictors of revision with these two common cemented femoral stems.

Methods

This was a retrospective cohort study with prospectively collected data from our institutional arthroplasty register. This electronic institutional registry was established in February 2005 and has been maintained prospectively. Each patient undergoing primary THA with a minimum of 10-year follow-up data between January 2005 and June 2008 was eligible for inclusion. Post-operatively clinical review was performed at 6 months, 2 years, 5 years, and 10 years. Clinical and radiological assessments were performed at each follow-up and recorded. Exclusion criteria included cases with incomplete data collection as well as metal-on-metal implant types.
The primary outcome measure was a 10-year all-cause revision. Secondary outcomes included ‘re-revision’, ‘mortality’ and functional ‘Western Ontario and McMaster Universities Osteoarthritis Index’ (WOMAC) scores. We obtained ethical approval from the ethics at National Orthopaedic Hospital Cappagh.
Statistical analysis was performed using STATA© Stata/IC 15.1 software, StataCorp, Texas. Descriptive statistics were performed for all demographic variables. The statistical test utilised was dependent on the variables being analysed. The chi-squared (χ2) test was used to compare categorical variables with more than 5 variables in each subgroup. The Fisher exact test was utilised when there were less than 5 variables per group. Two interval variables were analysed using simple regression analysis. Once the predictor variables were identified, all confounder variables were controlled for using a multivariate analysis. A p-value of < 0.05 was taken to be significant.

Results

A total of 1351 cases were eligible for inclusion. There were 395 Stryker Exeter stems and 956 De Puy Charnley stems performed at this institution within the time period specified. There was a female preponderance of 55.8%. A Charnley stem was inserted in females in 536 cases, and an Exeter stem was inserted in 172 women. The mean BMI was 28.7 (Table 1). The majority of Charnley stems (82%) were inserted via the modified Hardinge approach whereas the majority of Exeter stems (62.4%) were inserted through the posterior approach (Table 2). Metal-on-polyethylene was the commonest bearing surface combination used for both stems. 10.2% of cases were inserted as hybrids.
Table 1
Demographics (according to Charnley vs Exeter)
https://static-content.springer.com/image/art%3A10.1007%2Fs11845-023-03381-y/MediaObjects/11845_2023_3381_Tab1_HTML.png
Table 2
Approach
https://static-content.springer.com/image/art%3A10.1007%2Fs11845-023-03381-y/MediaObjects/11845_2023_3381_Tab2_HTML.png
The overall all-cause stem revision rate at 10 years was 1.6% (n = 22). There was a 1.4% revision rate for all Charnley stems and a 2.3% revision rate for all Exeter stems with no significant difference noted between the two cohorts (p = 0.24) (Fig. 1). The overall mean time to revision was 38.3 months. The leading indication for revision was infection in 48% of cases; dislocation in 27% of cases; aseptic loosening (9%); and periprosthetic fracture (9%) were also found to be contributory (Table 3).
Table 3
Causes of revision
Indication
Cases revised
Charnley
Exeter
Infection
10 (46%)
6
4
Dislocation
6 (27%)
3
2
Loosening
2 (9%)
2
0
Peri prosthetic fracture
2 (9%)
0
1
Other
2 (9%)
2
2
P = 0.563
Infection was found to be the indication for revision in the cases of 6 Charnley stems and 4 Exeter stems. There were 3 Charnley and 2 Exeter stems revised for instability. For aseptic loosening, there were 2 Charnley and no Exeter stems revised. One Exeter stem was revised for periprosthetic fracture with no Charnley stems revised for this reason (Fig. 2). WOMAC scores at 10 years were found to be higher for Charnley stems (mean 23.8, σ = 20.11) compared to Exeter stems (mean 19.78, σ = 20.72) (p = 0.016) (Table 4). The overall patient mortality rate was 7.54%. Mortality rates for patients with a Charnley stem were 7.6% compared to 7.34% in the Exeter stem at 10 years (Table 5). Loss to follow-up occurred in 41 cases (N = 29 Charnley, N = 12 Exeter).
Table 4
WOMAC scores
 
