Skip to main content
Erschienen in: BMC Nephrology 1/2017

Open Access 01.12.2017 | Commentary

Urbanization and kidney function decline in low and middle income countries

verfasst von: Ram Jagannathan, Rachel E. Patzer

Erschienen in: BMC Nephrology | Ausgabe 1/2017

Abstract

Urbanization is expected to increase in low and middle-income countries (LMICs), and might contribute to the increased disease burden. The association between urbanization and CKD is incompletely understood among LMICs. Recently, Inoue et al., explored the association of urbanization on renal function from the China Health and Nutrition Survey. The study found that individuals living in an urban environment had a higher odds of reduced renal function independent of behavioral and cardiometabolic measures, and this effect increased in a dose dependent manner. In this commentary, we discuss the results of these findings and explain the need for more surveillance studies among LMICs.
Abkürzungen
CKD
Chronic kidney disease
eGFR
Estimated glomerular filtration rate
LMIC
Low-Middle income countries
NCD
Non-communicable disease

Background

The cities of the developing world are spectacularly ill-prepared for the explosion in urban living – Hans van Ginkel [1]. For the first time in human history, more than half of the world’s population resides in urban areas, a proportion that is expected to increase to 66% in the next three decades [2]. The United Nations estimated that the urban population will further increase from 3.3 to 4.9 billion worldwide by 2030 [2]. Various studies in low and middle income countries (LMICs) have found that rapid and unplanned urbanization may lead to higher prevalence of non-communicable diseases such as obesity, diabetes, hypertension and dyslipidemia [3, 4]. This upsurge in metabolic diseases parallels the rise in prevalence of chronic kidney disease (CKD). According to the available evidence, approximately 500 million people are estimated to have CKD, with the majority (>80%) living in LMICs, but these estimates belie the true burden of the disease [5]. Correspondingly, the age-standardized mortality rate owing to CKD increased by 37% over two decades (Year:1990: 11.6 deaths per 100,000 population; Year: 2013: 15.8 deaths per 100,000 population), making CKD the 19th leading global cause of years of life lost in 2013 [6]. However, the data on CKD epidemiology remains incompletely understood, due to availability of few surveillance data, poor standardization of creatinine and albuminuria measurements, and inconsistent methods for ascertaining kidney function. Based on the available evidence from LMICs, there is substantial heterogeneity in the prevalence of CKD among urban versus rural areas (Table 1).
Table 1
Prevalence of chronic kidney disease among low and middle income countries stratified by urban-rural geography
Country, year [ref]
Ethnicity
Criteria/classification used
Overall (%)
Urban (%)
Rural (%)
Cameroon, 2013 [24]
African
any albuminuria and/or eGFR < 60 ml/min
14.2
14.2
NA
Cameroon, 2014 [25]
African
MDRD
13.2
10.9
14.1
Tanzania, 2014 [26]
African
MDRD/albuminuria
7.0
15.2
2.0
Sub-Saharan systematic review, 2014
Sub-Saharan
MDRD/CKD-EPI and albuminuria
13.9
12.4
16.5
Thailand, 2004 [27]
Asian
MDRD
8.5
8.0
9.2
Thailand, 2008 [28]
Asian
Spot quantitative urine protein and eGFR (MDRD)
17.5
23.1
15.8
Thailand, 2006 [29]
Asian
eGFR (MDRD)
13.2
  
Turkey, 2005 [30]
Turks
eGFR (MDRD)
5.8
4.9
6.6
India, 2005 [31]
Asian
eGFR (MDRD)
17.2
  
India, 2016 [32]
Asian
CG-BSA
16.5
NA
16.54
China, 2001 [33]
Asian
eGFR (MDRD)
2.53
2.60
2.52
China, 2006 [34]
Asian
eGFR (MDRD)/albuminuria
12.1
12.1
 
China, 2006 [35]
Asian
eGFR (MDRD)/albuminuria
15.2
 
15.2
China, 2006 [36]
Asian
eGFR (MDRD) and albuminuria
13.0
13.0
13.1
China, 2009 [37]
Asian
eGFR (MDRD)/albuminuria
10.8
8.9
11.3
China, 2010 [38]
Asian
eGFR (MDRD)/albuminuria
9.50
9.58
9.42

