Skip to main content
Erschienen in: BMC Infectious Diseases 1/2019

Open Access 01.12.2019 | Case report

Vibrio cholerae non-O1 - the first reported case of keratitis in a healthy patient

verfasst von: Wei-Dar Chen, Li-Ju Lai, Wei-Hsiu Hsu, Tsung-Yu Huang

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2019

Abstract

Background

Vibrio cholerae non-O1 is a virulent pathogen that causes significant morbidity and mortality in humans. Herein, we report a case of corneal ulcer caused by this pathogen.

Case presentation

A 59-year-old fisherman with no systemic history was struck in the right eye by a marine shrimp and developed keratitis. Corneal scrapping culture revealed the presence of the V. cholerae non-O1, and its identification was confirmed by Analytical Profile Index 20E system and polymerase chain reaction. He was successfully treated with topical levofloxacin (0.3%) and fortified amikacin (12.5 mg/mL) for 2 weeks. The visual acuity recovered to 20/25 after treatment without complications.

Conclusions

This is the first case report of keratitis caused by V. cholerae non-O1 strain. Ocular injury by marine creatures and contaminated seawater can contribute to severe corneal ulcer. Early diagnosis can be achieved by meticulous history taking and a comprehensive laboratory workup. Simultaneously, an effective antibiotic therapy can lead to a positive outcome.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
API 20E
Analytical Profile Index 20E
CT
Cholera toxin
PCR
Polymerase chain reaction
RXT
Repeats in toxin
T6SS
Type VI secretion system
TBCS
Thiosulfate-citrate-bile salts-sucrose
TCP
Toxin-coregulated pilus

Introduction

Vibrio cholerae is a facultative anaerobic gram-negative comma-shaped bacillus that exists ubiquitously in marine and estuarine environments. Exposure to contaminated water and ingestion of raw seafood are crucial routes of infection that causes overwhelming morbidity and mortality in humans [1]. V. cholerae serogroup O1 and O139 primarily contribute to pandemic Vibrio gastroenteritis by means of cardinal virulence factors of cholera toxin (CT) and toxin-coregulated pilus (TCP). Similarly, non-cholera Vibrio including Vibrio parahaemolyticus and Vibrio vulnificus (V. vulnificus) can lead to cholera-like diarrhea, open wound infection, necrotizing fasciitis and septicemia via multiple virulence determinants such as capsular polysaccharide, hemolysin, siderophores and metalloproteases [2, 3]. These major pathological Vibrio species have been extensively studied for their detrimental effect on public health. However, pestilent V. cholerae non-O1/ non-O139 infection has gained attention over the past decade. A few studies have reported cases of extra-intestinal Vibrio infections caused by V. cholerae non-O1/non-O139 stains, including soft tissue infection, pneumonia, acute cholecystitis, liver abscess, peritonitis, urinary tract infection, septicemia and meningitis in addition to acute enteric illness [4, 5]. Nevertheless, the incidence of ocular infection caused by V. cholerae non-O1/non-O139 was rather low. Only one case of endophthalmitis attributed to V. cholerae non-O1/non-O139 strain in a cirrhotic patient with septicemia has been reported [6]. Herein, we reported a case of a healthy patient with V. cholerae non-O1 keratitis and searched the related literature to discuss pathogenesis, diagnosis and management of V. cholerae keratitis.