Mean
Std Err
Std Dev
Charnley
23.81
1.133
20.11
Exeter
19.78
1.53
20.72
P < 0.1
Table 5
Mortality rates
 
Charnley
Exeter
 
Yes
73
29
102
No
883
366
1249
 
956
395
1351
P > 0.05

Discussion

Over the past decade, there has been a vogue towards the more widespread use of cementless stems with a coinciding decrease in the number of cemented implanted stems as reflected across international registry data [1, 14, 26]. There are numerous arguments supported by either side, such as higher rates of aseptic loosening in cemented THA [27] and higher rates of periprosthetic fractures with cementless stem use [28]. However, we postulate that survivorship of both designs of cemented stem consistently demonstrate successful outcomes and survivorship across 10-year follow-up. Although the Charnley stem is considered the more historic method of hip arthroplasty, we have demonstrated equal performance of the Charnley stem when we compared it to the use of the Exeter stem, with better performance across areas such as WOMAC score which did not quite reach statistical significance. The relevance of cemented implants moving forward is steadfast despite the surge in the popularity of cementless implants internationally. A meta-analysis in 2007 by Morshed et al. demonstrated no difference in survival between cemented and cementless prostheses [29]. Since then, many larger studies with longer follow-ups have been conducted and have produced varying results with a consensus yet to be reached on the optimal method of stem fixation [1518].
Mid-term to long-term follow-up of the Charnley stem has demonstrated good functional results [30]. Caton et al. reported an 85% survivorship of the Charnley hip at 25 years [31]. Berry et al. reported similar 25-year survivorship rates at 86.5% [18]. They also demonstrated that the 25-year survivorship free of revision rate for aseptic loosening was poorer for each decade earlier in life at which the index procedure was performed; this ranged from 68.7% for patients who were less than 40 years of age to 100% for patients who were 80 years of age or older. This observation may explain why uncemented prostheses are now becoming more popular in younger patients worldwide [32]. Many surgeons have changed their preference with time [32]. Data from the several national arthroplasty registries show that cemented implants have a favourable outcome when revision of the implants is taken as the endpoint [9, 33, 34]. Malchau et al. examined the Swedish National Registry and found there to be a more favourable 10-year survival of cemented implants (94.8% vs 87.7%) [35]. These results were echoed by Danish arthroplasty registry findings, suggesting that cemented implants had similar lower revision rates [36].
With a 10-year all-cause revision rate of 1.6% for the 2 most popular cemented stems, our data supports the continued use of both of the studied designs of cemented stem in THA. Our data demonstrates an excellent performance of these 2 implants which compare extremely favourably to reported international revision rates.
Callaghan et al. found a 78% survivorship at 35 years for the Charnley THA [8]. Data of such longevity does not exist for uncemented fixation techniques yet. Supporting this, the Nordic Arthroplasty Registry demonstrated the survival of cemented implants for THR to be higher than that of uncemented implants. With a 93.8% 10-year survival rate for cemented implants in patients aged over 65, cemented stems were seen to be superior to uncemented stems with a survival of 92.9% [37]. Further subgroup analysis from this database showed the Charnley implant survival to be high (94.1% at 10 years) but slightly lower than that reported by the UK NJR (97% at 10 years) [38, 39]. The long-term survivorship of Exeter stems in our study was also excellent at 97.7%. This was noted to be comparable to rates reported by the NJR (10-year survival of 97.1%) [39]. This is also comparable to several studies examining for survivorship at 10 years; Westerman et al. reported survivorship of the stem, with revision for aseptic loosening as the endpoint, to be 100%. At 13.5 years, their survival rate for all-cause revision of the stem was reported as 96.8% [23].
The long-term performance of cemented THAs depends on many factors in addition to the implant, namely, the patient characteristics, the surgical approach, the cementing technique and the properties of the bone cement used [14]. The selection of bearing surfaces can contribute to rates of revision also [10, 40, 41]. In 2017, the New Zealand Registry demonstrated that ceramic-on-highly cross-linked polyethylene bearing surfaces provided the lowest all-cause revision rate [42]. In 2018, Sheridan et al. corroborated these results with data from our own regional arthroplasty registry. They demonstrated the lowest revision rates in ceramic-on-polyethylene bearings with a 0.9% all-cause revision for this bearing combination at 10 years [43].
The limitations of this study relate to the heterogenous nature of the group studied as it included the cases of multiple different surgeons within one centre, thereby encompassing different techniques and procedures. This does however add to the relatability of this study to practising arthroplasty units across the board. There are a number of confounding factors that we were unable to control for including the impact of bearing surfaces, individual surgical technique, approach and patient demographics.

