Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 4/2021

24.06.2021

Therapeutic potentials of agonist and antagonist of adenosine receptors in type 2 diabetes

verfasst von: Olakunle Sanni, G. Terre’Blanche

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Abstract

Type 2 diabetes has been a global health challenge over the decades and is among the leading causes of death. Several treatment approaches have been developed, but more effective and new therapies are still needed. The role of adenosine in glucose and lipid homeostasis has offered a different therapeutic approach. Adenosine mediates its physiological role through the activation of adenosine receptors. These adenosine receptors have been implicated in glucose and lipid homeostasis. The ability of agonists and antagonists of adenosine receptors to activate or inhibit the adenosine signalling cascade and thereby affecting the balance of glucose and lipid homeostasis has challenged the studies of agonists and antagonists of adenosine receptors, both preclinical and clinical, as potential anti-diabetic drugs. This review provides a background on different anti-diabetic therapeutic approaches, outlining the role of adenosine receptors in glucose and lipid homeostasis, and mechanisms underlying the action of agonists/antagonists of adenosine receptors as a therapeutic potential towards type 2 diabetes.
Literatur
1.
Zurück zum Zitat Arumugam G, Manjula P, Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis. 2013;2(3):196–200.CrossRef Arumugam G, Manjula P, Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis. 2013;2(3):196–200.CrossRef
2.
Zurück zum Zitat ADA. Diagnosis and classification of diabetes mellitus. Diabetes care. 2014;37(Supplement 1):S81-S90. ADA. Diagnosis and classification of diabetes mellitus. Diabetes care. 2014;37(Supplement 1):S81-S90.
4.
Zurück zum Zitat Pereira S, Marliss EB, Morais JA, Chevalier S, Gougeon R. Insulin resistance of protein metabolism in type 2 diabetes. Diabetes. 2008;57(1):56–63.PubMedCrossRef Pereira S, Marliss EB, Morais JA, Chevalier S, Gougeon R. Insulin resistance of protein metabolism in type 2 diabetes. Diabetes. 2008;57(1):56–63.PubMedCrossRef
5.
Zurück zum Zitat Peng Z, Borea PA, Wilder T, Yee H, Chiriboga L, Blackburn MR, et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest. 2009;119(3):582–94.PubMedPubMedCentralCrossRef Peng Z, Borea PA, Wilder T, Yee H, Chiriboga L, Blackburn MR, et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest. 2009;119(3):582–94.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov. 2014;13(4):278–89.PubMedCrossRef Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov. 2014;13(4):278–89.PubMedCrossRef
7.
Zurück zum Zitat Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2015;11(4):228.PubMedCrossRef Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2015;11(4):228.PubMedCrossRef
8.
Zurück zum Zitat Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. 2018;138:271–81. Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. 2018;138:271–81.
9.
Zurück zum Zitat Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. 2019;157:107843. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. 2019;157:107843.
10.
Zurück zum Zitat Ellenberg MJAoim. Diabetic neuropathy presenting as the initial clinical manifestation of diabetes. 1958;49(3):620–31. Ellenberg MJAoim. Diabetic neuropathy presenting as the initial clinical manifestation of diabetes. 1958;49(3):620–31.
11.
Zurück zum Zitat Chan L, Terashima T, Fujimiya M, Kojima HJTotAC, Association C. Chronic diabetic complications: The body’s adaptive response to hyperglycemia gone awry? 2006;117:341. Chan L, Terashima T, Fujimiya M, Kojima HJTotAC, Association C. Chronic diabetic complications: The body’s adaptive response to hyperglycemia gone awry? 2006;117:341.
12.
Zurück zum Zitat Zheng Y, Wang Z, Zhou ZJC, immunology m. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. 2017;14(6):488–96. Zheng Y, Wang Z, Zhou ZJC, immunology m. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. 2017;14(6):488–96.
13.
Zurück zum Zitat Chang-Chen K, Mullur R, Bernal-Mizrachi EJRiE, Disorders M. β-cell failure as a complication of diabetes. 2008;9(4):329. Chang-Chen K, Mullur R, Bernal-Mizrachi EJRiE, Disorders M. β-cell failure as a complication of diabetes. 2008;9(4):329.
14.
Zurück zum Zitat Bansal P, Wang Q. Insulin as a physiological modulator of glucagon secretion. Am J Physiol Endocrinol Metab. 2008;295(4):E751–61.PubMedCrossRef Bansal P, Wang Q. Insulin as a physiological modulator of glucagon secretion. Am J Physiol Endocrinol Metab. 2008;295(4):E751–61.PubMedCrossRef
15.
Zurück zum Zitat Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49.PubMedCrossRef Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49.PubMedCrossRef
16.
Zurück zum Zitat Basu R, Barosa C, Jones J, Dube S, Carter R, Basu A, et al. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab. 2013;98(3):E409–17.PubMedPubMedCentralCrossRef Basu R, Barosa C, Jones J, Dube S, Carter R, Basu A, et al. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab. 2013;98(3):E409–17.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes. 1990;39(11):1381–90.PubMedCrossRef Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes. 1990;39(11):1381–90.PubMedCrossRef
18.
Zurück zum Zitat Moore MC, Connolly CC, Cherrington AD. Autoregulation of hepatic glucose production. Eur J Endocrinol. 1998;138(3):240–8.PubMedCrossRef Moore MC, Connolly CC, Cherrington AD. Autoregulation of hepatic glucose production. Eur J Endocrinol. 1998;138(3):240–8.PubMedCrossRef
19.
Zurück zum Zitat Control D, Group CTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med. 1993;329(14):977–86.CrossRef Control D, Group CTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med. 1993;329(14):977–86.CrossRef
20.
Zurück zum Zitat Nathan D. Some answers, more controversy, from UKPDS. United Kingdom prospective diabetes study Lancet. 1998;352(9131):832–3.PubMed Nathan D. Some answers, more controversy, from UKPDS. United Kingdom prospective diabetes study Lancet. 1998;352(9131):832–3.PubMed
21.
Zurück zum Zitat Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. New Engl J Med. 2009;360(2):129–39.PubMedCrossRef Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. New Engl J Med. 2009;360(2):129–39.PubMedCrossRef
22.
Zurück zum Zitat Chang CH, Chuang LM. Effects of medical therapies on retinopathy progression in type 2 diabetes: Is blood pressure control the lower the better? J Diabetes Investig. 2011;2(2):101.PubMedCrossRef Chang CH, Chuang LM. Effects of medical therapies on retinopathy progression in type 2 diabetes: Is blood pressure control the lower the better? J Diabetes Investig. 2011;2(2):101.PubMedCrossRef
23.
Zurück zum Zitat Group AS, Group AES. Effects of medical therapies on retinopathy progression in type 2 diabetes. New Engl J Med. 2010;363(3):233–44.CrossRef Group AS, Group AES. Effects of medical therapies on retinopathy progression in type 2 diabetes. New Engl J Med. 2010;363(3):233–44.CrossRef
24.
Zurück zum Zitat Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. The Lancet. 2010;376(9739):419–30.CrossRef Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. The Lancet. 2010;376(9739):419–30.CrossRef
25.
Zurück zum Zitat Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, et al. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther. 2011;27(2):123–30.PubMedCrossRef Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, et al. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther. 2011;27(2):123–30.PubMedCrossRef
26.