Main text

Unlike western countries, the etiology of CKD in LMICs are multifactorial and affected by the double burden of both non-communicable and communicable diseases. Table 2 describes some of the etiological factors associated with CKD among LMICs. Adverse lifestyle changes, including increased sedentary habits [7], lack of sleep [8], dietary sodas [9], high intake of calorie and sodium-rich diets [10, 11], food insecurity and poverty [12], and increased availability of processed foods [13] results in increased prevalence of non-communicable diseases. Accordingly, about half of all deaths in Asia are now attributable to non-communicable diseases, accounting for 47% of global burden [14]. Conversely, a preponderance of infectious diseases not typically seen in high income countries, such as schistosomiasis, HIV, tuberculosis, hepatitis B and C, further aggravates the CKD burden in LMICs [15]. Furthermore, rapid and unplanned urbanization may result in decreased food availability for socially disadvantaged people, lack of infrastructure, poor sanitation, waste disposal and heavy environmental toxins [16]. Inadequate health care resources, coupled with increased prevalence of other communicable and NCDs, further exacerbate the burden [17]. Genetic predisposition [18], malnutrition [19] and intrauterine fetal exposures [20] also play an important role in CKD susceptibility.
Table 2
Known potential causes of CKD in LMICs
Risk factors
I. Lifestyle
 a. Sedentary lifestyle
 b. Increased caloric intake
 c. High intake of calorie-rich foods, sodas, red meat and decreased intake of fruits and vegetables
 d. High sodium intake
 e. Lack of sleep
II. Non-Communicable Diseases
 a. Obesity
 b. Diabetes, Type II
 c. Hypertension
 d. Poor management of diabetes and hypertension (poor medication adherence)
III. Environmental Factors
 a. Food insecurity and poverty
 b. Air/water pollution and industrial waste products
 c. Heavy metals (lead, Cadmium, arsenic, gold, mercury and uranium)
 d. Plastics and resins (Bisphenols)
e. Over-the-counter drug and Counterfeit drugs
 f. Pesticides, hardness of water,
 g. Superphosphates,
 h. Arsenic-contaminated fertilizers and cyanogens from algae
IV. Infections
 a. Tuberculosis
 b. Hepatitis B and C
 c. Malaria and other viral vector borne diseases (dengue and yellow fever)
 d. Parasitic diseases including schistosomiasis, filariasis, and leishmaniasis
In this issue of the journal, Inoue et al. [21], studied the effect of urbanization on renal function from the China Health and Nutrition Survey (n = 9493). Rather than relying on a conventional urban-rural dichotomous measure, the authors utilized a validated, study specific, 12-component composite index to measure urbanization. The study showed that individuals living in an urban environment had higher odds of reduced glomerular filtration rate, independent of behavioral and cardiometabolic measures. Of particular note, the effect of urbanization on renal function decline was dose-dependent, where mean eGFR (ml/min/1.73m2) declined from 84.8 in the lowest urbanization quartile to 82.8, 80.9, and then 77.8 in the highest urbanization quartile. In multivariable, multilevel models, the impact of a 1 standard deviation increase in urbanization was associated with reduced renal function among both males and females (males: adjusted odds ratio (aOR): 1.25 [95% CI: 0.98–1.59]; P = 0.078; females: aOR: 1.24 [95% CI: 1.01–1.52]; P = 0.041). Despite lack of statistical significance among males, the effect sizes were similar. In addition, among the different components of the urbanization index, the authors found a significant association between housing component and renal function (males: OR: 1.51 [95% CI: 1.01–2.28] and females: OR: 1.39 [95% CI: 1.01–1.93]). While the mechanism for how increased urbanization can lead to lower renal function is not possible to explore in this cross-sectional study, results suggest that community-level factors may play an important role in the development of CKD and should be further explored.
Addressing NCDs is an urgent global priority, and cities are the epicenters where action is needed most. Compared with rural areas, the rapid urbanization and lifestyle changes in cities offers better understanding of the etiology of the CKD diseases. Despite a probable heavy burden of end-stage kidney disease in LMICs, relatively few patients receive renal replacement therapy. A 2015 systematic review suggests that approximately 83% of renal failure patients in Asia are not receiving the renal replacement treatment [22]. A recent Cochrane review which included 17 studies involving 1639 people with CKD showed that different modalities of dietary interventions were associated with improved kidney function and hemodynamic measures [23]. However, none of the studies were reported from LMICs. Innovation, technology, and the ongoing economic transition in cities may also help to catalyze new initiatives to prevent CKD burden in this countries. Future studies should focus on the following themes:
a)
Better surveillance studies are urgently needed to ascertain the real burden of CKD prevalence among LMICs
 