Conclusion

Cemented femoral stems have demonstrated excellent performance in our arthroplasty registry. Both the Charnley and Exeter stem provide similar outstanding overall survivorship at a 10-year follow-up. We suggest that the international increase in the use of uncemented THA may not be fully supported, and there remains a strong role for cemented implants in the future.

Declarations

Conflict of interest

The authors declare no competing interests.

Human and animal rights and informed consent

Patients’ consent was gained for inclusion in the database used for this study anonymously. This article does not contain any studies with animals performed by any of the authors.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat National Joint Registry (2018) National Joint Registry for England, Wales, Northern Ireland and Isle of Man: 15th Annual Report 2018. 15th Annu Rep National Joint Registry (2018) National Joint Registry for England, Wales, Northern Ireland and Isle of Man: 15th Annual Report 2018. 15th Annu Rep
4.
Zurück zum Zitat Alfaro-Adrián J, Gill HS, Murray DW (2001) Should total hip arthroplasty femoral components be designed to subside? A radiostereometric analysis study of the Charnley Elite and Exeter stems. J Arthroplasty 16(5):598-606. https://doi.org/10.1054/arth.2001.23576. PMID: 11503119 Alfaro-Adrián J, Gill HS, Murray DW (2001) Should total hip arthroplasty femoral components be designed to subside? A radiostereometric analysis study of the Charnley Elite and Exeter stems. J Arthroplasty 16(5):598-606. https://​doi.​org/​10.​1054/​arth.​2001.​23576. PMID: 11503119
5.
Zurück zum Zitat Jayasuriya RL, Buckley SC, Hamer AJ, Kerry RM, Stockley I, Tomouk MW, Wilkinson JM (2013) Effect of sliding-taper compared with composite-beam cemented femoral prosthesis loading regime on proximal femoral bone remodeling: a randomized clinical trial. J Bone Joint Surg Am 95(1):19-27. https://doi.org/10.2106/JBJS.K.00657. PMID: 23283370 Jayasuriya RL, Buckley SC, Hamer AJ, Kerry RM, Stockley I, Tomouk MW, Wilkinson JM (2013) Effect of sliding-taper compared with composite-beam cemented femoral prosthesis loading regime on proximal femoral bone remodeling: a randomized clinical trial. J Bone Joint Surg Am 95(1):19-27. https://​doi.​org/​10.​2106/​JBJS.​K.​00657. PMID: 23283370
6.
7.
Zurück zum Zitat Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM (2008) Risk factors for periprosthetic fractures of the hip: a survivorship analysis. Clin Orthop Relat Res Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM (2008) Risk factors for periprosthetic fractures of the hip: a survivorship analysis. Clin Orthop Relat Res
8.
Zurück zum Zitat Franklin J, Malchau H (2007) Risk factors for periprosthetic femoral fracture. Injury Franklin J, Malchau H (2007) Risk factors for periprosthetic femoral fracture. Injury
9.
Zurück zum Zitat Hailer NP, Garellick G, Kärrholm J (2010) Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register: Evaluation of 170,413 operations. Acta Orthop Hailer NP, Garellick G, Kärrholm J (2010) Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register: Evaluation of 170,413 operations. Acta Orthop
10.
Zurück zum Zitat Burgers P, van Gijn J (2011) [Sir John Charnley and total hip arthroplasty]. Ned Tijdschr Geneeskd Burgers P, van Gijn J (2011) [Sir John Charnley and total hip arthroplasty]. Ned Tijdschr Geneeskd
11.
Zurück zum Zitat Charnley J (1964) The bonding of prostheses to bone by cement. J Bone Joint Surg Br Charnley J (1964) The bonding of prostheses to bone by cement. J Bone Joint Surg Br
