Skip to main content
Erschienen in: Neurotoxicity Research 3/2017

01.10.2017 | ORIGINAL ARTICLE

Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment

verfasst von: R. Perez-Lobos, C. Lespay-Rebolledo, A. Tapia-Bustos, E. Palacios, V. Vío, D. Bustamante, P. Morales, M. Herrera-Marschitz

Erschienen in: Neurotoxicity Research | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

The hypothesis of enhanced vulnerability following perinatal asphyxia was investigated with a protocol combining in vivo and in vitro experiments. Asphyxia-exposed (AS) (by 21 min water immersion of foetuses containing uterine horns) and caesarean-delivered control (CS) rat neonates were used at P2-3 for preparing triple organotypic cultures (substantia nigra, neostriatum and neocortex). At DIV 18, cultures were exposed to different concentrations of H2O2 (0.25–45 mM), added to the culture medium for 18 h. After a 48-h recovery period, the cultures were either assessed for cell viability or for neurochemical phenotype by confocal microscopy. Energy metabolism (ADP/ATP ratio), oxidative stress (GSH/GSSG) and a modified ferric reducing/antioxidant power assay were applied to homogenates of parallel culture series. In CS cultures, the number of dying cells was similar in substantia nigra, neostriatum and neocortex, but it was several times increased in AS cultures evaluated under the same conditions. A H2O2 challenge led to a concentration-dependent increase in cell death (>fourfold after 0.25 mM of H2O2) in CS cultures. In AS cultures, a significant increase in cell death was only observed after 0.5 mM of H2O2. At higher than 1 mM of H2O2 (up to 45 mM), cell death increased several times in all cultures, but the effect was still more prominent in CS than in AS cultures. The cell phenotype of dying/alive cells was investigated in formalin-fixed cultures exposed to 0 or 1 mM of H2O2, co-labelling for TUNEL (apoptosis), MAP-2 (neuronal phenotype), GFAP (astroglial phenotype) and TH (tyrosine hydroxylase; for dopamine phenotype), counterstaining for DAPI (nuclear staining), also evaluating the effect of a single dose of nicotinamide (0.8 nmol/kg, i.p. injected in 100 μL, 60 min after delivery). Perinatal asphyxia produced a significant increase in the number of DAPI/TUNEL cells/mm3, in substantia nigra and neostriatum. One millimolar of H202 increased the number of DAPI/TUNEL cells/mm3 by ≈twofold in all regions of CS and AS cultures, an effect that was prevented by neonatal nicotinamide treatment. In substantia nigra, the number of MAP-2/TH-positive cells/mm3 was decreased in AS compared to CS cultures, also by 1 mM of H202, both in CS and AS cultures, prevented by nicotinamide. In agreement, the number of MAP-2/TUNEL-positive cells/mm3 was increased by 1 mM H2O2, both in CS (twofold) and AS (threefold) cultures, prevented by nicotinamide. The number of MAP-2/TH/TUNEL-positive cells/mm3 was only increased in CS (>threefold), but not in AS (1.3-fold) cultures. No TH labelling was observed in neostriatum, but 1 mM of H2O2 produced a strong increase in the number of MAP-2/TUNEL-positive cells/mm3, both in CS (>2.9-fold) and AS (>fourfold), decreased by nicotinamide. In neocortex, H2O2 increased the number of MAP-2/TUNEL-positive cells/mm3, both in CS and AS cultures (≈threefold), decreased by nicotinamide. The ADP/ATP ratio was increased in AS culture homogenates (>sixfold), compared to CS homogenates, increased by 1 mM of H202, both in CS and AS homogenates. The GSH/GSSG ratio was significantly decreased in AS, compared to CS cultures. One millimolar of H2O2 decreased that ratio in CS and AS homogenates. The present results demonstrate that perinatal asphyxia induces long-term changes in metabolic pathways related to energy and oxidative stress, priming cell vulnerability with both neuronal and glial phenotype. The observed effects were region dependent, being the substantia nigra particularly prone to cell death. Nicotinamide administration in vivo prevented the deleterious effects observed after perinatal asphyxia in vitro, a suitable pharmacological strategy against the deleterious consequences of perinatal asphyxia.