Zurück zum Zitat Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complicat. 2012;26(6):483–90.CrossRef Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complicat. 2012;26(6):483–90.CrossRef
27.
28.
Zurück zum Zitat Derosa G, Maffioli P. Dipeptidyl peptidase-4 inhibitors: 3 years of experience. “Diabetes Technol Ther. 2012;14(4):350–64. Derosa G, Maffioli P. Dipeptidyl peptidase-4 inhibitors: 3 years of experience. “Diabetes Technol Ther. 2012;14(4):350–64.
29.
Zurück zum Zitat Sheehan MT. Current therapeutic options in type 2 diabetes mellitus: a practical approach. J Clin Med Res. 2003;1(3):189–200. Sheehan MT. Current therapeutic options in type 2 diabetes mellitus: a practical approach. J Clin Med Res. 2003;1(3):189–200.
30.
Zurück zum Zitat Bressler R, Johnson DG. Pharmacological Regulation of Blood Glucose Levels in Non—Insulin-Department Diabetes Mellitus. Arch Intern Med. 1997;157(8):836–48.PubMedCrossRef Bressler R, Johnson DG. Pharmacological Regulation of Blood Glucose Levels in Non—Insulin-Department Diabetes Mellitus. Arch Intern Med. 1997;157(8):836–48.PubMedCrossRef
31.
Zurück zum Zitat Shorr RI, Ray WA, Daugherty JR, Griffin MR. Individual sulfonylureas and serious hypoglycemia in older people. J Am Geriatr Soc. 1996;44(7):751–5.PubMedCrossRef Shorr RI, Ray WA, Daugherty JR, Griffin MR. Individual sulfonylureas and serious hypoglycemia in older people. J Am Geriatr Soc. 1996;44(7):751–5.PubMedCrossRef
32.
Zurück zum Zitat Holstein A, Plaschke A, Egberts EH. Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide. Diabetes Metab Res Rev. 2001;17(6):467–73.PubMedCrossRef Holstein A, Plaschke A, Egberts EH. Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide. Diabetes Metab Res Rev. 2001;17(6):467–73.PubMedCrossRef
33.
Zurück zum Zitat Derosa G, Limas CP, Macías PC, Estrella A, Maffioli P. Dietary and nutraceutical approach to type 2 diabetes. Archives of medical science: AMS. 2014;10(2):336.PubMedPubMedCentralCrossRef Derosa G, Limas CP, Macías PC, Estrella A, Maffioli P. Dietary and nutraceutical approach to type 2 diabetes. Archives of medical science: AMS. 2014;10(2):336.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Lee YH, Lee BW, Chun S, Cha B, Lee H. Predictive characteristics of patients achieving glycaemic control with insulin after sulfonylurea failure. Int J Clin Pract. 2011;65(10):1076–84.PubMedCrossRef Lee YH, Lee BW, Chun S, Cha B, Lee H. Predictive characteristics of patients achieving glycaemic control with insulin after sulfonylurea failure. Int J Clin Pract. 2011;65(10):1076–84.PubMedCrossRef
35.
Zurück zum Zitat Quianzon CC, Cheikh IE. History of current non-insulin medications for diabetes mellitus. J Community Hosp Intern Med Perspect. 2012;2(3):19081.CrossRef Quianzon CC, Cheikh IE. History of current non-insulin medications for diabetes mellitus. J Community Hosp Intern Med Perspect. 2012;2(3):19081.CrossRef
36.
Zurück zum Zitat Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55(8):2096–108.PubMedCrossRef Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55(8):2096–108.PubMedCrossRef
37.
Zurück zum Zitat Furman B. Meglitinide, Reference Module in Biomedical Sciences. Amsterdam: Elsevier; 2017. Furman B. Meglitinide, Reference Module in Biomedical Sciences. Amsterdam: Elsevier; 2017.
38.
Zurück zum Zitat Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143.PubMedCrossRef Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143.PubMedCrossRef
39.
Zurück zum Zitat Mehnert H, Haese E. Biguanide (Klinischer Teil). Handbook of experimental pharmacology, New Series. 1971;29. Mehnert H, Haese E. Biguanide (Klinischer Teil). Handbook of experimental pharmacology, New Series. 1971;29.
40.
Zurück zum Zitat Cicero AF, Tartagni E, Ertek S. Metformin and its clinical use: new insights for an old drug in clinical practice. Archives of medical science: AMS. 2012;8(5):907.PubMedPubMedCentralCrossRef Cicero AF, Tartagni E, Ertek S. Metformin and its clinical use: new insights for an old drug in clinical practice. Archives of medical science: AMS. 2012;8(5):907.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38(4):387–95.PubMedCrossRef DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38(4):387–95.PubMedCrossRef
42.
Zurück zum Zitat Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49(12):2063–9.PubMedCrossRef Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49(12):2063–9.PubMedCrossRef
43.
Zurück zum Zitat Rossetti L, Giaccari A, Barzilai N, Howard K, Sebel G, Hu M. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest. 1993;92(3):1126–34. Rossetti L, Giaccari A, Barzilai N, Howard K, Sebel G, Hu M. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest. 1993;92(3):1126–34.
44.
Zurück zum Zitat Burcelin R, Eddouks M, Maury J, Kande J, Assan R, Girard J. Excessive glucose production, rather than insulin resistance, accounts for hyperglycaemia in recent-onset streptozotocin-diabetic rats. Diabetologia. 1995;38(3):283–90.PubMedCrossRef Burcelin R, Eddouks M, Maury J, Kande J, Assan R, Girard J. Excessive glucose production, rather than insulin resistance, accounts for hyperglycaemia in recent-onset streptozotocin-diabetic rats. Diabetologia. 1995;38(3):283–90.PubMedCrossRef
45.
Zurück zum Zitat Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(3):607–14.PubMedPubMedCentralCrossRef Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(3):607–14.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell. 2012;13(4):251–62.CrossRef Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell. 2012;13(4):251–62.CrossRef
47.
Zurück zum Zitat Gunton JE, Delhanty PJ, Takahashi S-I, Baxter RC. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003;88(3):1323–32.PubMedCrossRef Gunton JE, Delhanty PJ, Takahashi S-I, Baxter RC. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003;88(3):1323–32.PubMedCrossRef
48.
Zurück zum Zitat Stith BJ, Goalstone ML, Espinoza R, Mossel C, Roberts D, Wiernsperger N. The antidiabetic drug metformin elevates receptor tyrosine kinase activity and inositol 1, 4, 5-trisphosphate mass in Xenopus oocytes. Endocrinology. 1996;137(7):2990–9.PubMedCrossRef Stith BJ, Goalstone ML, Espinoza R, Mossel C, Roberts D, Wiernsperger N. The antidiabetic drug metformin elevates receptor tyrosine kinase activity and inositol 1, 4, 5-trisphosphate mass in Xenopus oocytes. Endocrinology. 1996;137(7):2990–9.PubMedCrossRef
49.
Zurück zum Zitat Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7.PubMedCrossRef Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7.PubMedCrossRef
50.
Zurück zum Zitat Matsui Y, Hirasawa Y, Sugiura T, Toyoshi T, Kyuki K, Ito M. Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice. Biol Pharm Bull. 2010;33(6):963–70.PubMedCrossRef Matsui Y, Hirasawa Y, Sugiura T, Toyoshi T, Kyuki K, Ito M. Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice. Biol Pharm Bull. 2010;33(6):963–70.PubMedCrossRef
51.