12.
Zurück zum Zitat Warth LC, Callaghan JJ, Liu SS, Klaassen AL, Goetz DD, Johnston RC (2014) Thirty-five-year results after charnley total hip arthroplasty in patients less than fifty years old: a concise follow-up of previous reports. J Bone Jt Surg Am Warth LC, Callaghan JJ, Liu SS, Klaassen AL, Goetz DD, Johnston RC (2014) Thirty-five-year results after charnley total hip arthroplasty in patients less than fifty years old: a concise follow-up of previous reports. J Bone Jt Surg Am
13.
Zurück zum Zitat Lehil MS, Bozic KJ (2014) Trends in total hip arthroplasty implant utilization in the United States. J Arthroplasty Lehil MS, Bozic KJ (2014) Trends in total hip arthroplasty implant utilization in the United States. J Arthroplasty
14.
Zurück zum Zitat Abdelaal MS, Restrepo C, Sharkey PF (2020) Global perspectives on arthroplasty of hip and knee joints. Ortho Clin North Am Abdelaal MS, Restrepo C, Sharkey PF (2020) Global perspectives on arthroplasty of hip and knee joints. Ortho Clin North Am
15.
Zurück zum Zitat Lbbeke A et al (2018) Mapping existing hip and knee replacement registries in Europe. Health Policy (New York) Lbbeke A et al (2018) Mapping existing hip and knee replacement registries in Europe. Health Policy (New York)
16.
Zurück zum Zitat Cnudde P et al (2018) Trends in hip replacements between 1999 and 2012 in Sweden. J Orthop Res Cnudde P et al (2018) Trends in hip replacements between 1999 and 2012 in Sweden. J Orthop Res
17.
Zurück zum Zitat Charnley J (1960) Surgery of the hip-joint: present and future developments. Br Med J Charnley J (1960) Surgery of the hip-joint: present and future developments. Br Med J
18.
Zurück zum Zitat Berry DJ, Harmsen WS, Cabanela ME, Morrey BF (2002) Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J Bone Jt Surg Ser A Berry DJ, Harmsen WS, Cabanela ME, Morrey BF (2002) Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J Bone Jt Surg Ser A
19.
Zurück zum Zitat Schulte KR, Callaghan JJ, Kelley SS, Johnston RC (1993) The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. J Bone Jt Surg Ser A Schulte KR, Callaghan JJ, Kelley SS, Johnston RC (1993) The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. J Bone Jt Surg Ser A
20.
Zurück zum Zitat Callaghan JJ, Albright JC, Goetz DD, Olejniczak JP, Johnston RC (2000) Charnley total hip arthroplasty with cement: minimum twenty-five-year follow-up. J Bone Jt Surg Ser A Callaghan JJ, Albright JC, Goetz DD, Olejniczak JP, Johnston RC (2000) Charnley total hip arthroplasty with cement: minimum twenty-five-year follow-up. J Bone Jt Surg Ser A
21.
Zurück zum Zitat Kavanagh BF et al (1994) Charnley low-friction arthroplasty of the hip. Twenty-year results with cement. J Arthroplasty Kavanagh BF et al (1994) Charnley low-friction arthroplasty of the hip. Twenty-year results with cement. J Arthroplasty
22.
Zurück zum Zitat Ling RSM, Charity J, Lee AJC, Whitehouse SL, Timperley AJ, Gie GA (2009) The long-term results of the original exeter polished cemented femoral component. A follow-up report. J Arthroplasty Ling RSM, Charity J, Lee AJC, Whitehouse SL, Timperley AJ,  Gie GA (2009) The long-term results of the original exeter polished cemented femoral component. A follow-up report. J Arthroplasty
23.
Zurück zum Zitat Westerman RW, Whitehouse SL, Hubble MJW, Timperley AJ, Howell JR, Wilson MJ (2018) The Exeter V40 cemented femoral component at a minimum 10-year follow-up. Bone Jt J Westerman RW, Whitehouse SL, Hubble MJW, Timperley AJ, Howell JR, Wilson MJ (2018) The Exeter V40 cemented femoral component at a minimum 10-year follow-up. Bone Jt J
