Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 4/2007

01.12.2007

Translational Regulation of Milk Protein Synthesis at Secretory Activation

verfasst von: Robert E. Rhoads, Ewa Grudzien-Nogalska

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 4/2007

Einloggen, um Zugang zu erhalten

Abstract

Studies conducted since the 1970s have revealed that the production of milk proteins in the mammary gland under the influence of lactogenic hormones (insulin, prolactin, and glucocorticoids) is regulated at multiple levels. Whereas earlier studies concentrated on transcriptional regulation and stabilization of milk protein mRNAs, more recent studies have revealed that translation of milk protein mRNAs is also dependent on lactogenic hormones. A general stimulation of translation in mammary epithelial cells is caused by amino acids (as signaling molecules) or by phosphorylation of the translational regulator 4E-BP1 in a synergistic response to signals from insulin and prolactin. However, a selective enhancement of milk protein mRNA translation is caused by cytoplasmic polyadenylation of mRNA, again in a synergistic response to these two hormones. Preliminary evidence indicates that the latter effect depends on the existence of a cytoplasmic polyadenylation element (CPE) in milk protein mRNAs and phosphorylation of its binding protein, CPEB. Experiments in whole animals, organ explants, and cell culture have shown that the poly(A) length of milk protein mRNAs changes as a function of the lactation cycle. Interestingly, cytoplasmic polyadenylation is likely to be responsible for the selective hormone-dependent enhancement of both translation and stability of milk protein mRNAs.
Literatur
1.
Zurück zum Zitat Houdebine L-M, Djiane J, Dusanter-Fourt I, Martel P, Kelly PA, Devinoy E, et al. Hormonal action controlling mammary activity. J Dairy Sci. 1985;68:489–500.PubMed Houdebine L-M, Djiane J, Dusanter-Fourt I, Martel P, Kelly PA, Devinoy E, et al. Hormonal action controlling mammary activity. J Dairy Sci. 1985;68:489–500.PubMed
2.
Zurück zum Zitat Juergens WG, Stockdale FE, Topper YJ, Elias JJ. Hormone-dependent differentiation of mammary gland in vitro. Proc Natl Acad Sci U S A. 1965;54:629–34.PubMedCrossRef Juergens WG, Stockdale FE, Topper YJ, Elias JJ. Hormone-dependent differentiation of mammary gland in vitro. Proc Natl Acad Sci U S A. 1965;54:629–34.PubMedCrossRef
3.
Zurück zum Zitat Houdebine LM, Gaye P. Regulation of casein synthesis in the rabbit mammary gland. Titration of mRNA activity for casein under prolactin and progesterone treatments. Mol Cell Endocrinol. 1975;3:37–55.PubMedCrossRef Houdebine LM, Gaye P. Regulation of casein synthesis in the rabbit mammary gland. Titration of mRNA activity for casein under prolactin and progesterone treatments. Mol Cell Endocrinol. 1975;3:37–55.PubMedCrossRef
4.
Zurück zum Zitat Devinoy E, Houdebine LM. Effects of glucocorticoids on casein gene expression in the rabbit. Eur J Biochem. 1977;75:411–6.PubMedCrossRef Devinoy E, Houdebine LM. Effects of glucocorticoids on casein gene expression in the rabbit. Eur J Biochem. 1977;75:411–6.PubMedCrossRef
5.
Zurück zum Zitat Devinoy E, Houdebine LM, Delouis C. Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA. Biochim Biophys Acta. 1978;517:360–6.PubMed Devinoy E, Houdebine LM, Delouis C. Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA. Biochim Biophys Acta. 1978;517:360–6.PubMed
6.
Zurück zum Zitat Rosen JM, O'Neal DL, McHugh JE, Comstock JP. Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry. 1978;17:290–7.PubMedCrossRef Rosen JM, O'Neal DL, McHugh JE, Comstock JP. Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry. 1978;17:290–7.PubMedCrossRef
7.