Zurück zum Zitat Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):323–9.PubMedCrossRef Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):323–9.PubMedCrossRef
52.
53.
Zurück zum Zitat Otto C, Lehrke M, Göke B. Novel insulin sensitizers: pharmacogenomic aspects. Pharmacogenomics. 2002;3(1):99–116.PubMedCrossRef Otto C, Lehrke M, Göke B. Novel insulin sensitizers: pharmacogenomic aspects. Pharmacogenomics. 2002;3(1):99–116.PubMedCrossRef
55.
Zurück zum Zitat Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002;18(S2):S10–5.PubMedCrossRef Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002;18(S2):S10–5.PubMedCrossRef
56.
Zurück zum Zitat Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.PubMedCrossRef Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.PubMedCrossRef
57.
Zurück zum Zitat Weng J, Soegondo S, Schnell O, Sheu WHH, Grzeszczak W, Watada H, et al. Efficacy of acarbose in different geographical regions of the world: analysis of a real-life database. Diabetes Metab Res Rev. 2015;31(2):155–67.PubMedCrossRef Weng J, Soegondo S, Schnell O, Sheu WHH, Grzeszczak W, Watada H, et al. Efficacy of acarbose in different geographical regions of the world: analysis of a real-life database. Diabetes Metab Res Rev. 2015;31(2):155–67.PubMedCrossRef
58.
Zurück zum Zitat Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet. 2006;368(9548):1696–705.CrossRef Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet. 2006;368(9548):1696–705.CrossRef
60.
Zurück zum Zitat Borea PA, Gessi S, Merighi S, Vincenzi F. Varani KJPr. Pharmacology of adenosine receptors: the state of the art. 2018;98(3):1591–625. Borea PA, Gessi S, Merighi S, Vincenzi F. Varani KJPr. Pharmacology of adenosine receptors: the state of the art. 2018;98(3):1591–625.
61.
Zurück zum Zitat Csóka B, Koscsó B, Törő G, Kókai E, Virág L, Németh ZH, et al. A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes. 2014;63(3):850–66.PubMedPubMedCentralCrossRef Csóka B, Koscsó B, Törő G, Kókai E, Virág L, Németh ZH, et al. A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes. 2014;63(3):850–66.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, et al. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes. 2011;60(2):669–79.PubMedPubMedCentralCrossRef Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, et al. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes. 2011;60(2):669–79.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Faulhaber-Walter R, Jou W, Mizel D, Li L, Zhang J, Kim SM, et al. Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes. 2011;60(10):2578–87.PubMedPubMedCentralCrossRef Faulhaber-Walter R, Jou W, Mizel D, Li L, Zhang J, Kim SM, et al. Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes. 2011;60(10):2578–87.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PloS one. 2012;7(7). Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PloS one. 2012;7(7).
65.
Zurück zum Zitat Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó GJNre. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. 2015;11(4):228. Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó GJNre. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. 2015;11(4):228.
66.
Zurück zum Zitat Boison DJPr. Adenosine kinase: exploitation for therapeutic gain. 2013;65(3):906–43. Boison DJPr. Adenosine kinase: exploitation for therapeutic gain. 2013;65(3):906–43.
67.
Zurück zum Zitat Hardie DJIjoo. AMPK: a key regulator of energy balance in the single cell and the whole organism. 2008;32(4):S7-S12. Hardie DJIjoo. AMPK: a key regulator of energy balance in the single cell and the whole organism. 2008;32(4):S7-S12.
68.
Zurück zum Zitat Johansson SM, Salehi A, Sandström ME, Westerblad H, Lundquist I, Carlsson P-O, et al. A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochem Pharmacol. 2007;74(11):1628–35.PubMedCrossRef Johansson SM, Salehi A, Sandström ME, Westerblad H, Lundquist I, Carlsson P-O, et al. A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochem Pharmacol. 2007;74(11):1628–35.PubMedCrossRef
69.
Zurück zum Zitat Oetjen E, Schweickhardt C, Unthan-Fechner K, Probst I. Stimulation of glucose production from glycogen by glucagon, noradrenaline and non-degradable adenosine analogues is counteracted by adenosine and ATP in cultured rat hepatocytes. Biochem J. 1990;271(2):337–44.PubMedPubMedCentralCrossRef Oetjen E, Schweickhardt C, Unthan-Fechner K, Probst I. Stimulation of glucose production from glycogen by glucagon, noradrenaline and non-degradable adenosine analogues is counteracted by adenosine and ATP in cultured rat hepatocytes. Biochem J. 1990;271(2):337–44.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Buxton D, Fisher R, Robertson S, Olson M. Stimulation of glycogenolysis and vasoconstriction by adenosine and adenosine analogues in the perfused rat liver. Biochem J. 1987;248(1):35–41.PubMedPubMedCentralCrossRef Buxton D, Fisher R, Robertson S, Olson M. Stimulation of glycogenolysis and vasoconstriction by adenosine and adenosine analogues in the perfused rat liver. Biochem J. 1987;248(1):35–41.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol. 2013;228(8):1703–12.CrossRef Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol. 2013;228(8):1703–12.CrossRef
72.
Zurück zum Zitat Andersson O. Role of adenosine signalling and metabolism in β-cell regeneration. Exp Cell Res. 2014;321(1):3–10.PubMedCrossRef Andersson O. Role of adenosine signalling and metabolism in β-cell regeneration. Exp Cell Res. 2014;321(1):3–10.PubMedCrossRef
73.
Zurück zum Zitat Guzmán-Gutiérrez E, Arroyo P, Salsoso R, Fuenzalida B, Sáez T, Leiva A, et al. Role of insulin and adenosine in the human placenta microvascular and macrovascular endothelial cell dysfunction in gestational diabetes mellitus. Microcirculation. 2014;21(1):26–37.PubMedCrossRef Guzmán-Gutiérrez E, Arroyo P, Salsoso R, Fuenzalida B, Sáez T, Leiva A, et al. Role of insulin and adenosine in the human placenta microvascular and macrovascular endothelial cell dysfunction in gestational diabetes mellitus. Microcirculation. 2014;21(1):26–37.PubMedCrossRef
74.
Zurück zum Zitat McLane MP, Black PR, Law WR, Raymond RM. Adenosine reversal of in vivo hepatic responsiveness to insulin. Diabetes. 1990;39(1):62–9.PubMedCrossRef McLane MP, Black PR, Law WR, Raymond RM. Adenosine reversal of in vivo hepatic responsiveness to insulin. Diabetes. 1990;39(1):62–9.PubMedCrossRef
75.
Zurück zum Zitat Espinal J, Challiss RJ, Newsholme EA. Effect of adenosine deaminase and an adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Lett. 1983;158(1):103–6.PubMedCrossRef Espinal J, Challiss RJ, Newsholme EA. Effect of adenosine deaminase and an adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Lett. 1983;158(1):103–6.PubMedCrossRef
76.
Zurück zum Zitat Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev. 1998;161(1):27–42.PubMedCrossRef Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev. 1998;161(1):27–42.PubMedCrossRef
77.