b)
Because the presentation of CKD is heterogeneous among LMICs, a better understanding of the epidemiology is urgently needed. Non-conventional risk factors such as heavy metals, environmental toxins, sleep insufficiency and stress should be explored as factors mediating urbanization and CKD; and
 
c)
The available CKD nutritional intervention studies are posited based on evidence from homogoenous populations in higher income countries and therefore, more studies are needed to test the effectiveness of lifestyle interventions among LMICs. The studies should particularly focused on testing culturally tailored and novel dietary intervention tools.
 

Conclusions

To conclude, CKD is an important global health challenge especially in LMICs. National and international efforts are urgently needed on the prevention, detection and treatment to mitigate the rising burden worldwide. Furthermore, a better understanding of epidemiology coupled with strong public advocacy, and collaborative public health interventions that address conventional and unconventional risk factors of CKD are needed. Future studies should focus on the unique features of LMICs to ascertain those at greatest risk of CKD, across all socioeconomic groups to ensure early screening.

Acknowledgments

None.

Funding

None.

Availability of data and materials

Not applicable.
Not applicable.
Not Applicable.

Competing interests

The authors declare that they have no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
3.
Zurück zum Zitat Allender S, Wickramasinghe K, Goldacre M, Matthews D, Katulanda P. Quantifying urbanization as a risk factor for noncommunicable disease. Journal of urban health. 2011;88(5):906–18.CrossRefPubMedPubMedCentral Allender S, Wickramasinghe K, Goldacre M, Matthews D, Katulanda P. Quantifying urbanization as a risk factor for noncommunicable disease. Journal of urban health. 2011;88(5):906–18.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Oyebode O, Pape UJ, Laverty AA, Lee JT, Bhan N, Millett C. Rural, urban and migrant differences in non-communicable disease risk-factors in middle income countries: a cross-sectional study of WHO-SAGE data. PLoS One. 2015;10(4):e0122747.CrossRefPubMedPubMedCentral Oyebode O, Pape UJ, Laverty AA, Lee JT, Bhan N, Millett C. Rural, urban and migrant differences in non-communicable disease risk-factors in middle income countries: a cross-sectional study of WHO-SAGE data. PLoS One. 2015;10(4):e0122747.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low-and middle-income countries. Nephrology Dialysis Transplantation. 2016;31(6):868–74.CrossRefPubMedCentral Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low-and middle-income countries. Nephrology Dialysis Transplantation. 2016;31(6):868–74.CrossRefPubMedCentral
6.
7.
Zurück zum Zitat Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol. 2009;4(12):1901–6.CrossRefPubMedPubMedCentral Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol. 2009;4(12):1901–6.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Yayan J, Rasche K, Vlachou A. Obstructive sleep apnea and chronic kidney disease. Adv Exp Med Biol. 2017. Yayan J, Rasche K, Vlachou A. Obstructive sleep apnea and chronic kidney disease. Adv Exp Med Biol. 2017.
9.
Zurück zum Zitat Saldana TM, Basso O, Darden R, Sandler DP. Carbonated beverages and chronic kidney disease. Epidemiology (Cambridge, Mass). 2007;18(4):501.CrossRef Saldana TM, Basso O, Darden R, Sandler DP. Carbonated beverages and chronic kidney disease. Epidemiology (Cambridge, Mass). 2007;18(4):501.CrossRef
10.
Zurück zum Zitat Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326.CrossRefPubMedPubMedCentral Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Smyth A, O'Donnell MJ, Yusuf S, Clase CM, Teo KK, Canavan M, Reddan DN, Mann JF. Sodium intake and renal outcomes: a systematic review. Am J Hypertens. 2014;27(10):1277–84.CrossRefPubMed Smyth A, O'Donnell MJ, Yusuf S, Clase CM, Teo KK, Canavan M, Reddan DN, Mann JF. Sodium intake and renal outcomes: a systematic review. Am J Hypertens. 2014;27(10):1277–84.CrossRefPubMed