24.
Zurück zum Zitat Huiskes R, Verdonschot N, Nivbrant B (1998) Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clin Orthop Relate Res Huiskes R, Verdonschot N, Nivbrant B (1998) Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clin Orthop Relate Res
25.
Zurück zum Zitat Shen G (1998) Femoral stem fixation. An engineering interpretation of the long-term outcome of Charnley and Exeter stems. J Bone Joint Surg Br Shen G (1998) Femoral stem fixation. An engineering interpretation of the long-term outcome of Charnley and Exeter stems. J Bone Joint Surg Br
26.
Zurück zum Zitat Heckmann N et al (2019) Early results from the American Joint Replacement Registry: a comparison with other national registries. J Arthroplasty Heckmann N et al (2019) Early results from the American Joint Replacement Registry: a comparison with other national registries. J Arthroplasty
27.
Zurück zum Zitat Wechter J, Comfort TK, Tatman P, Mehle S, Gioe TJ (2013) Improved survival of uncemented versus cemented femoral stems in patients aged < 70 years in a community total joint registry. Clin Orthop Relat Res Wechter J, Comfort TK, Tatman P, Mehle S, Gioe TJ (2013) Improved survival of uncemented versus cemented femoral stems in patients aged < 70 years in a community total joint registry. Clin Orthop Relat Res
28.
Zurück zum Zitat Lindberg-Larsen M, Jørgensen CC, Solgaard S, Kjersgaard AG, Kehlet H (2017) Increased risk of intraoperative and early postoperative periprosthetic femoral fracture with uncemented stems. Acta Orthop Lindberg-Larsen M, Jørgensen CC, Solgaard S, Kjersgaard AG, Kehlet H (2017) Increased risk of intraoperative and early postoperative periprosthetic femoral fracture with uncemented stems. Acta Orthop
29.
Zurück zum Zitat Morshed S, Bozic KJ, Ries MD, Malchau H, Colford JM (2007) Comparison of cemented and uncemented fixation in total hip replacement: a meta-analysis. Acta Orthop Morshed S, Bozic KJ, Ries MD, Malchau H, Colford JM (2007) Comparison of cemented and uncemented fixation in total hip replacement: a meta-analysis. Acta Orthop
30.
Zurück zum Zitat Rowsell M, Der Tavitian J, Birtwistle S, Power R (2005) Survivorship of the Charnley Elite Plus cemented femoral stem. Intern Orthop Rowsell M, Der Tavitian J, Birtwistle S, Power R (2005) Survivorship of the Charnley Elite Plus cemented femoral stem. Intern Orthop
31.
Zurück zum Zitat Caton HMJ, Courpied JP, Ferreira A (2004) La prothèse totale de hanche. 4th Symp Charnley Int Lyon 2004 Ed Groupe ACORA MCI Fr Lyon pp 130 Caton HMJ, Courpied JP, Ferreira A (2004) La prothèse totale de hanche. 4th Symp Charnley Int Lyon 2004 Ed Groupe ACORA MCI Fr Lyon pp 130
32.
Zurück zum Zitat Kumar A, Bloch BV, Esler C (2017) Trends in total hip arthroplasty in young patients - results from a regional register. HIP Int Kumar A, Bloch BV, Esler C (2017) Trends in total hip arthroplasty in young patients - results from a regional register. HIP Int
33.
Zurück zum Zitat Bordini B, Stea S, De Clerico M, Strazzari S, Sasdelli A, Toni A (2007) Factors affecting aseptic loosening of 4750 total hip arthroplasties: multivariate survival analysis. BMC Musculoskelet Disord Bordini B, Stea S, De Clerico M, Strazzari S, Sasdelli A, Toni A (2007) Factors affecting aseptic loosening of 4750 total hip arthroplasties: multivariate survival analysis. BMC Musculoskelet Disord
34.
Zurück zum Zitat Weiss RJ, Hailer NP, Stark A, Kärrholm J (2012) Survival of uncemented acetabular monoblock cups: evaluation of 210 hips in the Swedish Hip Arthroplasty Register. Acta Orthop Weiss RJ, Hailer NP, Stark A, Kärrholm J (2012) Survival of uncemented acetabular monoblock cups: evaluation of 210 hips in the Swedish Hip Arthroplasty Register. Acta Orthop