Zurück zum Zitat Hoshino T, Yamada K, Masuoka K, Tsuboi I, Itoh K, Nonaka K, et al. Elevated adenosine deaminase activity in the serum of patients with diabetes mellitus. Diabetes Res Clin Pract. 1994;25(2):97–102.PubMedCrossRef Hoshino T, Yamada K, Masuoka K, Tsuboi I, Itoh K, Nonaka K, et al. Elevated adenosine deaminase activity in the serum of patients with diabetes mellitus. Diabetes Res Clin Pract. 1994;25(2):97–102.PubMedCrossRef
78.
Zurück zum Zitat Turpin BP, Duckworth WC, Solomon SS. Perifusion of isolated rat adipose cells: modulation of lipolysis by adenosine. J Clin Invest. 1977;60(2):442–8.PubMedPubMedCentralCrossRef Turpin BP, Duckworth WC, Solomon SS. Perifusion of isolated rat adipose cells: modulation of lipolysis by adenosine. J Clin Invest. 1977;60(2):442–8.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Kurtul N, Pence S, Akarsu E, Kocoglu H, Aksoy Y, Aksoy H. Adenosine deaminase activity in the serum of type 2 diabetic patients. ACTA MEDICA-HRADEC KRALOVE-. 2004;47(1):33–6.PubMed Kurtul N, Pence S, Akarsu E, Kocoglu H, Aksoy Y, Aksoy H. Adenosine deaminase activity in the serum of type 2 diabetic patients. ACTA MEDICA-HRADEC KRALOVE-. 2004;47(1):33–6.PubMed
80.
Zurück zum Zitat Nwankwo A, Osim E, Bisong S. Contributory role of adenosine deaminase in metabolic syndrome. Niger J Physiol Sci. 2013;28(1):73–6.PubMed Nwankwo A, Osim E, Bisong S. Contributory role of adenosine deaminase in metabolic syndrome. Niger J Physiol Sci. 2013;28(1):73–6.PubMed
81.
Zurück zum Zitat Sapkota LB, Thapa S, Subedi N. Correlation study of adenosine deaminase and its isoenzymes in type 2 diabetes mellitus. BMJ Open Diabetes Research and Care. 2017;5(1). Sapkota LB, Thapa S, Subedi N. Correlation study of adenosine deaminase and its isoenzymes in type 2 diabetes mellitus. BMJ Open Diabetes Research and Care. 2017;5(1).
82.
Zurück zum Zitat Dangana EO, Michael OS, Omolekulo TE, Areola ED, Olatunji LA. Enhanced hepatic glycogen synthesis and suppressed adenosine deaminase activity by lithium attenuates hepatic triglyceride accumulation in nicotine-exposed rats. Biomed Pharmacother. 2019;109:1417–27.PubMedCrossRef Dangana EO, Michael OS, Omolekulo TE, Areola ED, Olatunji LA. Enhanced hepatic glycogen synthesis and suppressed adenosine deaminase activity by lithium attenuates hepatic triglyceride accumulation in nicotine-exposed rats. Biomed Pharmacother. 2019;109:1417–27.PubMedCrossRef
83.
Zurück zum Zitat Wong E, Smith JA, Jarett L. Adenosine effects on glucose oxidation of adipocytes isolated from streptozotocin-diabetic rats. Biochem J. 1985;232(1):301–4.PubMedPubMedCentralCrossRef Wong E, Smith JA, Jarett L. Adenosine effects on glucose oxidation of adipocytes isolated from streptozotocin-diabetic rats. Biochem J. 1985;232(1):301–4.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Green A, Newsholme EA. Sensitivity of glucose uptake and lipolysis of white adipocytes of the rat to insulin and effects of some metabolites. Biochem J. 1979;180(2):365–70.PubMedPubMedCentralCrossRef Green A, Newsholme EA. Sensitivity of glucose uptake and lipolysis of white adipocytes of the rat to insulin and effects of some metabolites. Biochem J. 1979;180(2):365–70.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–60.PubMedPubMedCentralCrossRef Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–60.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Boyda H, Procyshyn R, Pang C, Barr A. Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance. J Neuroendocrinol. 2013;25(3):217–28.PubMedCrossRef Boyda H, Procyshyn R, Pang C, Barr A. Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance. J Neuroendocrinol. 2013;25(3):217–28.PubMedCrossRef
87.
Zurück zum Zitat Yosida M, Dezaki K, Uchida K, Kodera S, Lam NV, Ito K, et al. Involvement of cAMP/EPAC/TRPM2 activation in glucose-and incretin-induced insulin secretion. Diabetes. 2014;63(10):3394–403.PubMedCrossRef Yosida M, Dezaki K, Uchida K, Kodera S, Lam NV, Ito K, et al. Involvement of cAMP/EPAC/TRPM2 activation in glucose-and incretin-induced insulin secretion. Diabetes. 2014;63(10):3394–403.PubMedCrossRef
88.
Zurück zum Zitat Klover PJ, Mooney RA. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol. 2004;36(5):753–8.PubMedCrossRef Klover PJ, Mooney RA. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol. 2004;36(5):753–8.PubMedCrossRef
89.
Zurück zum Zitat Hatting M, Tavares CD, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21.PubMedCrossRef Hatting M, Tavares CD, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21.PubMedCrossRef
90.
Zurück zum Zitat Pilkis SJ, Exton JH, Johnson RA, Park CR. Effects of glucagon on cyclic AMP and carbohydrate metabolism in livers from diabetic rats. Biochimica et Biophysica Acta (BBA)-General Subjects. 1974;343(1):250–67. Pilkis SJ, Exton JH, Johnson RA, Park CR. Effects of glucagon on cyclic AMP and carbohydrate metabolism in livers from diabetic rats. Biochimica et Biophysica Acta (BBA)-General Subjects. 1974;343(1):250–67.
91.
Zurück zum Zitat L Rodgers R. Glucagon and cyclic AMP: time to turn the page? Curr Diabetes Rev. 2012;8(5):362–81. L Rodgers R. Glucagon and cyclic AMP: time to turn the page? Curr Diabetes Rev. 2012;8(5):362–81.
92.
Zurück zum Zitat Collis MG, Hourani SM. Adenosine receptor subtypes. Trends Pharmacol Sci. 1993;14(10):361–6.CrossRef Collis MG, Hourani SM. Adenosine receptor subtypes. Trends Pharmacol Sci. 1993;14(10):361–6.CrossRef
93.
Zurück zum Zitat Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol. 2016;57(2):R93–108.PubMedCrossRef Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol. 2016;57(2):R93–108.PubMedCrossRef
94.
Zurück zum Zitat Takeda Y. Theoretical Investigations into the Quantitative Mechanisms Underlying the Regulation of [cAMP] i, Membrane Excitability and [Ca (2+)] i during GLP-1 Stimulation in Pancreatic β Cells. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan. 2016;136(3):467.PubMedCrossRef Takeda Y. Theoretical Investigations into the Quantitative Mechanisms Underlying the Regulation of [cAMP] i, Membrane Excitability and [Ca (2+)] i during GLP-1 Stimulation in Pancreatic β Cells. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan. 2016;136(3):467.PubMedCrossRef
95.
Zurück zum Zitat Almahariq M, Mei FC, Cheng X. Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol Metab. 2014;25(2):60–71.PubMedCrossRef Almahariq M, Mei FC, Cheng X. Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol Metab. 2014;25(2):60–71.PubMedCrossRef
96.
