Skip to main content
Erschienen in: International Journal of Clinical Oncology 2/2011

01.04.2011 | Review Article

Tumor imaging with multicolor fluorescent protein expression

verfasst von: Norio Yamamoto, Hiroyuki Tsuchiya, Robert M. Hoffman

Erschienen in: International Journal of Clinical Oncology | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Imaging with fluorescent proteins has been revolutionary and has led to the new field of in vivo cell biology. Many new applications of this technology have been developed. Green fluorescent protein (GFP)-labeled or red fluorescent protein (RFP)-labeled HT-1080 human fibrosarcoma cells were used to determine clonality of metastasis by imaging of metastatic colonies after mixed implantation of the red and green fluorescent cells. Resulting pure red or pure green colonies were scored as clonal, whereas mixed yellow colonies were scored as nonclonal. Dual-color fluorescent cancer cells expressing GFP in the nucleus and RFP in the cytoplasm were engineered. The dual-color cancer cells enable real-time nuclear–cytoplasmic dynamics to be visualized in living cells in vivo, including mitosis and apoptosis. The nuclear and cytoplasmic behavior of dual-color cancer cells in real time in blood vessels was observed as they trafficked by various means or extravasated in an abdominal skin flap. Dual-color cancer cells were also visualized trafficking through lymphatic vessels where they were imaged via a skin flap. Seeding and arresting of single dual-color cancer cells in the lung, accumulation of cancer-cell emboli, cancer-cell viability, and metastatic colony formation were imaged in real time in an open-chest nude mouse model using assisted ventilation. Novel treatment was evaluated in these imageable models. UVC irradiation killed approximately 70% of the dual-color cancer cells in a nude mouse model. An RFP-expressing glioma was transplanted to the spinal cord of transgenic nude mice expressing nestin-driven green fluorescent protein (ND-GFP). In ND-GFP mice, GFP is expressed in nascent blood vessels and neural stem cells. ND-GFP cells staining positively for neuronal class III-β-tubulin or CD31 surrounded the tumor, suggesting that the tumor stimulated both neurogenesis and angiogenesis. The tumor caused paralysis and also metastasized to the brain. The Salmonella typhimurium A1-R tumor-targeting bacterial strain was administered in the orthotopic spinal cord glioma model. The treated animals had a significant increase in survival and decrease in paralysis. S. typhimurium A1-R was effective against primary bone tumor and lung metastasis expressing RFP in a nude mouse model. S. typhimurium A1-R was effective against both axillary lymph and popliteal lymph node metastases of human dual-color pancreatic cancer and fibrosarcoma cells, respectively, as well as lung metastasis of the fibrosarcoma in nude mice. Imaging with fluorescent proteins will reveal mechanisms of cancer progression and provide visual targets for novel therapeutics.
Literatur
1.
Zurück zum Zitat Lin WC, Pretlow TP, Pretlow TG II et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817PubMed Lin WC, Pretlow TP, Pretlow TG II et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817PubMed
2.
Zurück zum Zitat Brown EB, Campbell RB, Tsuzuki Y et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868PubMedCrossRef Brown EB, Campbell RB, Tsuzuki Y et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868PubMedCrossRef
3.
Zurück zum Zitat Ciancio SJ, Coburn M, Hornsby PJ (2000) Cutaneous window for in vivo observations of organs and angiogenesis. J Surg Res 92:228–232PubMedCrossRef Ciancio SJ, Coburn M, Hornsby PJ (2000) Cutaneous window for in vivo observations of organs and angiogenesis. J Surg Res 92:228–232PubMedCrossRef
4.
Zurück zum Zitat Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112:1835–1842PubMed Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112:1835–1842PubMed
5.
Zurück zum Zitat Contag CH, Jenkins D, Contag PR et al (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52PubMedCrossRef Contag CH, Jenkins D, Contag PR et al (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52PubMedCrossRef
6.
Zurück zum Zitat Burgos JS, Rosol M, Moats RA et al (2003) Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. BioTechniques 34:1184–1188PubMed Burgos JS, Rosol M, Moats RA et al (2003) Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. BioTechniques 34:1184–1188PubMed
7.
Zurück zum Zitat Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233PubMedCrossRef Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233PubMedCrossRef
8.
Zurück zum Zitat Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRef Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRef
9.
Zurück zum Zitat Cheng L, Fu J, Tsukamoto A et al (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14:606–609PubMedCrossRef Cheng L, Fu J, Tsukamoto A et al (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14:606–609PubMedCrossRef
10.
Zurück zum Zitat Cody CW, Prasher DC, Westler WM et al (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32:1212–1218PubMedCrossRef Cody CW, Prasher DC, Westler WM et al (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32:1212–1218PubMedCrossRef
11.