Literatur
Zurück zum Zitat Allende-Castro C, Espina-Marchant P, Bustamante D, Rojas-Mancilla E, Neira T, Gutierrez-Hernandez MA, Esmar D, Valdes JL, Morales P, Gebicke-Haerter PJ, Herrera-Marschitz M (2012) Further studies on the hypothesis of PARP-1 inhibition as strategy for lessening the long-term effects produced by perinatal asphyxia: effects of nicotinamide and theophylline on PARP-1 activity in brain and peripheral tissue. Neurotox Res 22:79–90CrossRefPubMed Allende-Castro C, Espina-Marchant P, Bustamante D, Rojas-Mancilla E, Neira T, Gutierrez-Hernandez MA, Esmar D, Valdes JL, Morales P, Gebicke-Haerter PJ, Herrera-Marschitz M (2012) Further studies on the hypothesis of PARP-1 inhibition as strategy for lessening the long-term effects produced by perinatal asphyxia: effects of nicotinamide and theophylline on PARP-1 activity in brain and peripheral tissue. Neurotox Res 22:79–90CrossRefPubMed
Zurück zum Zitat Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagni S, Di Renzo G, Annunziato L (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513CrossRefPubMed Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagni S, Di Renzo G, Annunziato L (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513CrossRefPubMed
Zurück zum Zitat Ara J, Fekete S, Frank M, Golden JA, Pleasure D, Valencia I (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol Dis 43:473–485CrossRefPubMed Ara J, Fekete S, Frank M, Golden JA, Pleasure D, Valencia I (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol Dis 43:473–485CrossRefPubMed
Zurück zum Zitat Aschbacher K, O’Donovan A, Wolkowitz OM, Dhabhar FS, Su Y, Epel E (2013) Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38:1698–1708CrossRefPubMedPubMedCentral Aschbacher K, O’Donovan A, Wolkowitz OM, Dhabhar FS, Su Y, Epel E (2013) Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38:1698–1708CrossRefPubMedPubMedCentral
Zurück zum Zitat Bai J-Z, Lipski J (2010) Diffrential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214CrossRefPubMed Bai J-Z, Lipski J (2010) Diffrential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214CrossRefPubMed
Zurück zum Zitat Bai P, Cantó C, Oudart H, Bruyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper R, Schoonjans K, Schreiber V, Sauve A, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468. Bai P, Cantó C, Oudart H, Bruyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper R, Schoonjans K, Schreiber V, Sauve A, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468.
Zurück zum Zitat Berger NA (1985) Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 1001:4–15CrossRef Berger NA (1985) Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 1001:4–15CrossRef
Zurück zum Zitat Boksa P, Krishnamurthy A, Brooks W (1995) Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatr Res 37:489–496CrossRefPubMed Boksa P, Krishnamurthy A, Brooks W (1995) Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatr Res 37:489–496CrossRefPubMed
Zurück zum Zitat Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad USA 1:97 (16):9082–9087. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad USA 1:97 (16):9082–9087.
Zurück zum Zitat Burke RE, Macaya A, DeVivo D, Kenyon N, Janec EM (1992) Neonatal hypoxic-ischemic or excitotoxic striatal injury results in a decreased adult number of substantia nigra neurons. Neuroscience 50:559–569CrossRefPubMed Burke RE, Macaya A, DeVivo D, Kenyon N, Janec EM (1992) Neonatal hypoxic-ischemic or excitotoxic striatal injury results in a decreased adult number of substantia nigra neurons. Neuroscience 50:559–569CrossRefPubMed
Zurück zum Zitat Carloni S, Carnevali A, Cimino M, Balduini W (2008) Extended role of necrotic cll death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. J Pineal Res 44:157–164CrossRefPubMed Carloni S, Carnevali A, Cimino M, Balduini W (2008) Extended role of necrotic cll death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. J Pineal Res 44:157–164CrossRefPubMed