Zurück zum Zitat Matusik RJ, Rosen JM. Prolactin induction of casein mRNA in organ culture. A model system for studying peptide hormone regulation of gene expression. J Biol Chem. 1978;253:2343–7.PubMed Matusik RJ, Rosen JM. Prolactin induction of casein mRNA in organ culture. A model system for studying peptide hormone regulation of gene expression. J Biol Chem. 1978;253:2343–7.PubMed
8.
Zurück zum Zitat Hall L, Craig RK, Campbell PN. mRNA species directing synthesis of milk proteins in normal and tumour tissue from human mammary gland. Nature. 1979;277:54–6.PubMedCrossRef Hall L, Craig RK, Campbell PN. mRNA species directing synthesis of milk proteins in normal and tumour tissue from human mammary gland. Nature. 1979;277:54–6.PubMedCrossRef
9.
Zurück zum Zitat Rosen JM, Wyszomierski SL, Hadsell D. Regulation of milk protein gene expression. Annu Rev Nutr. 1999;19:407–36.PubMedCrossRef Rosen JM, Wyszomierski SL, Hadsell D. Regulation of milk protein gene expression. Annu Rev Nutr. 1999;19:407–36.PubMedCrossRef
10.
Zurück zum Zitat Guyette WA, Matusik RJ, Rosen JM. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979;17:1013–23.PubMedCrossRef Guyette WA, Matusik RJ, Rosen JM. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979;17:1013–23.PubMedCrossRef
11.
Zurück zum Zitat Teyssot B, Houdebine LM. Role of prolactin in the transcription of b-casein and 28-S ribosomal genes in the rabbit mammary gland. Eur J Biochem. 1980;110:263–72.PubMedCrossRef Teyssot B, Houdebine LM. Role of prolactin in the transcription of b-casein and 28-S ribosomal genes in the rabbit mammary gland. Eur J Biochem. 1980;110:263–72.PubMedCrossRef
12.
Zurück zum Zitat Teyssot B, Houdebine LM. Role of progesterone and glucocortocoids in the transcription of the b-casein and 28-S ribosomal genes in the rabbit mammary gland. Eur J Biochem. 1981;114:597–608.PubMedCrossRef Teyssot B, Houdebine LM. Role of progesterone and glucocortocoids in the transcription of the b-casein and 28-S ribosomal genes in the rabbit mammary gland. Eur J Biochem. 1981;114:597–608.PubMedCrossRef
13.
Zurück zum Zitat Chomczynski P, Qasba P, Topper YJ. Essential role of insulin in transcription of the rat 25,000 molecular weight casein gene. Science. 1984;226:1326–8.PubMedCrossRef Chomczynski P, Qasba P, Topper YJ. Essential role of insulin in transcription of the rat 25,000 molecular weight casein gene. Science. 1984;226:1326–8.PubMedCrossRef
14.
Zurück zum Zitat Chomczynski P, Qasba P, Topper YJ. Transcriptional and post-transcriptional roles of glucocorticoid in the expression of the rat 25,000 molecular weight casein gene. Biochem Biophys Res Commun. 1986;134:812–8.PubMedCrossRef Chomczynski P, Qasba P, Topper YJ. Transcriptional and post-transcriptional roles of glucocorticoid in the expression of the rat 25,000 molecular weight casein gene. Biochem Biophys Res Commun. 1986;134:812–8.PubMedCrossRef
15.
Zurück zum Zitat Rosen JM, Rodgers JR, Couch CH, Bisbee CA, David-Inouye Y, Campbell SM, et al. Multihormonal regulation of milk protein gene expression. Ann NY Acad Sci. 1986;478:63–76.PubMedCrossRef Rosen JM, Rodgers JR, Couch CH, Bisbee CA, David-Inouye Y, Campbell SM, et al. Multihormonal regulation of milk protein gene expression. Ann NY Acad Sci. 1986;478:63–76.PubMedCrossRef
16.
Zurück zum Zitat Vina J, Puertes IR, Saez GT, Vina JR. Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Lett. 1981;126:250–2.PubMedCrossRef Vina J, Puertes IR, Saez GT, Vina JR. Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Lett. 1981;126:250–2.PubMedCrossRef
17.