Zurück zum Zitat Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251PubMedCrossRef Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251PubMedCrossRef
12.
Zurück zum Zitat Morin J, Hastings J (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318PubMedCrossRef Morin J, Hastings J (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318PubMedCrossRef
13.
Zurück zum Zitat Cormack B, Valdivia R, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38PubMedCrossRef Cormack B, Valdivia R, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38PubMedCrossRef
14.
Zurück zum Zitat Crameri A, Whitehorn EA, Tate E et al (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319PubMedCrossRef Crameri A, Whitehorn EA, Tate E et al (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319PubMedCrossRef
15.
Zurück zum Zitat Delagrave S, Hawtin RE, Silva CM et al (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology 13:151–154PubMedCrossRef Delagrave S, Hawtin RE, Silva CM et al (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology 13:151–154PubMedCrossRef
16.
17.
Zurück zum Zitat Zolotukhin S, Potter M, Hauswirth WW et al (1996) A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646–4654PubMed Zolotukhin S, Potter M, Hauswirth WW et al (1996) A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646–4654PubMed
18.
Zurück zum Zitat Gross LA, Baird GS, Hoffman RC et al (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995PubMedCrossRef Gross LA, Baird GS, Hoffman RC et al (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995PubMedCrossRef
19.
Zurück zum Zitat Fradkov AF, Chen Y, Ding L et al (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130PubMedCrossRef Fradkov AF, Chen Y, Ding L et al (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130PubMedCrossRef
20.
Zurück zum Zitat Chishima T, Miyagi Y, Tan Y et al (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57:2042–2047PubMed Chishima T, Miyagi Y, Tan Y et al (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57:2042–2047PubMed
21.
Zurück zum Zitat Chishima T, Miyagi Y, Wang X et al (1997) Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res 17:2377–2384PubMed Chishima T, Miyagi Y, Wang X et al (1997) Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res 17:2377–2384PubMed
22.
Zurück zum Zitat Chishima T, Miyagi Y, Wang X et al (1997) Metastatic patterns of orthotopic human lung cancer in nude mice visualized live and in process by green fluorescent protein expression. Clin Exp Metastasis 15:547–552PubMedCrossRef Chishima T, Miyagi Y, Wang X et al (1997) Metastatic patterns of orthotopic human lung cancer in nude mice visualized live and in process by green fluorescent protein expression. Clin Exp Metastasis 15:547–552PubMedCrossRef
23.
Zurück zum Zitat Chishima T, Miyagi Y, Li L et al (1997) Use of histoculture and green fluorescent protein to visualize tumor cell host interaction. In Vitro Cell Dev Biol Anim 33:745–747PubMedCrossRef Chishima T, Miyagi Y, Li L et al (1997) Use of histoculture and green fluorescent protein to visualize tumor cell host interaction. In Vitro Cell Dev Biol Anim 33:745–747PubMedCrossRef
24.
Zurück zum Zitat Yang M, Hasegawa S, Jiang P et al (1998) Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 58:4217–4221PubMed Yang M, Hasegawa S, Jiang P et al (1998) Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 58:4217–4221PubMed
25.
Zurück zum Zitat Yang M, Jiang P, Sun FX et al (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786PubMed Yang M, Jiang P, Sun FX et al (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786PubMed
26.
Zurück zum Zitat Yang M, Chishima T, Wang X et al (1999) Multi-organ metastatic capability of Chinese hamster ovary cells revealed by green fluorescent protein (GFP) expression. Clin Exp Metastasis 17:417–422PubMedCrossRef Yang M, Chishima T, Wang X et al (1999) Multi-organ metastatic capability of Chinese hamster ovary cells revealed by green fluorescent protein (GFP) expression. Clin Exp Metastasis 17:417–422PubMedCrossRef
27.
Zurück zum Zitat Yang M, Baranov E, Jiang P et al (2002) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211CrossRef Yang M, Baranov E, Jiang P et al (2002) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211CrossRef
28.
Zurück zum Zitat Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829PubMedCrossRef Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829PubMedCrossRef
29.
Zurück zum Zitat Hoffman RM (2002) Green fluorescent protein imaging of tumor growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3:546–556PubMedCrossRef Hoffman RM (2002) Green fluorescent protein imaging of tumor growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3:546–556PubMedCrossRef
30.
Zurück zum Zitat Yamamoto N, Yang M, Jiang P et al (2003) Real-time imaging of individual fluorescent proteins color-coded metastatic colonies in vivo. Clin Exp Metastasis 20:633–638PubMedCrossRef Yamamoto N, Yang M, Jiang P et al (2003) Real-time imaging of individual fluorescent proteins color-coded metastatic colonies in vivo. Clin Exp Metastasis 20:633–638PubMedCrossRef
31.