Zurück zum Zitat Chang S, Jiang X, Zhao C, Ferriero DM (2008) Exogenous low dose hydrogen peroxide increases hypoxia-inducible factor-1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons. Neurosci Lett 441:134–138CrossRefPubMedPubMedCentral Chang S, Jiang X, Zhao C, Ferriero DM (2008) Exogenous low dose hydrogen peroxide increases hypoxia-inducible factor-1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons. Neurosci Lett 441:134–138CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen Y, Engidawork E, Loidl F, Dell’Anna E, Gony M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Short- and long-term effects of perinatal asphyxia on monoamine, amino acids and glycolysis product levels measured in the basal ganglia of the rat. Dev Brain Res 104:19–30CrossRef Chen Y, Engidawork E, Loidl F, Dell’Anna E, Gony M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Short- and long-term effects of perinatal asphyxia on monoamine, amino acids and glycolysis product levels measured in the basal ganglia of the rat. Dev Brain Res 104:19–30CrossRef
Zurück zum Zitat Chen L, Liu L, Yin J, Luo Y, Huang S (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2-A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 41:1284–1295CrossRefPubMed Chen L, Liu L, Yin J, Luo Y, Huang S (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2-A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 41:1284–1295CrossRefPubMed
Zurück zum Zitat Chong ZZ, Lin S-H, Maiese K (2004) The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cer Blood Flow Metab 24:728–743CrossRef Chong ZZ, Lin S-H, Maiese K (2004) The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cer Blood Flow Metab 24:728–743CrossRef
Zurück zum Zitat Crowley LC, Marfell BJ, Waterhouse NJ (2016) Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc; doi 10:1101 Crowley LC, Marfell BJ, Waterhouse NJ (2016) Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc; doi 10:1101
Zurück zum Zitat De Torres C, Munell F, Reventos J, Macaya A (1997) Identification of necrotic cell death by TUNEL assay in the hypoxic-ischemic neonatal brain. Neurosci Lett 230:1–4CrossRefPubMed De Torres C, Munell F, Reventos J, Macaya A (1997) Identification of necrotic cell death by TUNEL assay in the hypoxic-ischemic neonatal brain. Neurosci Lett 230:1–4CrossRefPubMed
Zurück zum Zitat Dell’Anna E, Chen Y, Loidl F, Andersson K, Luthman J, Goiny M, Rawal R, Lindgren T, Herrera-Marschitz M (1995) Short-term effects of perinatal asphyxia studied with Fos-immunocytochemistry and in vivo microdialysis in the rat. Exp Neurol 131:279–287CrossRefPubMed Dell’Anna E, Chen Y, Loidl F, Andersson K, Luthman J, Goiny M, Rawal R, Lindgren T, Herrera-Marschitz M (1995) Short-term effects of perinatal asphyxia studied with Fos-immunocytochemistry and in vivo microdialysis in the rat. Exp Neurol 131:279–287CrossRefPubMed
Zurück zum Zitat Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res 115:105–115CrossRefPubMed Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res 115:105–115CrossRefPubMed
Zurück zum Zitat Deng W (2010) Neurobiology of injury to the developing brain. Nat Dev Neurology 6:328–336CrossRef Deng W (2010) Neurobiology of injury to the developing brain. Nat Dev Neurology 6:328–336CrossRef
Zurück zum Zitat Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562PubMed Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562PubMed
Zurück zum Zitat Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induce toxicity. J Neurosci 17:9060–9067PubMed Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induce toxicity. J Neurosci 17:9060–9067PubMed
Zurück zum Zitat Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169:397–403. Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169:397–403.
Zurück zum Zitat Duchen MR, Leyssens A, Crompton M (1998) Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol 142:975–988CrossRefPubMedPubMedCentral Duchen MR, Leyssens A, Crompton M (1998) Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol 142:975–988CrossRefPubMedPubMedCentral
Zurück zum Zitat Edwards A, Mehmet H (2008) Apoptosis in perinatal hypoxic-ischaemic cerebral damage. Neuropathol Appl Neurobiol 22(6):494–498CrossRef Edwards A, Mehmet H (2008) Apoptosis in perinatal hypoxic-ischaemic cerebral damage. Neuropathol Appl Neurobiol 22(6):494–498CrossRef
Zurück zum Zitat Engidawork E, Chen Y, Dell’Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Effects of perinatal asphyxia on systemic and intracerebral glycolysis metabolism and pH in the rat. Exp Neurol 145:390–396CrossRefPubMed Engidawork E, Chen Y, Dell’Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Effects of perinatal asphyxia on systemic and intracerebral glycolysis metabolism and pH in the rat. Exp Neurol 145:390–396CrossRefPubMed