Case presentation

A 59-year-old healthy fisherman presented with right eye pain, redness, tearing and photophobia for 1 day and the symptoms persisted. According to his statement, his right eye was struck by a marine shrimp while fishing. The patient denied a history of major systemic diseases such as diabetes, hypertension, or liver cirrhosis. The best-corrected visual acuity was 20/60 in the right eye and 20/20 in the left eye. Slit-lamp examination showed moderate conjunctival injection with slight chemosis, and a central stromal infiltration of approximately 1.3 × 1.8mm2. Simultaneously, corneal edema with Descemet membrane folding around the lesion was also observed (Fig. 1a). There was no sign of anterior chamber inflammation or endophthalmitis. Initially, under the suspicion of bacterial or fungal infection, the patient was empirically treated with hourly Cravit (levofloxacin oph. Soln, 0.5%, Santen, Japan) and fortified amphotericin B (1 mg/mL). Two days later, right eye pain improved slightly. The gram staining of the corneal culture showed Vibrio sp., and the yellow colony in thiosulfate-citrate-bile salts-sucrose (TBCS) agar was highly identified as V. cholerae. Moreover, the negative result in the agglutination test confirmed the non-O1 strain (Fig. 2a-c). Thereafter, the identity of the V. cholerae was reconfirmed by laboratory analysis with Analytical Profile Index 20E (API 20E) (Fig. 2d) and polymerase chain reaction (PCR) (Fig. 3). Following the identification of V. cholerae non-O1, we halted the use of amphotericin B. Meanwhile, antimicrobial minimal inhibitory concentration testing was performed for this pathogen (Table 1). Based on the results of the test, the antibiotic regimen was changed to topical amikacin (12.5 mg/mL) and Cravit four times daily. One week later, the right uncorrected visual acuity rapidly recovered to 20/25 and corneal infiltration improved (Fig. 1b). The frequency of treatment was tapered gradually without any complication.
Table 1
Susceptibilities of the clinical isolate of V. cholerae non-O1 to 14 antimicrobial agents
Antimicrobial agent
MIC (ug/ml)
Amikacin
4
Gentamicin
0.5
Tetracycline
1
Tigecycline
0.25
Ciprofloxacin
0.023
Ertapenem
0.023
Imipenem
0.75
Meropenem
0.19
Ceftazidime
0.094
Ceftriaxone
0.016
Cefuroxime
0.125
Ampicillin
1.5
Ampicillin-sulbactam
1
Aztreonam
0.38
MIC Minimum Inhibitory Concentration