Zurück zum Zitat Stoecklin G, Anderson P. In a tight spot: ARE-mRNAs at processing bodies. Genes Dev. 2007;21:627–31.PubMedCrossRef Stoecklin G, Anderson P. In a tight spot: ARE-mRNAs at processing bodies. Genes Dev. 2007;21:627–31.PubMedCrossRef
18.
Zurück zum Zitat Nagaoka K, Suzuki T, Kawano T, Imakawa K, Sakai S. Stability of casein mRNA is ensured by structural interactions between the 3′-untranslated region and poly(A) tail via the HuR and poly(A)-binding protein complex. Biochim Biophys Acta. 2006;1759:132–40.PubMed Nagaoka K, Suzuki T, Kawano T, Imakawa K, Sakai S. Stability of casein mRNA is ensured by structural interactions between the 3′-untranslated region and poly(A) tail via the HuR and poly(A)-binding protein complex. Biochim Biophys Acta. 2006;1759:132–40.PubMed
19.
Zurück zum Zitat Nagaoka K, Tanaka T, Imakawa K, Sakai S. Involvement of RNA binding proteins AUF1 in mammary gland differentiation. Exp Cell Res. 2007;313:2937–45.PubMedCrossRef Nagaoka K, Tanaka T, Imakawa K, Sakai S. Involvement of RNA binding proteins AUF1 in mammary gland differentiation. Exp Cell Res. 2007;313:2937–45.PubMedCrossRef
20.
Zurück zum Zitat Poyet P, Henning SJ, Rosen JM. Hormone-dependent b-casein mRNA stabilization requires ongoing protein synthesis. Mol Endocrinol. 1989;3:1961–8.PubMedCrossRef Poyet P, Henning SJ, Rosen JM. Hormone-dependent b-casein mRNA stabilization requires ongoing protein synthesis. Mol Endocrinol. 1989;3:1961–8.PubMedCrossRef
21.
Zurück zum Zitat Yoshimura M, Oka T. Hormonal induction of b-casein gene expression: requirement of ongoing protein synthesis for transcription. Endocrinology. 1990;126:427–33.PubMedCrossRef Yoshimura M, Oka T. Hormonal induction of b-casein gene expression: requirement of ongoing protein synthesis for transcription. Endocrinology. 1990;126:427–33.PubMedCrossRef
22.
Zurück zum Zitat Travers MT, Barber MC, Tonner E, Quarrie L, Wilde CJ, Flint DJ. The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: relationships to milk synthesis and secretion. Endocrinology. 1996;137:1530–9.PubMedCrossRef Travers MT, Barber MC, Tonner E, Quarrie L, Wilde CJ, Flint DJ. The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: relationships to milk synthesis and secretion. Endocrinology. 1996;137:1530–9.PubMedCrossRef
23.
Zurück zum Zitat Baruch A, Shani M, Barash I. Insulin and prolactin synergize to induce translation of human serum albumin in the mammary gland of transgenic mice. Transgenic Res. 1998;7:15–27.PubMedCrossRef Baruch A, Shani M, Barash I. Insulin and prolactin synergize to induce translation of human serum albumin in the mammary gland of transgenic mice. Transgenic Res. 1998;7:15–27.PubMedCrossRef
24.
Zurück zum Zitat Barash I. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent but wortmannin- and rapamycin-sensitive pathway. Mol Cell Endocrinol. 1999;155:37–49.PubMedCrossRef Barash I. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent but wortmannin- and rapamycin-sensitive pathway. Mol Cell Endocrinol. 1999;155:37–49.PubMedCrossRef
25.
Zurück zum Zitat Schmidhauser C, Bissell MJ, Myers CA, Casperson GF. Extracellular matrix and hormones transcriptionally regulate bovine b-casein 5′ sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci USA. 1990;87:9118–22.PubMedCrossRef Schmidhauser C, Bissell MJ, Myers CA, Casperson GF. Extracellular matrix and hormones transcriptionally regulate bovine b-casein 5′ sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci USA. 1990;87:9118–22.PubMedCrossRef
26.