Zurück zum Zitat Ezquer ME, Valdez SR, Seltzer AM (2006) Inflammatory responses of the substantia nigra after acute hypoxia in neonatal rats. Exp Neurol 197:391–398CrossRefPubMed Ezquer ME, Valdez SR, Seltzer AM (2006) Inflammatory responses of the substantia nigra after acute hypoxia in neonatal rats. Exp Neurol 197:391–398CrossRefPubMed
Zurück zum Zitat Feeney CJ, Frantseva MV, Carlen PL, Pennefather PS, Shulyakova N, Shniffr C, Mills LR (2008) Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 1198:1–15CrossRefPubMed Feeney CJ, Frantseva MV, Carlen PL, Pennefather PS, Shulyakova N, Shniffr C, Mills LR (2008) Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 1198:1–15CrossRefPubMed
Zurück zum Zitat Ferriero DM (2001) Oxidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci 23:198–202CrossRefPubMed Ferriero DM (2001) Oxidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci 23:198–202CrossRefPubMed
Zurück zum Zitat Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefPubMed Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefPubMed
Zurück zum Zitat Gidday JM (2006) Cerebral preconditioning and ischemic tolerance. Nature Rev 7:437CrossRef Gidday JM (2006) Cerebral preconditioning and ischemic tolerance. Nature Rev 7:437CrossRef
Zurück zum Zitat Gilland E, Puka-Sundvall M, Hillered L, Hagberg H (1998) Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cer Blood Flow Metab 18:297–304CrossRef Gilland E, Puka-Sundvall M, Hillered L, Hagberg H (1998) Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cer Blood Flow Metab 18:297–304CrossRef
Zurück zum Zitat Gomez-Urquijo SM, Hokfelt T, Ubink R, Lubec G, Herrera-Marschitz M (1999) Neurocircuitries of the basal ganglia studied in organotypic cultures: focus on tyrosine hydroxylase, nitric oxide synthase and neuropeptide immunocytochemistry. Neuroscience 94:1133–1151CrossRefPubMed Gomez-Urquijo SM, Hokfelt T, Ubink R, Lubec G, Herrera-Marschitz M (1999) Neurocircuitries of the basal ganglia studied in organotypic cultures: focus on tyrosine hydroxylase, nitric oxide synthase and neuropeptide immunocytochemistry. Neuroscience 94:1133–1151CrossRefPubMed
Zurück zum Zitat Gonzalez-Flores A, Aguilar-Quesada R, Siles E, Pozo S, Rodriguez-Lara MI, Lopez-Jimenez L, Lopez-Rodriguez M, Peralta-Leal A, Villar D, Martin-Oliva D, del Peso L, Berra E, Oliver FJ (2014) Interaction between PARP-1 and HIF-2alpha in the hypoxic response. Oncogene 33:891–898CrossRefPubMed Gonzalez-Flores A, Aguilar-Quesada R, Siles E, Pozo S, Rodriguez-Lara MI, Lopez-Jimenez L, Lopez-Rodriguez M, Peralta-Leal A, Villar D, Martin-Oliva D, del Peso L, Berra E, Oliver FJ (2014) Interaction between PARP-1 and HIF-2alpha in the hypoxic response. Oncogene 33:891–898CrossRefPubMed
Zurück zum Zitat Griffiths EJ, Halestrap AP (1993) Protection by cyclosporine A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469CrossRefPubMed Griffiths EJ, Halestrap AP (1993) Protection by cyclosporine A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469CrossRefPubMed
Zurück zum Zitat Herrera-Marschitz M, Ungerstedt U (1984) Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D3 receptor sites. Eur J Pharmacol 98:165–176CrossRefPubMed Herrera-Marschitz M, Ungerstedt U (1984) Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D3 receptor sites. Eur J Pharmacol 98:165–176CrossRefPubMed
Zurück zum Zitat Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ (2011) Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 19:603–627CrossRefPubMed Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ (2011) Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 19:603–627CrossRefPubMed
Zurück zum Zitat Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Munoz V, Gutierrez-Hernandez MA, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ (2014) Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 8:1–1CrossRef Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Munoz V, Gutierrez-Hernandez MA, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ (2014) Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 8:1–1CrossRef
Zurück zum Zitat Hoeger H, Engelmann M, Bernet G, Seidl R, Bubna-Littitz H, Mosgoeller W, Lubec B, Lubec G (2000) Long term neurological and behavioral effects of graded perinatal asphyxia in the rat. Life Sci 66:947–962CrossRefPubMed Hoeger H, Engelmann M, Bernet G, Seidl R, Bubna-Littitz H, Mosgoeller W, Lubec B, Lubec G (2000) Long term neurological and behavioral effects of graded perinatal asphyxia in the rat. Life Sci 66:947–962CrossRefPubMed