Discussion and conclusions

This is the first case of infectious keratitis caused by V. cholerae non-O1. Prior to our case, the first published case of ocular infection with V. cholerae non-O1 was an endophthalmitis in a cirrhotic patient with septicemia [6]. Corneal pathogenesis of the V. cholerae non-O1 strain has not been clearly elucidated yet due to its rare occurrence in ocular tissue. V. cholerae non-O1 can potentially bring on pandemic gastroenteritis and extra-intestinal diseases without using lethal virulence factors such as CT and TCP. Some studies have indicated that V. cholerae non-O1 possess unique characteristics to evade immune surveillance and destroy its target precisely [7, 8].
Hemolysin, hemagglutinin protease, repeats in toxin (RXT) and type VI secretion system (T6SS) are crucial virulence factors of V. cholerae non-O1 [7]. V. cholerae non-O1 activates the vacuolating process regulated by hemolysin protein to interfere with intracellular homeostasis and ion exchange, and subsequently impels cellular cytolysis [9]. Therefore, hemolysin-induced vacuolation can potentially disrupt corneal epithelial and endothelial cells to trigger cell damage. Furthermore, occludin and zonula occludens-1 (ZO-1) are enriched in the corneal epithelium as first-line defense components [10]. In V. cholerae non-O1, hemagglutinin protease, encoded by the hap gene, can degrade essential tight junction-associated protein occludin and disrupt ZO-1 conformation [11]. It is reasonable to infer that V. cholerae non-O1 can directly destroy the epithelial occludin and ZO-1 via hemagglutinin protease, digest collagens and abolish corneal transparency. In addition, RTX, akin to exotoxin of V. cholerae, was found to be involved in the detachment and round-up of epithelial cells [12]. V. cholerae non-O1 can break down corneal epithelium and stroma using the distinctive cytotoxic property of the RTX. T6SS, found in gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli, is a cell-puncturing device that translocates effector proteins into eukaryotic host cells [13]. P. aeruginosa has been shown to invades cornea with the assistance of T6SS [14], Hence, it is possible for V. cholerae non-O1 to adopt a similar strategy to cause keratitis. These presumptions require further microbiological research and laboratory analysis to determine the pathogenesis of the V. cholerae non-O1 keratitis.
In the present case, we initially doubted the presence of this pathogenic strain in the corneal culture because V. cholerae has never been reported in keratitis. Hence, it is necessary to validate this pathogen using advanced laboratory methods. The API 20E microtest and real-time PCR are suitable choices. The API 20E is an efficient biochemical kit to discriminate members of gram-negative bacilli in 24 h. Furthermore, the API 20E has a higher detection rate for V. cholerae than analogous biochemical panels [15]. On the other hand, real-time PCR enables the most accurate molecular identification for V. cholera and is faster than the API 20E detection [16]. Target genes including hlyA, tcpI, toxR and ompU are available for the screening of V. choerae serotypes [17]. Both of methods are recommended for the diagnosis of intractable infectious ophthalmic due to their advantages of a short reaction time and enhanced accuracy of detection.
V. cholerae non-O1 is assumed to be an opportunistic pathogen, although it occasionally causes severe illness [5]. Hence, efficient treatment for V. cholerae non-O1 infection has not been determined yet, particularly in ocular diseases. Yang et al. reported the first case of V. cholerae non-O1/non-O139 endophthalmitis following septicemia in a cirrhotic patient [6]. This patient received an intravitreal injection of vancomycin and ceftazidime, and a systemic intravenous injection of ceftriaxone (2 g, q12h). Eventually, the patient died of sepsis and respiratory failure. Moreover, sporadic medical regimens for V. vulnificus keratitis were delineated. DiGaetano et al. (1989) combined medical treatment and surgical debridement for two cases of V. vulnificus keratitis [18]. Massey et al. (2000) used topical therapy with ciprofloxacin and fortified vancomycin for one case of V. vulnificus keratitis [19]. Penland et al. (2000) demonstrated that topical application of ciprofloxacin and cefazolin can treat the V. vulnificus keratitis [2]. You et al. (2008) used surgical debridement and systemic antibiotics (oral and intravenous injection) for V. vulnificus keratitis [20]. Despite the availability of prior case reports (Table 2), therapeutic options for ocular V. cholerae non-O1 infection are scant and rudimentary. Our patient with normal immunity completely recovered under topical antibiotic therapy of fluoroquinolone and amikacin. This can be an effective topical regimen for treating V. cholerae non-O1 keratitis.
Table 2
Reported cases of Vibrio spp. Keratitis
Case
Reference
Species
Risk factor
Treatment
1
DiGaetano et al. [18] 1989
V. vulnificus
Shucking oysters
Topical:
Gentamycin (9.1 mg/mL)
Maxitrola
Cefazloin (33 mg/mL)
Surgical debridement (day 21)
2
DiGaetano et al. [18] 1989
V. vulnificus
Crab shell
Topical:
Gentamycin (9.1 mg/mL)
Bacitracin (10,000 U/mL)
Tetracycline (1%)
Tobrmycin (0.3%)
Subonjunctival:
Gentamycin 20 mg
Surgical debridement (day 14)
3
Massey et al. [19] 2000
V. vulnificus
Shucking oyster
Topical:
Ciprofloxacin
Maxitrola
Vancomycin (25 mg/mL)
4
Penland et al. [2] 2000
V. vulnificus
Shucking oyster
Topical:
Cefazolin (5%)
Gentamicin (1.4%)
Prednisolone acetate (1%)
Ciprofloxacin (0.3%)
5
You et al. [20] 2008
V. vulnificus
Wood of boat
Topical:
Gatifloxacin
Tobramycin
Subconjunctival injection
Tobramycin (20 mg)
Oral:
Doxycycline (100 mg/tab) bid
Systemic IV:
Ceftazidime (2 g) q12h
Surgical debridement (day11)
6
Chen et al. 2019
V. cholerae non-O1
shrimp
Topical:
Levofloxacin (0.5%)
Amikacin (12.5 mg/mL)
aMaxitrol: Neomycin-polymyxin B
V. cholerae non-O1 can cause keratitis after ocular blunt injury by marine creatures and contaminated seawater. A satisfactory outcome can be achieved by comprehensive history taking, early pathogenic diagnosis and compatible antibiotic treatment.