Zurück zum Zitat Xie T, Chen M, Zhang Q-H, Ma Z, Weinstein LS. β cell-specific deficiency of the stimulatory G protein α-subunit Gsα leads to reduced β cell mass and insulin-deficient diabetes. Proc Natl Acad Sci. 2007;104(49):19601–6.PubMedPubMedCentralCrossRef Xie T, Chen M, Zhang Q-H, Ma Z, Weinstein LS. β cell-specific deficiency of the stimulatory G protein α-subunit Gsα leads to reduced β cell mass and insulin-deficient diabetes. Proc Natl Acad Sci. 2007;104(49):19601–6.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Alexandre-Heymann L, Mallone R, Boitard C, Scharfmann R, Larger E. Structure and function of the exocrine pancreas in patients with type 1 diabetes. Rev Endocr Metab Disord. 2019;20(2):129–49.PubMedCrossRef Alexandre-Heymann L, Mallone R, Boitard C, Scharfmann R, Larger E. Structure and function of the exocrine pancreas in patients with type 1 diabetes. Rev Endocr Metab Disord. 2019;20(2):129–49.PubMedCrossRef
99.
Zurück zum Zitat Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab. 2017;19:42–53.PubMedCrossRef Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab. 2017;19:42–53.PubMedCrossRef
100.
Zurück zum Zitat Hellman B, Idahl L-Å, Lernmark Å, Täljedal I-B. The pancreatic β-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci. 1974;71(9):3405–9.PubMedPubMedCentralCrossRef Hellman B, Idahl L-Å, Lernmark Å, Täljedal I-B. The pancreatic β-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci. 1974;71(9):3405–9.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Delmeire D, Flamez D, Hinke SA, Cali J, Pipeleers D, Schuit F. Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia. 2003;46(10):1383–93.PubMedCrossRef Delmeire D, Flamez D, Hinke SA, Cali J, Pipeleers D, Schuit F. Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia. 2003;46(10):1383–93.PubMedCrossRef
102.
Zurück zum Zitat Sabbatini ME, D’alecy L, Lentz SI, Tang T, Williams JA. Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation. The Journal of physiology. 2013;591(15):3693–707. Sabbatini ME, D’alecy L, Lentz SI, Tang T, Williams JA. Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation. The Journal of physiology. 2013;591(15):3693–707.
103.
Zurück zum Zitat Dou H, Wang C, Wu X, Yao L, Zhang X, Teng S, et al. Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia. 2015;58(2):324–33.PubMedCrossRef Dou H, Wang C, Wu X, Yao L, Zhang X, Teng S, et al. Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia. 2015;58(2):324–33.PubMedCrossRef
104.
Zurück zum Zitat Tofovic SP, Kost CK Jr, Jackson EK, Bastacky SI. Long-term caffeine consumption exacerbates renal failure in obese, diabetic, ZSF1 (fa-facp) rats. Kidney Int. 2002;61(4):1433–44.PubMedCrossRef Tofovic SP, Kost CK Jr, Jackson EK, Bastacky SI. Long-term caffeine consumption exacerbates renal failure in obese, diabetic, ZSF1 (fa-facp) rats. Kidney Int. 2002;61(4):1433–44.PubMedCrossRef
105.
Zurück zum Zitat Peleli M, Fredholm BB, Sobrevia L, Carlström M. Pharmacological targeting of adenosine receptor signaling. Mol Aspects Med. 2017;55:4–8.PubMedCrossRef Peleli M, Fredholm BB, Sobrevia L, Carlström M. Pharmacological targeting of adenosine receptor signaling. Mol Aspects Med. 2017;55:4–8.PubMedCrossRef
106.
Zurück zum Zitat Van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005;294(1):97–104.PubMedCrossRef Van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005;294(1):97–104.PubMedCrossRef
107.
Zurück zum Zitat Van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. The Lancet. 2002;360(9344):1477–8.CrossRef Van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. The Lancet. 2002;360(9344):1477–8.CrossRef
108.
Zurück zum Zitat Pizziol A, Tikhonoff V, Paleari C, Russo E, Mazza A, Ginocchio G, et al. Effects of caffeine on glucose tolerance: a placebo-controlled study. Eur J Clin Nutr. 1998;52(11):846–9.PubMedCrossRef Pizziol A, Tikhonoff V, Paleari C, Russo E, Mazza A, Ginocchio G, et al. Effects of caffeine on glucose tolerance: a placebo-controlled study. Eur J Clin Nutr. 1998;52(11):846–9.PubMedCrossRef
109.
Zurück zum Zitat Isogawa A, Noda M, Takahashi Y, Kadowaki T, Tsugane S. Coffee consumption and risk of type 2 diabetes mellitus. The Lancet. 2003;361(9358):703–4.CrossRef Isogawa A, Noda M, Takahashi Y, Kadowaki T, Tsugane S. Coffee consumption and risk of type 2 diabetes mellitus. The Lancet. 2003;361(9358):703–4.CrossRef
110.
Zurück zum Zitat Brown CR, Benowitz NL. Caffeine and cigarette smoking: behavioral, cardiovascular, and metabolic interactions. Pharmacol Biochem Behav. 1989;34(3):565–70.PubMedCrossRef Brown CR, Benowitz NL. Caffeine and cigarette smoking: behavioral, cardiovascular, and metabolic interactions. Pharmacol Biochem Behav. 1989;34(3):565–70.PubMedCrossRef
111.
Zurück zum Zitat Urzúa Z, Trujillo X, Huerta M, Trujillo-Hernández B, Ríos-Silva M, Onetti C, et al. Effects of chronic caffeine administration on blood glucose levels and on glucose tolerance in healthy and diabetic rats. J Int Med Res. 2012;40(6):2220–30.PubMedCrossRef Urzúa Z, Trujillo X, Huerta M, Trujillo-Hernández B, Ríos-Silva M, Onetti C, et al. Effects of chronic caffeine administration on blood glucose levels and on glucose tolerance in healthy and diabetic rats. J Int Med Res. 2012;40(6):2220–30.PubMedCrossRef
112.
Zurück zum Zitat Alagbonsi AI, Salman TM, Salahdeen HM, Alada AA. Effects of adenosine and caffeine on blood glucose levels in rats. Nigerian Journal of Experimental and Clinical Biosciences. 2016;4(2):35. Alagbonsi AI, Salman TM, Salahdeen HM, Alada AA. Effects of adenosine and caffeine on blood glucose levels in rats. Nigerian Journal of Experimental and Clinical Biosciences. 2016;4(2):35.
113.
Zurück zum Zitat Yamauchi R, Kobayashi M, Matsuda Y, Ojika M, Shigeoka S, Yamamoto Y, et al. Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem. 2010;58(9):5597–603.PubMedCrossRef Yamauchi R, Kobayashi M, Matsuda Y, Ojika M, Shigeoka S, Yamamoto Y, et al. Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem. 2010;58(9):5597–603.PubMedCrossRef
114.
Zurück zum Zitat Okumura T, Tsukui T, Hosokawa M, Miyashita K. Effect of caffeine and capsaicin on the blood glucose levels of obese/diabetic KK-Ay mice. J Oleo Sci. 2012;61(9):515–23.PubMedCrossRef Okumura T, Tsukui T, Hosokawa M, Miyashita K. Effect of caffeine and capsaicin on the blood glucose levels of obese/diabetic KK-Ay mice. J Oleo Sci. 2012;61(9):515–23.PubMedCrossRef
115.