Zurück zum Zitat Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signalling. TIPS 25:259–264PubMed Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signalling. TIPS 25:259–264PubMed
Zurück zum Zitat Hwang J-J, Choi S-Y, Koh J-Y (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902CrossRefPubMed Hwang J-J, Choi S-Y, Koh J-Y (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902CrossRefPubMed
Zurück zum Zitat Ikeda T, Mishima K, Yoshikawa T, Iwasaki K, Fuijiwara M, Xia YX, Ikenoue T (2001) Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res 118:17–25CrossRefPubMed Ikeda T, Mishima K, Yoshikawa T, Iwasaki K, Fuijiwara M, Xia YX, Ikenoue T (2001) Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res 118:17–25CrossRefPubMed
Zurück zum Zitat Jendrach M, Mai S, Pohl S, Voeth M, Bereiter-Hahn J (2008) Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mithochondrion 8:293–304CrossRef Jendrach M, Mai S, Pohl S, Voeth M, Bereiter-Hahn J (2008) Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mithochondrion 8:293–304CrossRef
Zurück zum Zitat Jiang X, Mu D, Manabat C, Koshy AA, Christen S, Tauber MG, Vexler ZS, Ferreiro DM (2004) Different vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol 190:224–232 Jiang X, Mu D, Manabat C, Koshy AA, Christen S, Tauber MG, Vexler ZS, Ferreiro DM (2004) Different vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol 190:224–232
Zurück zum Zitat Johnston M, Hoon A (2000) Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J Child Neurol 15(9):588–591CrossRefPubMed Johnston M, Hoon A (2000) Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J Child Neurol 15(9):588–591CrossRefPubMed
Zurück zum Zitat Kauppinen TM, Swanson RA (2007) The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neurosci 147:1267–1272CrossRef Kauppinen TM, Swanson RA (2007) The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neurosci 147:1267–1272CrossRef
Zurück zum Zitat Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, Wang C, Cho SH, Gan L, Swanson RA (2011) Poly(ADP-ribose)polymerase-1 modulates microglial esponses to amyloid B. J Neuroinflammation 8:152CrossRefPubMedPubMedCentral Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, Wang C, Cho SH, Gan L, Swanson RA (2011) Poly(ADP-ribose)polymerase-1 modulates microglial esponses to amyloid B. J Neuroinflammation 8:152CrossRefPubMedPubMedCentral
Zurück zum Zitat Klawitter V, Morales P, Johansson S, Bustamante D, Goiny M, Gross J, Luthman J, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple cultures. Amino Acids 28:149–155CrossRefPubMed Klawitter V, Morales P, Johansson S, Bustamante D, Goiny M, Gross J, Luthman J, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple cultures. Amino Acids 28:149–155CrossRefPubMed
Zurück zum Zitat Klawitter V, Morales P, Bustamante D, Gomez-Urquijo S, Hökfelt T, Herrera-Marschitz M (2007) Neuronal plasticity of basal ganglia following perinatal asphyxia: neuroprotection by nicotinamide. Exp Brain Res 180:139–152CrossRefPubMed Klawitter V, Morales P, Bustamante D, Gomez-Urquijo S, Hökfelt T, Herrera-Marschitz M (2007) Neuronal plasticity of basal ganglia following perinatal asphyxia: neuroprotection by nicotinamide. Exp Brain Res 180:139–152CrossRefPubMed
Zurück zum Zitat Krasnikov BF, Kuzminova AE, Zorov DB (1997) The Ca2+-induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Lett 419:137–140CrossRefPubMed Krasnikov BF, Kuzminova AE, Zorov DB (1997) The Ca2+-induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Lett 419:137–140CrossRefPubMed
Zurück zum Zitat Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Bramilla E, Negoescu A (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem 46:327–334CrossRefPubMed Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Bramilla E, Negoescu A (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem 46:327–334CrossRefPubMed
Zurück zum Zitat Low JA (2004) Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynaecol Res 30:276–286CrossRefPubMed Low JA (2004) Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynaecol Res 30:276–286CrossRefPubMed
Zurück zum Zitat Luo X, Kraus WL (2011) On PAR with PARP: cellular stress signaling through poly (ADP-ribose) and PARP-1. Genes Dev 26:417–432CrossRef Luo X, Kraus WL (2011) On PAR with PARP: cellular stress signaling through poly (ADP-ribose) and PARP-1. Genes Dev 26:417–432CrossRef