Acknowledgements

Not applicable.
Ethics approval was obtained from Chang Gung Foundation.
The patient’s consent for publication was obtained.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Nicholas A, Daniels M, Shafaie A. A review of pathogenic Vibrio infections for clinicians. Infect Med. 2000;17(10):665–85. Nicholas A, Daniels M, Shafaie A. A review of pathogenic Vibrio infections for clinicians. Infect Med. 2000;17(10):665–85.
2.
Zurück zum Zitat Penland RL, Boniuk M, Wilhelmus KR. Vibrio ocular infections on the U.S. Gulf Coast. Cornea. 2000;19(1):26–9.CrossRef Penland RL, Boniuk M, Wilhelmus KR. Vibrio ocular infections on the U.S. Gulf Coast. Cornea. 2000;19(1):26–9.CrossRef
3.
Zurück zum Zitat Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol. 2012;78(20):7249–57.CrossRef Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol. 2012;78(20):7249–57.CrossRef
4.
Zurück zum Zitat Chen YT, Tang HJ, Chao CM, Lai CC. Clinical manifestations of non-O1 Vibrio cholerae infections. PLoS One. 2015;10(1):e0116904.CrossRef Chen YT, Tang HJ, Chao CM, Lai CC. Clinical manifestations of non-O1 Vibrio cholerae infections. PLoS One. 2015;10(1):e0116904.CrossRef
5.
Zurück zum Zitat Chowdhury G, Joshi S, Bhattacharya S, Sekar U, Birajdar B, Bhattacharyya A, Shinoda S, Ramamurthy T. Extraintestinal infections caused by non-toxigenic Vibrio cholerae non-O1/non-O139. Front Microbiol. 2016;7:144.CrossRef Chowdhury G, Joshi S, Bhattacharya S, Sekar U, Birajdar B, Bhattacharyya A, Shinoda S, Ramamurthy T. Extraintestinal infections caused by non-toxigenic Vibrio cholerae non-O1/non-O139. Front Microbiol. 2016;7:144.CrossRef
6.
Zurück zum Zitat Yang CC, Lee BJ, Yang SS, Lin YH, Lee YL. A case of non-O1 and non-O139 Vibrio cholerae septicemia with endophthalmitis in a cirrhotic patient. Jpn J Infect Dis. 2008;61(6):475–6.PubMed Yang CC, Lee BJ, Yang SS, Lin YH, Lee YL. A case of non-O1 and non-O139 Vibrio cholerae septicemia with endophthalmitis in a cirrhotic patient. Jpn J Infect Dis. 2008;61(6):475–6.PubMed
7.
Zurück zum Zitat Ceccarelli D, Chen A, Hasan NA, Rashed SM, Huq A, Colwell RR. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Appl Environ Microbiol. 2015;81(6):1909–18.CrossRef Ceccarelli D, Chen A, Hasan NA, Rashed SM, Huq A, Colwell RR. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Appl Environ Microbiol. 2015;81(6):1909–18.CrossRef
8.
Zurück zum Zitat Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, Mukhopadhyay AK, Ramamurthy T, Bhattacharya SK, Klose KE, Nandy RK. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol. 2009;47(4):1087–95.CrossRef Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, Mukhopadhyay AK, Ramamurthy T, Bhattacharya SK, Klose KE, Nandy RK. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol. 2009;47(4):1087–95.CrossRef
9.
Zurück zum Zitat Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono-Cerezo S, Enriquez-Rincon F, Berg DE. Cell vacuolation caused by Vibrio cholerae hemolysin. Infect Immun. 2001;69(3):1613–24.CrossRef Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono-Cerezo S, Enriquez-Rincon F, Berg DE. Cell vacuolation caused by Vibrio cholerae hemolysin. Infect Immun. 2001;69(3):1613–24.CrossRef
10.
Zurück zum Zitat Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci. 2000;41(13):4093–100.PubMed Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci. 2000;41(13):4093–100.PubMed
11.