Zurück zum Zitat Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989;105:223–35.PubMed Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989;105:223–35.PubMed
27.
Zurück zum Zitat Lin T, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266:653–6.PubMedCrossRef Lin T, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266:653–6.PubMedCrossRef
28.
Zurück zum Zitat Pause A, Belsham GJ, Gingras A, Donze O, Lin T, Lawrence JC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7.PubMedCrossRef Pause A, Belsham GJ, Gingras A, Donze O, Lin T, Lawrence JC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7.PubMedCrossRef
29.
Zurück zum Zitat Choi KM, Barash I, Rhoads RE. Insulin and prolactin synergistically stimulate b-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation. Mol Endocrinol. 2004;18:1670–86.PubMedCrossRef Choi KM, Barash I, Rhoads RE. Insulin and prolactin synergistically stimulate b-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation. Mol Endocrinol. 2004;18:1670–86.PubMedCrossRef
30.
Zurück zum Zitat Toerien CA, Cant JP. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows. J Dairy Sci. 2007;90:2726–34.PubMedCrossRef Toerien CA, Cant JP. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows. J Dairy Sci. 2007;90:2726–34.PubMedCrossRef
31.
Zurück zum Zitat Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999;274:11647–52.PubMedCrossRef Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999;274:11647–52.PubMedCrossRef
32.
Zurück zum Zitat Griinari JM, McGuire MA, Dwyer DA, Bauman DE, Barbano DM, House WA. The role of insulin in the regulation of milk protein synthesis in dairy cows. J Dairy Sci. 1997;80:2361–71.PubMed Griinari JM, McGuire MA, Dwyer DA, Bauman DE, Barbano DM, House WA. The role of insulin in the regulation of milk protein synthesis in dairy cows. J Dairy Sci. 1997;80:2361–71.PubMed
33.
Zurück zum Zitat Mackle TR, Dwyer DA, Bauman DE. Effects of branched-chain amino acids and sodium caseinate on milk protein concentration and yield from dairy cows. J Dairy Sci. 1999;82:161–71.PubMedCrossRef Mackle TR, Dwyer DA, Bauman DE. Effects of branched-chain amino acids and sodium caseinate on milk protein concentration and yield from dairy cows. J Dairy Sci. 1999;82:161–71.PubMedCrossRef
34.
Zurück zum Zitat Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Lynch JM, Barbano DM, et al. Effects of insulin and amino acids on milk protein concentration and yield from dairy cows. J Dairy Sci. 1999;82:1512–24.PubMed Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Lynch JM, Barbano DM, et al. Effects of insulin and amino acids on milk protein concentration and yield from dairy cows. J Dairy Sci. 1999;82:1512–24.PubMed
35.
Zurück zum Zitat Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Ross DA, Bauman DE. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. J Dairy Sci. 2000;83:93–105.PubMed Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Ross DA, Bauman DE. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. J Dairy Sci. 2000;83:93–105.PubMed
36.
Zurück zum Zitat Moshel Y, Rhoads RE, Barash I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J Cell Biochem. 2006;98:685–700.PubMedCrossRef Moshel Y, Rhoads RE, Barash I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J Cell Biochem. 2006;98:685–700.PubMedCrossRef
37.
Zurück zum Zitat Bevilacqua C, Helbling JC, Miranda G, Martin P. Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants. Reprod Nutr Dev. 2006;46:567–78.PubMedCrossRef Bevilacqua C, Helbling JC, Miranda G, Martin P. Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants. Reprod Nutr Dev. 2006;46:567–78.PubMedCrossRef
38.
Zurück zum Zitat Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000. Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000.
39.
Zurück zum Zitat Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell. 2005;122:875–86.PubMedCrossRef Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell. 2005;122:875–86.PubMedCrossRef
40.
Zurück zum Zitat Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol. 1999;19:4552–60.PubMed Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol. 1999;19:4552–60.PubMed
41.