12.
Zurück zum Zitat Crews DC, Kuczmarski MF, Grubbs V, Hedgeman E, Shahinian VB, Evans MK, Zonderman AB, Burrows NR, Williams DE, Saran R. Effect of food insecurity on chronic kidney disease in lower-income Americans. Am J Nephrol. 2014;39(1):27–35.CrossRefPubMedPubMedCentral Crews DC, Kuczmarski MF, Grubbs V, Hedgeman E, Shahinian VB, Evans MK, Zonderman AB, Burrows NR, Williams DE, Saran R. Effect of food insecurity on chronic kidney disease in lower-income Americans. Am J Nephrol. 2014;39(1):27–35.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Uribarri J: Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake.Semin Dial: 2006; 2006: 295-301. Uribarri J: Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake.Semin Dial: 2006; 2006: 295-301.
14.
Zurück zum Zitat Organization WH: Global action plan for the prevention and control of noncommunicable diseases 2013–2020. 2013. Organization WH: Global action plan for the prevention and control of noncommunicable diseases 2013–2020. 2013.
15.
Zurück zum Zitat Jha V, Prasad N. CKD and infectious diseases in asia pacific: challenges and opportunities. Am J Kidney Dis. 2016;68(1):148–60.CrossRefPubMed Jha V, Prasad N. CKD and infectious diseases in asia pacific: challenges and opportunities. Am J Kidney Dis. 2016;68(1):148–60.CrossRefPubMed
16.
Zurück zum Zitat Soderland P, Lovekar S, Weiner DE, Brooks DR, Kaufman JS. Chronic kidney disease associated with environmental toxins and exposures. Adv Chronic Kidney Dis. 2010;17(3):254–64.CrossRefPubMed Soderland P, Lovekar S, Weiner DE, Brooks DR, Kaufman JS. Chronic kidney disease associated with environmental toxins and exposures. Adv Chronic Kidney Dis. 2010;17(3):254–64.CrossRefPubMed
18.
Zurück zum Zitat Eikmans M, Aben JA, Koop K, Baelde HJ, de Heer E, Bruijn JA. Genetic factors in progressive renal disease: the good ones, the bad ones and the ugly ducklings. Nephrology Dialysis Transplantation. 2006;21(2):257–60.CrossRef Eikmans M, Aben JA, Koop K, Baelde HJ, de Heer E, Bruijn JA. Genetic factors in progressive renal disease: the good ones, the bad ones and the ugly ducklings. Nephrology Dialysis Transplantation. 2006;21(2):257–60.CrossRef
19.
Zurück zum Zitat Wood-Bradley RJ, Barrand S, Giot A, Armitage JA. Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations. Nutrients. 2015;7(3):1881–905.CrossRefPubMedPubMedCentral Wood-Bradley RJ, Barrand S, Giot A, Armitage JA. Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations. Nutrients. 2015;7(3):1881–905.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Nelson RG. Intrauterine determinants of diabetic kidney disease in disadvantaged populations. Kidney Int. 2003;63:S13–6.CrossRef Nelson RG. Intrauterine determinants of diabetic kidney disease in disadvantaged populations. Kidney Int. 2003;63:S13–6.CrossRef
21.
Zurück zum Zitat Inoue Y, Howard AG, Thompson AL, Mendez MA, Herring AH, Gordon-Larsen P. The association between urbanization and reduced renal function: findings from the China Health and Nutrition Survey. BMC Nephrol. 2017;18(1):160.CrossRefPubMedPubMedCentral Inoue Y, Howard AG, Thompson AL, Mendez MA, Herring AH, Gordon-Larsen P. The association between urbanization and reduced renal function: findings from the China Health and Nutrition Survey. BMC Nephrol. 2017;18(1):160.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Dare AJ, Fu SH, Patra J, Rodriguez PS, Thakur J, Jha P, Collaborators MDS. Renal failure deaths and their risk factors in India 2001–13: nationally representative estimates from the Million Death Study. Lancet Glob Health. 2017;5(1):e89–95.CrossRefPubMed Dare AJ, Fu SH, Patra J, Rodriguez PS, Thakur J, Jha P, Collaborators MDS. Renal failure deaths and their risk factors in India 2001–13: nationally representative estimates from the Million Death Study. Lancet Glob Health. 2017;5(1):e89–95.CrossRefPubMed