Zurück zum Zitat Salomone F, Galvano F, Li VG. Molecular bases underlying the hepatoprotective effects of coffee. Nutrients. 2017;9(1):85.PubMedCentralCrossRef Salomone F, Galvano F, Li VG. Molecular bases underlying the hepatoprotective effects of coffee. Nutrients. 2017;9(1):85.PubMedCentralCrossRef
116.
Zurück zum Zitat Zaharieva DP, Riddell MC. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus. Appl Physiol Nutr Metab. 2013;38(8):813–22.PubMedCrossRef Zaharieva DP, Riddell MC. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus. Appl Physiol Nutr Metab. 2013;38(8):813–22.PubMedCrossRef
117.
Zurück zum Zitat Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med. 2009;169(22):2053–63.PubMedCrossRef Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med. 2009;169(22):2053–63.PubMedCrossRef
118.
Zurück zum Zitat Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L. Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem. 2003;3(4):369–85.PubMedCrossRef Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L. Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem. 2003;3(4):369–85.PubMedCrossRef
119.
Zurück zum Zitat Dhalla AK, Wong MY, Voshol PJ, Belardinelli L, Reaven GM. A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab. 2007;292(5):E1358–63.PubMedCrossRef Dhalla AK, Wong MY, Voshol PJ, Belardinelli L, Reaven GM. A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab. 2007;292(5):E1358–63.PubMedCrossRef
120.
Zurück zum Zitat Cheng J-T, Chi T-C, Liu I-M. Activation of adenosine A1 receptors by drugs to lower plasma glucose in streptozotocin-induced diabetic rats. Auton Neurosci. 2000;83(3):127–33.PubMedCrossRef Cheng J-T, Chi T-C, Liu I-M. Activation of adenosine A1 receptors by drugs to lower plasma glucose in streptozotocin-induced diabetic rats. Auton Neurosci. 2000;83(3):127–33.PubMedCrossRef
121.
Zurück zum Zitat Thong FS, Lally JS, Dyck DJ, Greer F, Bonen A, Graham TE. Activation of the A1 adenosine receptor increases insulin-stimulated glucose transport in isolated rat soleus muscle. Appl Physiol Nutr Metab. 2007;32(4):701–10.PubMedCrossRef Thong FS, Lally JS, Dyck DJ, Greer F, Bonen A, Graham TE. Activation of the A1 adenosine receptor increases insulin-stimulated glucose transport in isolated rat soleus muscle. Appl Physiol Nutr Metab. 2007;32(4):701–10.PubMedCrossRef
122.
Zurück zum Zitat Liu I, Tzeng T, Tsai C, Lai TY, Chang C, Cheng J. Increase in adenosine A1 receptor gene expression in the liver of streptozotocin-induced diabetic rats. Diabetes Metab Res Rev. 2003;19(3):209–15.PubMedCrossRef Liu I, Tzeng T, Tsai C, Lai TY, Chang C, Cheng J. Increase in adenosine A1 receptor gene expression in the liver of streptozotocin-induced diabetic rats. Diabetes Metab Res Rev. 2003;19(3):209–15.PubMedCrossRef
123.
Zurück zum Zitat Jacobson KA, Tosh DK, Jain S, Gao Z-G. Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci. 2019;13:124.PubMedPubMedCentralCrossRef Jacobson KA, Tosh DK, Jain S, Gao Z-G. Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci. 2019;13:124.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Hayashi S. Hypoglycemic and hypotensive effects of 6-cyclohexyl-2-O-methyl-adenosine, an adenosine A 1 receptor agonist, in spontaneously hypertensive rat complicated with hyperglycemia. Diabetes Res Clin Pract. 1998;1(39):3–9. Hayashi S. Hypoglycemic and hypotensive effects of 6-cyclohexyl-2-O-methyl-adenosine, an adenosine A 1 receptor agonist, in spontaneously hypertensive rat complicated with hyperglycemia. Diabetes Res Clin Pract. 1998;1(39):3–9.
125.
Zurück zum Zitat Oh YT, Oh K-S, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.PubMedPubMedCentralCrossRef Oh YT, Oh K-S, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Schoelch C, Kuhlmann J, Gossel M, Mueller G, Neumann-Haefelin C, Belz U, et al. Characterization of Adenosine-A1 Receptor-Mediated Antilipolysis in Rats by Tissue Microdialysis, 1H-Spectroscopy, and Glucose Clamp Studies. Diabetes. 2004;53(7):1920–6.PubMedCrossRef Schoelch C, Kuhlmann J, Gossel M, Mueller G, Neumann-Haefelin C, Belz U, et al. Characterization of Adenosine-A1 Receptor-Mediated Antilipolysis in Rats by Tissue Microdialysis, 1H-Spectroscopy, and Glucose Clamp Studies. Diabetes. 2004;53(7):1920–6.PubMedCrossRef
127.
Zurück zum Zitat Qu X, Cooney G, Donnelly R. Short-term metabolic and haemodynamic effects of GR79236 in normal and fructose-fed rats. Eur J Pharmacol. 1997;338(3):269–76.PubMedCrossRef Qu X, Cooney G, Donnelly R. Short-term metabolic and haemodynamic effects of GR79236 in normal and fructose-fed rats. Eur J Pharmacol. 1997;338(3):269–76.PubMedCrossRef
128.
Zurück zum Zitat Zannikos PN, Rohatagi S, Jensen BK. Pharmacokinetic-pharmacodynamic modeling of the antilipolytic effects of an adenosine receptor agonist in healthy volunteers. J Clin Pharmacol. 2001;41(1):61–9.PubMedCrossRef Zannikos PN, Rohatagi S, Jensen BK. Pharmacokinetic-pharmacodynamic modeling of the antilipolytic effects of an adenosine receptor agonist in healthy volunteers. J Clin Pharmacol. 2001;41(1):61–9.PubMedCrossRef
129.
Zurück zum Zitat Xu B, Berkich DA, Crist GH, LaNoue KF. A1 adenosine receptor antagonism improves glucose tolerance in Zucker rats. Am J Physiol Endocrinol Metab. 1998;274(2):E271–9.CrossRef Xu B, Berkich DA, Crist GH, LaNoue KF. A1 adenosine receptor antagonism improves glucose tolerance in Zucker rats. Am J Physiol Endocrinol Metab. 1998;274(2):E271–9.CrossRef
130.
Zurück zum Zitat Zywert A, Szkudelska K, Szkudelski T. Effects of adenosine A1 receptor antagonism on insulin secretion from rat pancreatic islets. Physiol Res. 2011;60(6):905.PubMedCrossRef Zywert A, Szkudelska K, Szkudelski T. Effects of adenosine A1 receptor antagonism on insulin secretion from rat pancreatic islets. Physiol Res. 2011;60(6):905.PubMedCrossRef
131.
Zurück zum Zitat Gromada J, Ding W-G, Barg S, Renström E, Rorsman P. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch. 1997;434(5):515–24.PubMedCrossRef Gromada J, Ding W-G, Barg S, Renström E, Rorsman P. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch. 1997;434(5):515–24.PubMedCrossRef
132.
Zurück zum Zitat Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, et al. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes. 2002;51(12):3440–9.PubMedCrossRef Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, et al. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes. 2002;51(12):3440–9.PubMedCrossRef
133.