Zurück zum Zitat Martin-Oliva D, Aguilar R, Ovalle F, Muñoz J, Martinez R, García del Moral R, Ruiz J, Villuendas R, Piris M, Oliver F (2006) Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia inducible factor-1 activation during skin carcinogenesis. Cancer Res 66(11):5744–5766CrossRefPubMed Martin-Oliva D, Aguilar R, Ovalle F, Muñoz J, Martinez R, García del Moral R, Ruiz J, Villuendas R, Piris M, Oliver F (2006) Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia inducible factor-1 activation during skin carcinogenesis. Cancer Res 66(11):5744–5766CrossRefPubMed
Zurück zum Zitat Mattson M (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32(4–5):707–715CrossRefPubMed Mattson M (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32(4–5):707–715CrossRefPubMed
Zurück zum Zitat Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10CrossRefPubMed Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10CrossRefPubMed
Zurück zum Zitat McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxi-ischemia. J Neurosci 23:3308–3315PubMed McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxi-ischemia. J Neurosci 23:3308–3315PubMed
Zurück zum Zitat Mischel RE, Kim YS, Sheldon RA, Ferriro DM (1997) Hydrogen peroxide is selectively toxic to immature murine neurons in vitro. Neurosci Lett 231:17–20CrossRefPubMed Mischel RE, Kim YS, Sheldon RA, Ferriro DM (1997) Hydrogen peroxide is selectively toxic to immature murine neurons in vitro. Neurosci Lett 231:17–20CrossRefPubMed
Zurück zum Zitat Moncada S, Bolaños J (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689CrossRefPubMed Moncada S, Bolaños J (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689CrossRefPubMed
Zurück zum Zitat Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135:421–431CrossRefPubMed Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135:421–431CrossRefPubMed
Zurück zum Zitat Morales P, Fiedler JL, Andres S, Berrios C, Huaiquin P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86:2650–2662CrossRefPubMed Morales P, Fiedler JL, Andres S, Berrios C, Huaiquin P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86:2650–2662CrossRefPubMed
Zurück zum Zitat Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter P, Morelli M, Tasker RA, Herrera-Marschitz M (2010) Nicotinamide prevents the effect of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202:1–14CrossRefPubMed Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter P, Morelli M, Tasker RA, Herrera-Marschitz M (2010) Nicotinamide prevents the effect of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202:1–14CrossRefPubMed
Zurück zum Zitat Mukherjee SK, Klidman LK, Yasharel R, Adams JD Jr (1997) Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 330:27–34CrossRefPubMed Mukherjee SK, Klidman LK, Yasharel R, Adams JD Jr (1997) Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 330:27–34CrossRefPubMed
Zurück zum Zitat Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. TINS 26(10):523–530PubMed Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. TINS 26(10):523–530PubMed
Zurück zum Zitat Neira-Peña T, Rojas-Mancilla E, Munoz-Vio V, Perez R, Gutierrez-Hernandez M, Bustamante D, Morales P, Hermoso MA, Gebicke-Haerter P, Herrera-Marschitz M (2015) Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res 27(4):453–465CrossRefPubMedPubMedCentral Neira-Peña T, Rojas-Mancilla E, Munoz-Vio V, Perez R, Gutierrez-Hernandez M, Bustamante D, Morales P, Hermoso MA, Gebicke-Haerter P, Herrera-Marschitz M (2015) Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res 27(4):453–465CrossRefPubMedPubMedCentral
Zurück zum Zitat Northington FJ, Graham EM, Martin LJ (2005) Apotosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Rev 50:244–257CrossRefPubMed Northington FJ, Graham EM, Martin LJ (2005) Apotosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Rev 50:244–257CrossRefPubMed
Zurück zum Zitat Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19CrossRefPubMed Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19CrossRefPubMed
Zurück zum Zitat Østergaard K, Zimmer F (1995) Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Exp Brain Res 103(1):70–84CrossRefPubMed Østergaard K, Zimmer F (1995) Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Exp Brain Res 103(1):70–84CrossRefPubMed
Zurück zum Zitat Palmer C, Brucklacher RM, Christensen MA, Vannucci RC (1990) Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 10:227–235CrossRefPubMed Palmer C, Brucklacher RM, Christensen MA, Vannucci RC (1990) Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 10:227–235CrossRefPubMed