Zurück zum Zitat Muhlrad D, Decker C, Parker R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol. 1995;15:2145–56.PubMed Muhlrad D, Decker C, Parker R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol. 1995;15:2145–56.PubMed
42.
Zurück zum Zitat Chen CY, Xu N, Shyu AB. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol. 1995;15:5777–88.PubMed Chen CY, Xu N, Shyu AB. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol. 1995;15:5777–88.PubMed
43.
Zurück zum Zitat Caponigro G, Parker R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 1995;9:2421–32.PubMedCrossRef Caponigro G, Parker R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 1995;9:2421–32.PubMedCrossRef
44.
Zurück zum Zitat Huarte J, Stutz A, O'Connell ML, Gubler P, Belin D, Darrow AL, et al. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–30.PubMedCrossRef Huarte J, Stutz A, O'Connell ML, Gubler P, Belin D, Darrow AL, et al. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–30.PubMedCrossRef
45.
Zurück zum Zitat Sachs A, Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993;268:22955–8.PubMed Sachs A, Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993;268:22955–8.PubMed
46.
Zurück zum Zitat Richter J, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–480.PubMedCrossRef Richter J, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–480.PubMedCrossRef
47.
Zurück zum Zitat Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 2004;18:48–61.PubMedCrossRef Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 2004;18:48–61.PubMedCrossRef
48.
Zurück zum Zitat Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos-mRNA. Nature. 2000;404:302–307.PubMedCrossRef Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos-mRNA. Nature. 2000;404:302–307.PubMedCrossRef
49.
Zurück zum Zitat Mendez R, Murthy EG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000;6:1253–9.PubMedCrossRef Mendez R, Murthy EG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000;6:1253–9.PubMedCrossRef
50.
Zurück zum Zitat Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell. 2004;119:641–51.PubMedCrossRef Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell. 2004;119:641–51.PubMedCrossRef
51.
Zurück zum Zitat Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell. 2006;24:173–83.PubMedCrossRef Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell. 2006;24:173–83.PubMedCrossRef
52.
Zurück zum Zitat Dehlin E, Wormington M, Korner CG, Wahle E. Cap-dependent deadenylation of mRNA. EMBO J. 2000;19:1079–86.PubMedCrossRef Dehlin E, Wormington M, Korner CG, Wahle E. Cap-dependent deadenylation of mRNA. EMBO J. 2000;19:1079–86.PubMedCrossRef
53.
Zurück zum Zitat Gao M, Fritz D, Ford L, Wilusz J. Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Mol Cell. 2000;5:479–88.PubMedCrossRef Gao M, Fritz D, Ford L, Wilusz J. Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Mol Cell. 2000;5:479–88.PubMedCrossRef
54.
Zurück zum Zitat Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with eIF4E. Mol Cell. 1999;4:1017–27.PubMedCrossRef Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with eIF4E. Mol Cell. 1999;4:1017–27.PubMedCrossRef
55.
Zurück zum Zitat Jung M-Y, Lorenz L, Richter JD. Translational control by Neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006;26:4277–87.PubMedCrossRef Jung M-Y, Lorenz L, Richter JD. Translational control by Neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006;26:4277–87.PubMedCrossRef
56.
Zurück zum Zitat Houdebine LM, Gaye P, Favre A. Lack of poly(A) sequence in half of the messenger RNA coding for ewe aS casein. Nucleic Acids Res. 1974;1:413–26.PubMedCrossRef Houdebine LM, Gaye P, Favre A. Lack of poly(A) sequence in half of the messenger RNA coding for ewe aS casein. Nucleic Acids Res. 1974;1:413–26.PubMedCrossRef
57.
Zurück zum Zitat Houdebine LM. Absence of poly (A) in a large part of newly synthesized casein mRNAs. FEBS Lett. 1976;66:110–3.PubMedCrossRef Houdebine LM. Absence of poly (A) in a large part of newly synthesized casein mRNAs. FEBS Lett. 1976;66:110–3.PubMedCrossRef
58.