Zurück zum Zitat Kaelin-Lang A, Liniger P, Probst A, Lauterburg T, Burgunder J-M. Adenosine A 2A receptor gene expression in the normal striatum and after 6-OH-dopamine lesion. J Neural Transm. 2000;107(8–9):851–9.PubMedCrossRef Kaelin-Lang A, Liniger P, Probst A, Lauterburg T, Burgunder J-M. Adenosine A 2A receptor gene expression in the normal striatum and after 6-OH-dopamine lesion. J Neural Transm. 2000;107(8–9):851–9.PubMedCrossRef
134.
Zurück zum Zitat DeMet EM, Chicz-DeMet A. Localization of adenosine A 2A-receptors in rat brain with [3 H] ZM-241385. Naunyn Schmiedebergs Arch Pharmacol. 2002;366(5):478–81.PubMedCrossRef DeMet EM, Chicz-DeMet A. Localization of adenosine A 2A-receptors in rat brain with [3 H] ZM-241385. Naunyn Schmiedebergs Arch Pharmacol. 2002;366(5):478–81.PubMedCrossRef
135.
Zurück zum Zitat Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó B, Németh ZH, et al. A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J. 2017;31(11):4985–97.PubMedPubMedCentralCrossRef Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó B, Németh ZH, et al. A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J. 2017;31(11):4985–97.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Flögel U, Burghoff S, van Lent PL, Temme S, Galbarz L, Ding Z, et al. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med. 2012;4(146):146ra08-ra08. Flögel U, Burghoff S, van Lent PL, Temme S, Galbarz L, Ding Z, et al. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med. 2012;4(146):146ra08-ra08.
137.
Zurück zum Zitat Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes. 2014;63(5):1698–711.PubMedCrossRef Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes. 2014;63(5):1698–711.PubMedCrossRef
138.
Zurück zum Zitat Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. The Lancet. 1998;352(9123):213–9.CrossRef Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. The Lancet. 1998;352(9123):213–9.CrossRef
139.
Zurück zum Zitat Parving H. H., Osterby R., Ritz E.: Diabetic Nephropathy. W: Brenner MB (red.) Brenner and Rector’s the Kidney. Philadelfia. WB saunders company; 2000. Parving H. H., Osterby R., Ritz E.: Diabetic Nephropathy. W: Brenner MB (red.) Brenner and Rector’s the Kidney. Philadelfia. WB saunders company; 2000.
140.
Zurück zum Zitat Jandeleit-Dahm K. Reactive oxygen species and diabetic complications: 171. Clin Endocrinol. 2016;84. Jandeleit-Dahm K. Reactive oxygen species and diabetic complications: 171. Clin Endocrinol. 2016;84.
141.
Zurück zum Zitat DeOliveira CC, Gotardo EMF, Ribeiro ML, Gambero A. Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol. 2017;799:154–9.PubMedCrossRef DeOliveira CC, Gotardo EMF, Ribeiro ML, Gambero A. Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol. 2017;799:154–9.PubMedCrossRef
142.
Zurück zum Zitat Kumar S, Arun K, Kaul CL, Sharma SS. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy. Neurol Res. 2005;27(1):60–6.PubMedCrossRef Kumar S, Arun K, Kaul CL, Sharma SS. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy. Neurol Res. 2005;27(1):60–6.PubMedCrossRef
143.
Zurück zum Zitat Ibrahim AS, El-shishtawy MM, Zhang W, Caldwell RB, Liou GI. A2A adenosine receptor (A2AAR) as a therapeutic target in diabetic retinopathy. Am J Pathol. 2011;178(5):2136–45.PubMedPubMedCentralCrossRef Ibrahim AS, El-shishtawy MM, Zhang W, Caldwell RB, Liou GI. A2A adenosine receptor (A2AAR) as a therapeutic target in diabetic retinopathy. Am J Pathol. 2011;178(5):2136–45.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Montesinos MC, Gadangi P, Longaker M, Sung J, Levine J, Nilsen D, et al. Wound healing is accelerated by agonists of adenosine A2 (Gαs-linked) receptors. J Exp Med. 1997;186(9):1615–20.PubMedPubMedCentralCrossRef Montesinos MC, Gadangi P, Longaker M, Sung J, Levine J, Nilsen D, et al. Wound healing is accelerated by agonists of adenosine A2 (Gαs-linked) receptors. J Exp Med. 1997;186(9):1615–20.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Awad AS, Huang L, Ye H, Duong ETA, Bolton WK, Linden J, et al. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2006;290(4):F828–37.PubMedCrossRef Awad AS, Huang L, Ye H, Duong ETA, Bolton WK, Linden J, et al. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2006;290(4):F828–37.PubMedCrossRef
146.
Zurück zum Zitat Altavilla D, Squadrito F, Polito F, Irrera N, Calò M, Cascio PL, et al. Activation of adenosine A2A receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice. Surgery. 2011;149(2):253–61.PubMedCrossRef Altavilla D, Squadrito F, Polito F, Irrera N, Calò M, Cascio PL, et al. Activation of adenosine A2A receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice. Surgery. 2011;149(2):253–61.PubMedCrossRef
147.
Zurück zum Zitat Squadrito F, Bitto A, Altavilla D, Arcoraci V, De Caridi G, De Feo ME, et al. The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab. 2014;99(5):E746–53.PubMed Squadrito F, Bitto A, Altavilla D, Arcoraci V, De Caridi G, De Feo ME, et al. The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab. 2014;99(5):E746–53.PubMed
148.
Zurück zum Zitat Choudhary SA, Bora N, Banerjee D, Arora L, Das AS, Yadav R, et al. A novel small molecule A2A adenosine receptor agonist, indirubin-3′-monoxime, alleviates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Biochem J. 2019;476(16):2371–91.PubMedCrossRef Choudhary SA, Bora N, Banerjee D, Arora L, Das AS, Yadav R, et al. A novel small molecule A2A adenosine receptor agonist, indirubin-3′-monoxime, alleviates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Biochem J. 2019;476(16):2371–91.PubMedCrossRef
149.
Zurück zum Zitat Guinzberg R, Diazcruz A, Uribe S, Pina E. Inhibition of Adenosine-Mediated Responses in Isolated Hepatocytes by Depolarizing Concentrations of K+. Biochem Biophys Res Commun. 1993;197(1):229–34.PubMedCrossRef Guinzberg R, Diazcruz A, Uribe S, Pina E. Inhibition of Adenosine-Mediated Responses in Isolated Hepatocytes by Depolarizing Concentrations of K+. Biochem Biophys Res Commun. 1993;197(1):229–34.PubMedCrossRef
150.
Zurück zum Zitat González-Benıtez E, Guinzberg R, Dıaz-Cruz A, Piña E. Regulation of glycogen metabolism in hepatocytes through adenosine receptors. Role of Ca2+ and cAMP. Eur J Pharmacol. 2002;437(3):105–11. González-Benıtez E, Guinzberg R, Dıaz-Cruz A, Piña E. Regulation of glycogen metabolism in hepatocytes through adenosine receptors. Role of Ca2+ and cAMP. Eur J Pharmacol. 2002;437(3):105–11.
151.