Zurück zum Zitat Robinett CC, Straight A, Li G et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700PubMedCrossRef Robinett CC, Straight A, Li G et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700PubMedCrossRef
32.
Zurück zum Zitat Straight AF, Belmont AS, Robinett CC et al (1996) GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608PubMedCrossRef Straight AF, Belmont AS, Robinett CC et al (1996) GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608PubMedCrossRef
33.
Zurück zum Zitat Shelby RD, Hahn KM, Sullivan KF (1996) Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol 135:545–557PubMedCrossRef Shelby RD, Hahn KM, Sullivan KF (1996) Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol 135:545–557PubMedCrossRef
34.
Zurück zum Zitat Flach J, Bossie M, Bogel J et al (1994) A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol Cell Biol 14:8399–8407PubMed Flach J, Bossie M, Bogel J et al (1994) A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol Cell Biol 14:8399–8407PubMed
35.
Zurück zum Zitat Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385PubMedCrossRef Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385PubMedCrossRef
36.
Zurück zum Zitat Manders EM, Visser AE, Koppen A et al (2003) Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res 11:537–547PubMedCrossRef Manders EM, Visser AE, Koppen A et al (2003) Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res 11:537–547PubMedCrossRef
37.
Zurück zum Zitat Chambers AF, Schmidt EE, MacDonald IC et al (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803PubMedCrossRef Chambers AF, Schmidt EE, MacDonald IC et al (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803PubMedCrossRef
38.
Zurück zum Zitat Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973PubMedCrossRef Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973PubMedCrossRef
39.
Zurück zum Zitat Yamamoto N, Jiang P, Yang M et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear–cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256PubMedCrossRef Yamamoto N, Jiang P, Yang M et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear–cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256PubMedCrossRef
40.
Zurück zum Zitat Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York
41.
Zurück zum Zitat Yamauchi K, Yang M, Hayashi K et al (2007) Imaging of nucleolar dynamics during the cell cycle of cancer cells in live mice. Cell Cycle 6:2706–2708PubMedCrossRef Yamauchi K, Yang M, Hayashi K et al (2007) Imaging of nucleolar dynamics during the cell cycle of cancer cells in live mice. Cell Cycle 6:2706–2708PubMedCrossRef
42.
Zurück zum Zitat Yamauchi K, Yang M, Hayashi K et al (2008) Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy. Cancer Res 68:516–520PubMedCrossRef Yamauchi K, Yang M, Hayashi K et al (2008) Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy. Cancer Res 68:516–520PubMedCrossRef
43.
Zurück zum Zitat Hayashi K, Jiang P, Yamauchi K et al (2007) Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res 67:8223–8228PubMedCrossRef Hayashi K, Jiang P, Yamauchi K et al (2007) Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res 67:8223–8228PubMedCrossRef
44.
Zurück zum Zitat Yamauchi K, Yang M, Jiang P et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214PubMedCrossRef Yamauchi K, Yang M, Jiang P et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214PubMedCrossRef
45.
Zurück zum Zitat Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252PubMedCrossRef Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252PubMedCrossRef
46.
Zurück zum Zitat Hayashi K, Yamauchi K, Yamamoto N et al (2007) Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res 140:165–170PubMedCrossRef Hayashi K, Yamauchi K, Yamamoto N et al (2007) Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res 140:165–170PubMedCrossRef
47.
Zurück zum Zitat Hayashi K, Yamauchi K, Yamamoto N et al (2009) A color-coded orthotopic nude-mouse treatment model of brain-metastatic paralyzing spinal cord cancer that induces angiogenesis and neurogenesis. Cell Prolif 42:75–82PubMedCrossRef Hayashi K, Yamauchi K, Yamamoto N et al (2009) A color-coded orthotopic nude-mouse treatment model of brain-metastatic paralyzing spinal cord cancer that induces angiogenesis and neurogenesis. Cell Prolif 42:75–82PubMedCrossRef
48.
Zurück zum Zitat Amoh Y, Li L, Yang M et al (2004) Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc Natl Acad Sci USA 101:13291–13295PubMedCrossRef Amoh Y, Li L, Yang M et al (2004) Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc Natl Acad Sci USA 101:13291–13295PubMedCrossRef
49.
Zurück zum Zitat Li L, Mignone J, Yang M et al (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 100:9958–9961PubMedCrossRef Li L, Mignone J, Yang M et al (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 100:9958–9961PubMedCrossRef
50.