Zurück zum Zitat Rosen JM, Woo SL, Comstock JP. Regulation of casein messenger RNA during the development of the rat mammary gland. Biochemistry. 1975;14:2895–903.PubMedCrossRef Rosen JM, Woo SL, Comstock JP. Regulation of casein messenger RNA during the development of the rat mammary gland. Biochemistry. 1975;14:2895–903.PubMedCrossRef
59.
Zurück zum Zitat Nadin-Davis S, Mezl VA. Distribution of rat alpha-lactalbumin and casein mRNA between polyadenylated and nonpolyadenylated RNA. Can J Biochem Cell Biol. 1983;61:353–62.PubMedCrossRef Nadin-Davis S, Mezl VA. Distribution of rat alpha-lactalbumin and casein mRNA between polyadenylated and nonpolyadenylated RNA. Can J Biochem Cell Biol. 1983;61:353–62.PubMedCrossRef
60.
Zurück zum Zitat Hall L, Craig RK, Davies MS, Ralphs DN, Campbell PN. a-Lactalbumin is not a marker of human hormone-dependent breast cancer. Nature. 1981;290:602–4.PubMedCrossRef Hall L, Craig RK, Davies MS, Ralphs DN, Campbell PN. a-Lactalbumin is not a marker of human hormone-dependent breast cancer. Nature. 1981;290:602–4.PubMedCrossRef
61.
Zurück zum Zitat Nadin-Davis SA, Mezl VA. Variation in the lack of polyadenylation of the rat milk protein mRNAs during the lactation cycle. Int J Biochem. 1985;17:1067–75.PubMedCrossRef Nadin-Davis SA, Mezl VA. Variation in the lack of polyadenylation of the rat milk protein mRNAs during the lactation cycle. Int J Biochem. 1985;17:1067–75.PubMedCrossRef
62.
Zurück zum Zitat Kuraishi T, Sun Y, Aoki F, Imakawa K, Sakai S. The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk. Biochem J. 2000;347:579–83.PubMedCrossRef Kuraishi T, Sun Y, Aoki F, Imakawa K, Sakai S. The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk. Biochem J. 2000;347:579–83.PubMedCrossRef
63.
Zurück zum Zitat Kuraishi T, Mizoguchi Y, Sun Y, Aoki F, Imakawa K, Sakai S. The casein mRNA decay changes in parallel with the poly(A) tail length in the mouse mammary gland. Mol Cell Endocrinol. 2002;190:101–7.PubMedCrossRef Kuraishi T, Mizoguchi Y, Sun Y, Aoki F, Imakawa K, Sakai S. The casein mRNA decay changes in parallel with the poly(A) tail length in the mouse mammary gland. Mol Cell Endocrinol. 2002;190:101–7.PubMedCrossRef
65.
Zurück zum Zitat Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007;8:9–22.PubMedCrossRef Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007;8:9–22.PubMedCrossRef
66.
Zurück zum Zitat Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci. 2005;118:981–92.PubMedCrossRef Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci. 2005;118:981–92.PubMedCrossRef
67.
Zurück zum Zitat Minshall N, Standart N. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res.. 2004;32:1325–34.PubMedCrossRef Minshall N, Standart N. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res.. 2004;32:1325–34.PubMedCrossRef
68.
Zurück zum Zitat Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001;7:1717–27.PubMedCrossRef Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001;7:1717–27.PubMedCrossRef
69.
Zurück zum Zitat Fischer N, Weis K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 2002;21:2788–97.PubMedCrossRef Fischer N, Weis K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 2002;21:2788–97.PubMedCrossRef
Metadaten
Titel
Translational Regulation of Milk Protein Synthesis at Secretory Activation
verfasst von
Robert E. Rhoads
Ewa Grudzien-Nogalska
Publikationsdatum
01.12.2007
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 4/2007
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-007-9058-0

Weitere Artikel der Ausgabe 4/2007

Journal of Mammary Gland Biology and Neoplasia 4/2007 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.