Zurück zum Zitat Rüsing D, Müller C, Verspohl E. The impact of adenosine and A2B receptors on glucose homoeostasis. J Pharm Pharmacol. 2006;58(12):1639–45.PubMedCrossRef Rüsing D, Müller C, Verspohl E. The impact of adenosine and A2B receptors on glucose homoeostasis. J Pharm Pharmacol. 2006;58(12):1639–45.PubMedCrossRef
152.
Zurück zum Zitat Yasuda N, Inoue T, Horizoe T, Nagata K, Minami H, Kawata T, et al. Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes. Eur J Pharmacol. 2003;459(2–3):159–66.PubMedCrossRef Yasuda N, Inoue T, Horizoe T, Nagata K, Minami H, Kawata T, et al. Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes. Eur J Pharmacol. 2003;459(2–3):159–66.PubMedCrossRef
153.
Zurück zum Zitat Harada H, Asano O, Kawata T, Inoue T, Horizoe T, Yasuda N, et al. 2-Alkynyl-8-aryladenines possessing an amide moiety: their synthesis and structure–activity relationships of effects on hepatic glucose production induced via agonism of the A2B adenosine receptor. Bioorg Med Chem. 2001;9(10):2709–26.PubMedCrossRef Harada H, Asano O, Kawata T, Inoue T, Horizoe T, Yasuda N, et al. 2-Alkynyl-8-aryladenines possessing an amide moiety: their synthesis and structure–activity relationships of effects on hepatic glucose production induced via agonism of the A2B adenosine receptor. Bioorg Med Chem. 2001;9(10):2709–26.PubMedCrossRef
154.
Zurück zum Zitat Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PloS one. 2012;7(7):e40584. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PloS one. 2012;7(7):e40584.
155.
Zurück zum Zitat Labazi H, Teng B, Mustafa SJ. Functional changes in vascular reactivity to adenosine receptor activation in type I diabetic mice. Eur J Pharmacol. 2018;820:191–7.PubMedCrossRef Labazi H, Teng B, Mustafa SJ. Functional changes in vascular reactivity to adenosine receptor activation in type I diabetic mice. Eur J Pharmacol. 2018;820:191–7.PubMedCrossRef
156.
Zurück zum Zitat Wen J, Wang B, Du C, Xu G, Zhang Z, Li Y, et al. A2B adenosine receptor agonist improves erectile function in diabetic rats. Tohoku J Exp Med. 2015;237(2):141–8.PubMedCrossRef Wen J, Wang B, Du C, Xu G, Zhang Z, Li Y, et al. A2B adenosine receptor agonist improves erectile function in diabetic rats. Tohoku J Exp Med. 2015;237(2):141–8.PubMedCrossRef
157.
Zurück zum Zitat Koupenova M, Johnston-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, et al. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation. 2012;125(2):354–63.PubMedCrossRef Koupenova M, Johnston-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, et al. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation. 2012;125(2):354–63.PubMedCrossRef
158.
Zurück zum Zitat Torres Á, Muñoz K, Nahuelpán Y, R Saez A-P, Mendoza P, Jara C, et al. Intraglomerular Monocyte/Macrophage Infiltration and Macrophage–Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A2B Adenosine Receptor. Cells. 2020;9(4):1051. Torres Á, Muñoz K, Nahuelpán Y, R Saez A-P, Mendoza P, Jara C, et al. Intraglomerular Monocyte/Macrophage Infiltration and Macrophage–Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A2B Adenosine Receptor. Cells. 2020;9(4):1051.
159.
Zurück zum Zitat Patel L, Thaker A. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropath y. Ren Fail. 2014;36(6):916–24.PubMedCrossRef Patel L, Thaker A. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropath y. Ren Fail. 2014;36(6):916–24.PubMedCrossRef
160.
Zurück zum Zitat Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG. Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A. 1993;90(21):10365–9.PubMedPubMedCentralCrossRef Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG. Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A. 1993;90(21):10365–9.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Elsherbiny NM, Al-Gayyar MM. Adenosine receptors: new therapeutic targets for inflammation in diabetic nephropathy. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy). 2013;12(3):153–61. Elsherbiny NM, Al-Gayyar MM. Adenosine receptors: new therapeutic targets for inflammation in diabetic nephropathy. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy). 2013;12(3):153–61.
162.
Zurück zum Zitat Ohtani M, Oka T, Ohura K. Possible involvement of A2A and A3 receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. Gen Comp Endocrinol. 2013;187:86–94.PubMedCrossRef Ohtani M, Oka T, Ohura K. Possible involvement of A2A and A3 receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. Gen Comp Endocrinol. 2013;187:86–94.PubMedCrossRef
163.
Zurück zum Zitat Shahrestanaki MK, Aghaei M. A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca2+ entry. Res Pharm Sci. 2019;14(2):107.CrossRef Shahrestanaki MK, Aghaei M. A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca2+ entry. Res Pharm Sci. 2019;14(2):107.CrossRef
164.
Zurück zum Zitat Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med. 2017;55:62–74.PubMedCrossRef Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med. 2017;55:62–74.PubMedCrossRef
165.
Zurück zum Zitat Crist GH, Xu B, Lanoue KF, Lang CH. Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J. 1998;12(13):1301–8.PubMedCrossRef Crist GH, Xu B, Lanoue KF, Lang CH. Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J. 1998;12(13):1301–8.PubMedCrossRef
166.
Zurück zum Zitat Bigot A, Stengelin S, Jaehne G, Herling A, Mueller G, Hock FJ, et al. Adenosine analogues and their use as pharmaceutical agents. Google Patents; 2007. Bigot A, Stengelin S, Jaehne G, Herling A, Mueller G, Hock FJ, et al. Adenosine analogues and their use as pharmaceutical agents. Google Patents; 2007.
167.
Zurück zum Zitat Staehr PM, Dhalla AK, Zack J, Wang X, Ho YL, Bingham J, et al. Reduction of Free Fatty Acids, Safety, and Pharmacokinetics of Oral GS-9667, an A1 Adenosine Receptor Partial Agonist. J Clin Pharmacol. 2013;53(4):385–92.PubMedCrossRef Staehr PM, Dhalla AK, Zack J, Wang X, Ho YL, Bingham J, et al. Reduction of Free Fatty Acids, Safety, and Pharmacokinetics of Oral GS-9667, an A1 Adenosine Receptor Partial Agonist. J Clin Pharmacol. 2013;53(4):385–92.PubMedCrossRef
168.
Zurück zum Zitat Sacramento JF, Martins FO, Rodrigues T, Matafome P, Ribeiro MJ, Olea E, et al. A2 Adenosine Receptors Mediate Whole-Body Insulin Sensitivity in a Prediabetes Animal Model: Primary Effects on Skeletal Muscle. Front Endocrinol. 2020;11:262.CrossRef Sacramento JF, Martins FO, Rodrigues T, Matafome P, Ribeiro MJ, Olea E, et al. A2 Adenosine Receptors Mediate Whole-Body Insulin Sensitivity in a Prediabetes Animal Model: Primary Effects on Skeletal Muscle. Front Endocrinol. 2020;11:262.CrossRef
Metadaten
Titel
Therapeutic potentials of agonist and antagonist of adenosine receptors in type 2 diabetes
verfasst von
Olakunle Sanni
G. Terre’Blanche
Publikationsdatum
24.06.2021
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 4/2021
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-021-09668-8

Weitere Artikel der Ausgabe 4/2021

Reviews in Endocrine and Metabolic Disorders 4/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.