35.
Zurück zum Zitat Malchau H, Herberts P, Eisler T, Garellick G, Söderman P (2002) The Swedish Total Hip Replacement Register. J Bone Join Surg Ser A Malchau H, Herberts P, Eisler T, Garellick G, Söderman P (2002) The Swedish Total Hip Replacement Register. J Bone Join Surg Ser A
36.
Zurück zum Zitat Gundtoft PH, Varnum C, Pedersen AB, Overgaard S (2016) The Danish hip arthroplasty register. Clin Epidemiol Gundtoft PH, Varnum C, Pedersen AB, Overgaard S (2016) The Danish hip arthroplasty register. Clin Epidemiol
37.
Zurück zum Zitat Mäkelä KT et al (2014) Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations. BMJ 348:f7592CrossRefPubMed Mäkelä KT et al (2014) Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations. BMJ 348:f7592CrossRefPubMed
38.
Zurück zum Zitat 12th annual report 2015. National Joint Registry, United Kingdom 12th annual report 2015. National Joint Registry, United Kingdom
39.
Zurück zum Zitat Junnila M et al (2016) Implant survival of the most common cemented total hip devices from the Nordic Arthroplasty Register Association database. Acta Orthop 87(6):546–553CrossRefPubMedPubMedCentral Junnila M et al (2016) Implant survival of the most common cemented total hip devices from the Nordic Arthroplasty Register Association database. Acta Orthop 87(6):546–553CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Meneghini RM, Hallab NJ, Jacobs JJ (2005) The biology of alternative bearing surfaces in total joint arthroplasty. Instruct Cour Lect Meneghini RM, Hallab NJ, Jacobs JJ (2005) The biology of alternative bearing surfaces in total joint arthroplasty. Instruct Cour Lect
41.
Zurück zum Zitat López-López JA et al (2017) Choice of implant combinations in total hip replacement: systematic review and network meta-analysis. BMJ López-López JA et al (2017) Choice of implant combinations in total hip replacement: systematic review and network meta-analysis. BMJ
42.
Zurück zum Zitat Sharplin P, Wyatt MC, Rothwell A, Frampton C, Hooper G (2018) Which is the best bearing surface for primary total hip replacement? A New Zealand Joint Registry study. Hip Int 28(4):352–362CrossRefPubMed Sharplin P, Wyatt MC, Rothwell A, Frampton C, Hooper G (2018) Which is the best bearing surface for primary total hip replacement? A New Zealand Joint Registry study. Hip Int 28(4):352–362CrossRefPubMed
43.
Zurück zum Zitat Sheridan GA, Kelly RM, McDonnell SM, Walsh F, O’Byrne JM, Kenny PJ (2019) Primary total hip arthroplasty: registry data for fixation methods and bearing options at a minimum of 10 years. Ir J Med Sci 188(3):873–877 Sheridan GA, Kelly RM, McDonnell SM, Walsh F, O’Byrne JM, Kenny PJ (2019) Primary total hip arthroplasty: registry data for fixation methods and bearing options at a minimum of 10 years. Ir J Med Sci 188(3):873–877
Metadaten
Titel
The utility of cemented femoral stems in modern THA: a 10-year comparative analysis of the Charnley and Exeter stems
verfasst von
Ailbhe White-Gibson
Gerard Anthony Sheridan
Adrian Cassar Ghetti
Peter Keogh
Paddy Kenny
James Patrick Cashman
Publikationsdatum
27.05.2023
Verlag
Springer International Publishing
Erschienen in
Irish Journal of Medical Science (1971 -) / Ausgabe 1/2024
Print ISSN: 0021-1265
Elektronische ISSN: 1863-4362
DOI
https://doi.org/10.1007/s11845-023-03381-y

Weitere Artikel der Ausgabe 1/2024

Irish Journal of Medical Science (1971 -) 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.