Zurück zum Zitat Pérez-Pinzón MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M, Sick TJ (1999) Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. Journal of cerebral blood flow metabolism 19(1):39–43CrossRefPubMed Pérez-Pinzón MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M, Sick TJ (1999) Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. Journal of cerebral blood flow metabolism 19(1):39–43CrossRefPubMed
Zurück zum Zitat Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPribose plymerase-1 gene disruption. Mol Med 6:271–282 Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPribose plymerase-1 gene disruption. Mol Med 6:271–282
Zurück zum Zitat Plenz D, Kitai ST (1996a) Organotypic cortex-striatum-mesencephalon cultures: the nigro-striatal pathway. Neurosci Lett 209:177–180 Plenz D, Kitai ST (1996a) Organotypic cortex-striatum-mesencephalon cultures: the nigro-striatal pathway. Neurosci Lett 209:177–180
Zurück zum Zitat Plenz D, Kitai ST (1996b) Generation of high frequency oscillations in cortical circuits of somatosensory cortex cultures. J Neurophysiol 76:4001–4005 Plenz D, Kitai ST (1996b) Generation of high frequency oscillations in cortical circuits of somatosensory cortex cultures. J Neurophysiol 76:4001–4005
Zurück zum Zitat Plenz D, Herrera-Marschitz M, Kitai ST (1998) Morphological organization of the globus pallidussubthalamic nucleus system studied in organotypic cultures. J Comp Neurol 397:437–457 Plenz D, Herrera-Marschitz M, Kitai ST (1998) Morphological organization of the globus pallidussubthalamic nucleus system studied in organotypic cultures. J Comp Neurol 397:437–457
Zurück zum Zitat Rehncrona S, Folbergrova J, Smith D, Siesgo B (1980) Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J Neurochem 34(3):477–486CrossRefPubMed Rehncrona S, Folbergrova J, Smith D, Siesgo B (1980) Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J Neurochem 34(3):477–486CrossRefPubMed
Zurück zum Zitat Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee SY, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31(1–3):105–116CrossRefPubMed Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee SY, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31(1–3):105–116CrossRefPubMed
Zurück zum Zitat Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane CH (1986) Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. PNAS USA 83:4908–4912CrossRefPubMedPubMedCentral Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane CH (1986) Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. PNAS USA 83:4908–4912CrossRefPubMedPubMedCentral
Zurück zum Zitat Sies H (2017) Hydrogen peroxide as a central redox signalling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619CrossRefPubMedPubMedCentral Sies H (2017) Hydrogen peroxide as a central redox signalling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619CrossRefPubMedPubMedCentral
Zurück zum Zitat Skulachev VP (1996) Role of uncoupled and non-coupled oxidation in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202CrossRefPubMed Skulachev VP (1996) Role of uncoupled and non-coupled oxidation in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202CrossRefPubMed
Zurück zum Zitat Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clarck RSB (2011) Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 43:52–59CrossRefPubMed Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clarck RSB (2011) Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 43:52–59CrossRefPubMed
Zurück zum Zitat Sowter HM, Ratcliffe PJ, Watson P, Greenberg HH, Harris AL (2001) HIF-dependent regulation of hypoxic induction of cell death factors BNIP3 and NIX in human tumors. Cancee Res 61:6669–6673 Sowter HM, Ratcliffe PJ, Watson P, Greenberg HH, Harris AL (2001) HIF-dependent regulation of hypoxic induction of cell death factors BNIP3 and NIX in human tumors. Cancee Res 61:6669–6673
Zurück zum Zitat Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiol Scand Suppl 367:1–48CrossRefPubMed Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiol Scand Suppl 367:1–48CrossRefPubMed
Zurück zum Zitat Van de Berg WD, Schmitz C, Steinbusch HWM, Blanco CE (2002) Perinatal asphyxia induced neuronal loss by apotosis in the neonatal rat striatum: a combined TUNEL and stereological study. Exp Neurol 174:29–36CrossRefPubMed Van de Berg WD, Schmitz C, Steinbusch HWM, Blanco CE (2002) Perinatal asphyxia induced neuronal loss by apotosis in the neonatal rat striatum: a combined TUNEL and stereological study. Exp Neurol 174:29–36CrossRefPubMed