Zurück zum Zitat Yamamoto N, Yang M, Jiang P et al (2004) Color coding cancer cells with fluorescent proteins to visualize in vivo cellular interaction in metastatic colonies. Anticancer Res 24:4067–4072PubMed Yamamoto N, Yang M, Jiang P et al (2004) Color coding cancer cells with fluorescent proteins to visualize in vivo cellular interaction in metastatic colonies. Anticancer Res 24:4067–4072PubMed
51.
Zurück zum Zitat Yamamoto N, Yang M, Jiang P et al (2003) Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res 63:7785–7790PubMed Yamamoto N, Yang M, Jiang P et al (2003) Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res 63:7785–7790PubMed
52.
Zurück zum Zitat Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRef Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRef
53.
Zurück zum Zitat Bernards R, Weinberg RA (2002) A progression puzzle. Nature (Lond) 418:823CrossRef Bernards R, Weinberg RA (2002) A progression puzzle. Nature (Lond) 418:823CrossRef
54.
Zurück zum Zitat Yamamoto N, Yang M, Jiang P et al (2003) Real-time GFP imaging of spontaneous HT-1080 fibrosarcoma lung metastases. Clin Exp Metastasis 20:181–185PubMedCrossRef Yamamoto N, Yang M, Jiang P et al (2003) Real-time GFP imaging of spontaneous HT-1080 fibrosarcoma lung metastases. Clin Exp Metastasis 20:181–185PubMedCrossRef
55.
Zurück zum Zitat Kimura H, Hayashi K, Yamauchi K et al (2010) Real-time imaging of single cancer-cell dynamics of lung metastasis. J Cell Biochem 109:58–64PubMed Kimura H, Hayashi K, Yamauchi K et al (2010) Real-time imaging of single cancer-cell dynamics of lung metastasis. J Cell Biochem 109:58–64PubMed
56.
Zurück zum Zitat Spoelstra EN, Ince C, Koeman A et al (2007) A novel and simple method for endotracheal intubation of mice. Lab Anim 41:128–135PubMedCrossRef Spoelstra EN, Ince C, Koeman A et al (2007) A novel and simple method for endotracheal intubation of mice. Lab Anim 41:128–135PubMedCrossRef
57.
Zurück zum Zitat Vergari A, Polito A, Musumeci M et al (2003) Videoassisted orotracheal intubation in mice. Lab Anim 37:204–206PubMedCrossRef Vergari A, Polito A, Musumeci M et al (2003) Videoassisted orotracheal intubation in mice. Lab Anim 37:204–206PubMedCrossRef
58.
Zurück zum Zitat Kimura H, Lee C, Hayashi K et al (2010) UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo. J Cell Biochem 110:1439–1446PubMedCrossRef Kimura H, Lee C, Hayashi K et al (2010) UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo. J Cell Biochem 110:1439–1446PubMedCrossRef
59.
Zurück zum Zitat Hayashi K, Zhao M, Yamauchi K et al (2009) Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 8:870–875PubMedCrossRef Hayashi K, Zhao M, Yamauchi K et al (2009) Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 8:870–875PubMedCrossRef
60.
Zurück zum Zitat Kimura H, Zhang L, Zhao M et al (2010) Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 43:41–48PubMedCrossRef Kimura H, Zhang L, Zhao M et al (2010) Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 43:41–48PubMedCrossRef
61.
Zurück zum Zitat Hayashi K, Zhao M, Yamauchi K et al (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–998PubMedCrossRef Hayashi K, Zhao M, Yamauchi K et al (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–998PubMedCrossRef
62.
Zurück zum Zitat Zhao M, Yang M, Li XM et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 102:755–760PubMedCrossRef Zhao M, Yang M, Li XM et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 102:755–760PubMedCrossRef
63.
Zurück zum Zitat Zhao M, Yang M, Ma H et al (2006) Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652PubMedCrossRef Zhao M, Yang M, Ma H et al (2006) Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652PubMedCrossRef
64.
Zurück zum Zitat Zhao M, Geller J, Ma H et al (2007) Monotherapy with a tumor targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 104:10170–10174PubMedCrossRef Zhao M, Geller J, Ma H et al (2007) Monotherapy with a tumor targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 104:10170–10174PubMedCrossRef
Metadaten
Titel
Tumor imaging with multicolor fluorescent protein expression
verfasst von
Norio Yamamoto
Hiroyuki Tsuchiya
Robert M. Hoffman
Publikationsdatum
01.04.2011
Verlag
Springer Japan
Erschienen in
International Journal of Clinical Oncology / Ausgabe 2/2011
Print ISSN: 1341-9625
Elektronische ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-011-0201-y

Weitere Artikel der Ausgabe 2/2011

International Journal of Clinical Oncology 2/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.