Zurück zum Zitat Wu Z, Nybom P, Magnusson KE. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2000;2(1):11–7.CrossRef Wu Z, Nybom P, Magnusson KE. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2000;2(1):11–7.CrossRef
12.
Zurück zum Zitat Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ. Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A. 1999;96(3):1071–6.CrossRef Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ. Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A. 1999;96(3):1071–6.CrossRef
13.
Zurück zum Zitat Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 2007;104(39):15508–13.CrossRef Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 2007;104(39):15508–13.CrossRef
14.
Zurück zum Zitat Sana TG, Baumann C, Merdes A, Soscia C, Rattei T, Hachani A, Jones C, Bennett KL, Filloux A, Superti-Furga G, et al. Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio. 2015;6(3):e00712.CrossRef Sana TG, Baumann C, Merdes A, Soscia C, Rattei T, Hachani A, Jones C, Bennett KL, Filloux A, Superti-Furga G, et al. Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio. 2015;6(3):e00712.CrossRef
15.
Zurück zum Zitat Overman TL, Kessler JF, Seabolt JP. Comparison of API 20E, API rapid E, and API rapid NFT for identification of members of the family Vibrionaceae. J Clin Microbiol. 1985;22(5):778–81.PubMedPubMedCentral Overman TL, Kessler JF, Seabolt JP. Comparison of API 20E, API rapid E, and API rapid NFT for identification of members of the family Vibrionaceae. J Clin Microbiol. 1985;22(5):778–81.PubMedPubMedCentral
16.
Zurück zum Zitat Baron S, Chevalier S, Lesne J. Vibrio cholerae in the environment: a simple method for reliable identification of the species. J Health Popul Nutr. 2007;25(3):312–8.PubMedPubMedCentral Baron S, Chevalier S, Lesne J. Vibrio cholerae in the environment: a simple method for reliable identification of the species. J Health Popul Nutr. 2007;25(3):312–8.PubMedPubMedCentral
17.
Zurück zum Zitat Panicker G, Call DR, Krug MJ, Bej AK. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl Environ Microbiol. 2004;70(12):7436–44.CrossRef Panicker G, Call DR, Krug MJ, Bej AK. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl Environ Microbiol. 2004;70(12):7436–44.CrossRef
18.
Zurück zum Zitat DiGaetano M, Ball SF, Straus JG. Vibrio vulnificus corneal ulcer. Case reports. Arch Ophthal. 1989;107(3):323–4.CrossRef DiGaetano M, Ball SF, Straus JG. Vibrio vulnificus corneal ulcer. Case reports. Arch Ophthal. 1989;107(3):323–4.CrossRef
19.
Zurück zum Zitat Massey EL, Weston BC. Vibrio vulnificus corneal ulcer: rapid resolution of a virulent pathogen. Cornea. 2000;19(1):108–9.CrossRef Massey EL, Weston BC. Vibrio vulnificus corneal ulcer: rapid resolution of a virulent pathogen. Cornea. 2000;19(1):108–9.CrossRef
20.
Zurück zum Zitat You IC, Ahn M, Yoon KW, Yoon KC. A case of Vibrio vulnificus keratitis. Jpn J Ophthalmol. 2008;52(2):131–3.CrossRef You IC, Ahn M, Yoon KW, Yoon KC. A case of Vibrio vulnificus keratitis. Jpn J Ophthalmol. 2008;52(2):131–3.CrossRef
Metadaten
Titel
Vibrio cholerae non-O1 - the first reported case of keratitis in a healthy patient
verfasst von
Wei-Dar Chen
Li-Ju Lai
Wei-Hsiu Hsu
Tsung-Yu Huang
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2019
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4475-4

Weitere Artikel der Ausgabe 1/2019

BMC Infectious Diseases 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.