Zurück zum Zitat Vangeison G, Carr D, Federoff H, Rempe D (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci 28(8):1988–1993CrossRefPubMed Vangeison G, Carr D, Federoff H, Rempe D (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci 28(8):1988–1993CrossRefPubMed
Zurück zum Zitat Vannucci RC, Towfighi J, Vannucci SJ (1998) Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem 71:1215–1220CrossRefPubMed Vannucci RC, Towfighi J, Vannucci SJ (1998) Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem 71:1215–1220CrossRefPubMed
Zurück zum Zitat Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M (2000) Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. Dev Brain Res 125:51–60CrossRef Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M (2000) Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. Dev Brain Res 125:51–60CrossRef
Zurück zum Zitat Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2(12):1–13 Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2(12):1–13
Zurück zum Zitat Weis SN, Toniazzo AP, Ander BP, Zhan X, Caraga M, Ashwood P, Wyse ATS, Netto CA, Sharp FR (2014) Autophagy in the brain of neonates following hypoxia-ischemia shows sex- and region-specific effects. Neurosci 256:201–209CrossRef Weis SN, Toniazzo AP, Ander BP, Zhan X, Caraga M, Ashwood P, Wyse ATS, Netto CA, Sharp FR (2014) Autophagy in the brain of neonates following hypoxia-ischemia shows sex- and region-specific effects. Neurosci 256:201–209CrossRef
Zurück zum Zitat Whittemore ER, Loo D, Cotman C, Carl W (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5(12):1485–1488CrossRefPubMed Whittemore ER, Loo D, Cotman C, Carl W (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5(12):1485–1488CrossRefPubMed
Zurück zum Zitat Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932CrossRefPubMed Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932CrossRefPubMed
Zurück zum Zitat Wold S, Sjostrom M, Carlson R, Lundstedt T, Hellberg S, Skagerberg B, Wikstrom C, Ohman J (1986) Multivariate design. Analytica Chim Acta 191:17–32CrossRef Wold S, Sjostrom M, Carlson R, Lundstedt T, Hellberg S, Skagerberg B, Wikstrom C, Ohman J (1986) Multivariate design. Analytica Chim Acta 191:17–32CrossRef
Zurück zum Zitat Xu L, Voloboueva LA, Ouyang Y, Emery J, Giffard R (2009) Overexpression of mitochondrial HSP70/HSP75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab 29:365–374CrossRefPubMed Xu L, Voloboueva LA, Ouyang Y, Emery J, Giffard R (2009) Overexpression of mitochondrial HSP70/HSP75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab 29:365–374CrossRefPubMed
Zurück zum Zitat Yang J, Klaidman LK, Nalbandian A, Oliver J, Chang ML, Chan PH, Adams Jr JD (2002) The effect of nicotinamide on enrgy metabolism following transient focal cerebral ischemia in Wistar rats. Neurosci Lett 333:91–94 Yang J, Klaidman LK, Nalbandian A, Oliver J, Chang ML, Chan PH, Adams Jr JD (2002) The effect of nicotinamide on enrgy metabolism following transient focal cerebral ischemia in Wistar rats. Neurosci Lett 333:91–94
Zurück zum Zitat Yin W, Signore AP, Iwai N, Cao G, Gao Y, Chen J (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39:3057–3063CrossRefPubMedPubMedCentral Yin W, Signore AP, Iwai N, Cao G, Gao Y, Chen J (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39:3057–3063CrossRefPubMedPubMedCentral
Zurück zum Zitat Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt JS, Reynolds EOR, Edwards AD, Squie MV (1997) Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropath Appl Neurobiol 23:16–25CrossRef Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt JS, Reynolds EOR, Edwards AD, Squie MV (1997) Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropath Appl Neurobiol 23:16–25CrossRef
Metadaten
Titel
Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment
verfasst von
R. Perez-Lobos
C. Lespay-Rebolledo
A. Tapia-Bustos
E. Palacios
V. Vío
D. Bustamante
P. Morales
M. Herrera-Marschitz
Publikationsdatum
01.10.2017
Verlag
Springer US
Erschienen in
Neurotoxicity Research / Ausgabe 3/2017
Print ISSN: 1029-8428
Elektronische ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-017-9755-4

Weitere Artikel der Ausgabe 3/2017

Neurotoxicity Research 3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.