23.
Zurück zum Zitat Palmer SC, Maggo JK, Campbell KL, Craig JC, Johnson DW, Sutanto B, Ruospo M, Tong A, Strippoli GF. Dietary interventions for adults with chronic kidney disease. The Cochrane database of systematic reviews. 2017;4:Cd011998.PubMed Palmer SC, Maggo JK, Campbell KL, Craig JC, Johnson DW, Sutanto B, Ruospo M, Tong A, Strippoli GF. Dietary interventions for adults with chronic kidney disease. The Cochrane database of systematic reviews. 2017;4:Cd011998.PubMed
24.
Zurück zum Zitat Kaze FF, Halle MP, Mopa HT, Ashuntantang G, Fouda H, Ngogang J, Kengne AP. Prevalence and risk factors of chronic kidney disease in urban adult Cameroonians according to three common estimators of the glomerular filtration rate: a cross-sectional study. BMC Nephrol. 2015;16:96.CrossRefPubMedPubMedCentral Kaze FF, Halle MP, Mopa HT, Ashuntantang G, Fouda H, Ngogang J, Kengne AP. Prevalence and risk factors of chronic kidney disease in urban adult Cameroonians according to three common estimators of the glomerular filtration rate: a cross-sectional study. BMC Nephrol. 2015;16:96.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Kaze FF, Meto DT, Halle M-P, Ngogang J, Kengne A-P. Prevalence and determinants of chronic kidney disease in rural and urban Cameroonians: a cross-sectional study. BMC Nephrol. 2015;16(1):117.CrossRefPubMedPubMedCentral Kaze FF, Meto DT, Halle M-P, Ngogang J, Kengne A-P. Prevalence and determinants of chronic kidney disease in rural and urban Cameroonians: a cross-sectional study. BMC Nephrol. 2015;16(1):117.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Stanifer JW, Maro V, Egger J, Karia F, Thielman N, Turner EL, Shimbi D, Kilaweh H, Matemu O, Patel UD. The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey. PLoS One. 2015;10(4):e0124506.CrossRefPubMedPubMedCentral Stanifer JW, Maro V, Egger J, Karia F, Thielman N, Turner EL, Shimbi D, Kilaweh H, Matemu O, Patel UD. The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey. PLoS One. 2015;10(4):e0124506.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Ong-Ajyooth L, Vareesangthip K, Khonputsa P, Aekplakorn W. Prevalence of chronic kidney disease in Thai adults: a national health survey. BMC Nephrol. 2009;10:35.CrossRefPubMedPubMedCentral Ong-Ajyooth L, Vareesangthip K, Khonputsa P, Aekplakorn W. Prevalence of chronic kidney disease in Thai adults: a national health survey. BMC Nephrol. 2009;10:35.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Ingsathit A, Thakkinstian A, Chaiprasert A, Sangthawan P, Gojaseni P, Kiattisunthorn K, Ongaiyooth L, Vanavanan S, Sirivongs D, Thirakhupt P. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrology Dialysis Transplantation. 2010;25(5):1567–75.CrossRef Ingsathit A, Thakkinstian A, Chaiprasert A, Sangthawan P, Gojaseni P, Kiattisunthorn K, Ongaiyooth L, Vanavanan S, Sirivongs D, Thirakhupt P. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrology Dialysis Transplantation. 2010;25(5):1567–75.CrossRef
29.
Zurück zum Zitat Perkovic V, Cass A, Patel A, Suriyawongpaisal P, Barzi F, Chadban S, Macmahon S, Neal B, Group IC. High prevalence of chronic kidney disease in Thailand. Kidney Int. 2008;73(4):473–9.CrossRefPubMed Perkovic V, Cass A, Patel A, Suriyawongpaisal P, Barzi F, Chadban S, Macmahon S, Neal B, Group IC. High prevalence of chronic kidney disease in Thailand. Kidney Int. 2008;73(4):473–9.CrossRefPubMed
30.
Zurück zum Zitat Sahin I, Yildirim B, Cetin I, Etikan I, Ozturk B, Ozyurt H, Tasliyurt T. Prevalence of chronic kidney disease in the Black Sea Region, Turkey, and investigation of the related factors with chronic kidney disease. Ren Fail. 2009;31(10):920–7.CrossRefPubMed Sahin I, Yildirim B, Cetin I, Etikan I, Ozturk B, Ozyurt H, Tasliyurt T. Prevalence of chronic kidney disease in the Black Sea Region, Turkey, and investigation of the related factors with chronic kidney disease. Ren Fail. 2009;31(10):920–7.CrossRefPubMed
31.
Zurück zum Zitat Singh AK, Farag YM, Mittal BV, Subramanian KK, Reddy SRK, Acharya VN, Almeida AF, Channakeshavamurthy A, Ballal HS, P G, et al. Epidemiology and risk factors of chronic kidney disease in India – results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. BMC Nephrol. 2013;14(1):114.CrossRefPubMedPubMedCentral Singh AK, Farag YM, Mittal BV, Subramanian KK, Reddy SRK, Acharya VN, Almeida AF, Channakeshavamurthy A, Ballal HS, P G, et al. Epidemiology and risk factors of chronic kidney disease in India – results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. BMC Nephrol. 2013;14(1):114.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Trivedi H, Vanikar A, Patel H, Kanodia K, Kute V, Nigam L, Suthar K, Thakkar U, Sutariya H, Gandhi S. High prevalence of chronic kidney disease in a semi-urban population of Western India. Clin Kidney J. 2016;9(3):438–43.CrossRefPubMedPubMedCentral Trivedi H, Vanikar A, Patel H, Kanodia K, Kute V, Nigam L, Suthar K, Thakkar U, Sutariya H, Gandhi S. High prevalence of chronic kidney disease in a semi-urban population of Western India. Clin Kidney J. 2016;9(3):438–43.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Chen J, Wildman RP, Gu D, Kusek JW, Spruill M, Reynolds K, Liu D, Hamm LL, Whelton PK, He J. Prevalence of decreased kidney function in Chinese adults aged 35 to 74 years. Kidney Int. 2005;68(6):2837–45.CrossRefPubMed Chen J, Wildman RP, Gu D, Kusek JW, Spruill M, Reynolds K, Liu D, Hamm LL, Whelton PK, He J. Prevalence of decreased kidney function in Chinese adults aged 35 to 74 years. Kidney Int. 2005;68(6):2837–45.CrossRefPubMed
34.
Zurück zum Zitat Chen W, Chen W, Wang H, Dong X, Liu Q, Mao H, Tan J, Lin J, Zhou F, Luo N, et al. Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol Dial Transplant. 2009;24(4):1205–12.CrossRefPubMed Chen W, Chen W, Wang H, Dong X, Liu Q, Mao H, Tan J, Lin J, Zhou F, Luo N, et al. Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol Dial Transplant. 2009;24(4):1205–12.CrossRefPubMed
35.
Zurück zum Zitat Jiang L, Liang Y, Qiu B, Wang F, Duan X, Yang X, Huang W, Wang N. Prevalence of chronic kidney disease in a rural Chinese adult population: the Handan Eye Study. Nephron Clin Pract. 2010;114(4):c295–302.CrossRefPubMed Jiang L, Liang Y, Qiu B, Wang F, Duan X, Yang X, Huang W, Wang N. Prevalence of chronic kidney disease in a rural Chinese adult population: the Handan Eye Study. Nephron Clin Pract. 2010;114(4):c295–302.CrossRefPubMed
36.
Zurück zum Zitat Zhang L, Zhang P, Wang F, Zuo L, Zhou Y, Shi Y, Li G, Jiao S, Liu Z, Liang W, et al. Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis. 2008;51(3):373–84.CrossRefPubMed Zhang L, Zhang P, Wang F, Zuo L, Zhou Y, Shi Y, Li G, Jiao S, Liu Z, Liang W, et al. Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis. 2008;51(3):373–84.CrossRefPubMed
37.
Zurück zum Zitat Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRefPubMed Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRefPubMed
38.
Zurück zum Zitat Sheng T, Xiao-mei P, Chao-qing W, Wen-xin Z, Hao-yu W, Min B, Yun-fang L, Jin-yu L, Ling H. Zhi-feng. G: Comparison of epidemiological situation in chronic kidney disease between urban and rural areas in Guangxi province. Chinese Journal of Nephrology. 2011;27(12):890–5. Sheng T, Xiao-mei P, Chao-qing W, Wen-xin Z, Hao-yu W, Min B, Yun-fang L, Jin-yu L, Ling H. Zhi-feng. G: Comparison of epidemiological situation in chronic kidney disease between urban and rural areas in Guangxi province. Chinese Journal of Nephrology. 2011;27(12):890–5.
Metadaten
Titel
Urbanization and kidney function decline in low and middle income countries
verfasst von
Ram Jagannathan
Rachel E. Patzer
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2017
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0685-4

Weitere Artikel der Ausgabe 1/2017

BMC Nephrology 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.