Skip to main content
Erschienen in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01.12.2019 | Review

What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review

verfasst von: Nina Rohrbach, Emily Chicklis, Danielle Elaine Levac

Erschienen in: Journal of NeuroEngineering and Rehabilitation | Ausgabe 1/2019

Abstract

Purpose

The purported affective impact of virtual reality (VR) and active video gaming (AVG) systems is a key marketing strategy underlying their use in stroke rehabilitation, yet little is known as to how affective constructs are measured or linked to intervention outcomes. The purpose of this scoping review is to 1) explore how motivation, enjoyment, engagement, immersion and presence are measured or described in VR/AVG interventions for patients with stroke; 2) identify directional relationships between these constructs; and 3) evaluate their impact on motor learning outcomes.

Methods

A literature search was undertaken of VR/AVG interventional studies for adults post-stroke published in Medline, PEDro and CINAHL databases between 2007 and 2017. Following screening, reviewers used an iterative charting framework to extract data about construct measurement and description. A numerical and thematic analytical approach adhered to established scoping review guidelines.

Results

One hundred fifty-five studies were included in the review. Although the majority (89%; N = 138) of studies described at least one of the five constructs within their text, construct measurement took place in only 32% (N = 50) of studies. The most frequently described construct was motivation (79%, N = 123) while the most frequently measured construct was enjoyment (27%, N = 42). A summative content analysis of the 50 studies in which a construct was measured revealed that constructs were described either as a rationale for the use of VR/AVGs in rehabilitation (76%, N = 38) or as an explanation for intervention results (56%, N = 29). 38 (76%) of the studies proposed relational links between two or more constructs and/or between any construct and motor learning. No study used statistical analyses to examine these links.

Conclusions

Results indicate a clear discrepancy between the theoretical importance of affective constructs within VR/AVG interventions and actual construct measurement. Standardized terminology and outcome measures are required to better understand how enjoyment, engagement, motivation, immersion and presence contribute individually or in interaction to VR/AVG intervention effectiveness.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12984-019-0546-4) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AVG
Active Video Game
BDI
Beck Depression Inventory
IMI
Intrinsic Motivation Inventory
ITQ
Immersive Tendencies Questionnaire
OSF
Open Science Framework
PACES
Physical ACtivity Enjoyment Scale
PICO
Population-Intervention-Comparison-Outcome
PQ
Presence Questionnaire
PRISMA
Preferred Reporting Items for Systematic reviews and Meta-Analyses
RCT
Randomized Controlled Trial
RQ
Research Question
ScR
Scoping Review
SFQ
Short Feedback Questionnaire
UES
User Engagement Scale
VAS
Visual Analogue Scale
VR
Virtual Reality

Introduction

An increasing evidence base supports the use of virtual reality (VR) and active video gaming (AVG) systems to promote motor learning in stroke rehabilitation [14]. However, practical and logistical barriers to VR/AVG implementation in clinical sites have been well described [57]. To support their use, researchers and developers often emphasize the potential advantages of VR/AVG systems over conventional interventions, including that these technologies may enhance a patient’s affective experience in therapy for the purpose of facilitating recovery [811]. Examining the role of affective factors for motor learning is an emerging area of emphasis in rehabilitation [2, 1215].
VR/AVG use may enhance patients’ motivation to participate in rehabilitation as well as their engagement in therapeutic tasks. Motivation encourages action toward a goal by eliciting and/or sustaining goal-directed behavior [16]. Motivation can be intrinsic (derived from personal curiosity, importance or relevance of the goal) or extrinsic (elicited via external reward) [17]. Engagement is a cognitive and affective quality or experience of a user during an activity [16]. Many characteristics of VR/AVG play can contribute to user motivation and engagement, such as novelty, salient audiovisual graphics, interactivity, feedback, socialization, optimal challenge [14], extrinsic rewards, intrinsic curiosity or desire to improve in the game, goal-oriented tasks, and meaningful play [18].
Motivation and engagement are hypothesized to support motor learning either indirectly, through increased practice dosage leading to increased repetitive practice, or directly, via enhanced dopaminergic mechanisms influencing motor learning processes [15, 16]. Yet evidence is required to support these claims. A logical first step is to understand how these constructs are being measured within VR/AVG intervention studies. Several studies have used practice dosage or intensity as an indicator of motivation or engagement [1921]. To the authors’ knowledge, few have specifically evaluated the indirect mechanistic pathway by correlating measurement of patient motivation or engagement in VR/AVGs with practice dosage or intensity. While participants in VR/AVG studies report higher motivation as compared to conventional interventions [2224], conclusions regarding the relationship between motivation and intervention outcomes are limited by lack of consistency and rigour in measurement, including the use of instruments with poor psychometric properties [22, 23].
The body of research exploring the direct effects of engagement or motivation on motor learning is still in its infancy. Lohse et al. [16] were the first to evaluate whether a more audiovisually enriched as compared to more sterile version of a novel AVG task contributed to skill acquisition and retention in typically developing young adults, finding that participants who played under the enriching condition had greater generalized learning and complex skill retention. Self-reported engagement (User Engagement Scale; UES) was higher in the enriched group, but the only difference in self-reported motivation was in the Effort subscale of the Intrinsic Motivation Inventory (IMI), where the enriched group reported less effort as compared to the sterile group. The authors did not find a significant correlation between engagement, motivation and retention scores. A follow-up study using electroencephalography did not replicate the finding that the more enriched practice condition enhanced learning, it did show that more engaged learners had increased information processing, as measured by reduced attentional reserve [25].
Enjoyment, defined as ‘the state or process of taking pleasure in something’ [26], has less frequently been the subject of study in motor learning research, but has become popular as a way of describing patient interaction with VR/AVGs. Enjoyment may be hypothesized to be a precursor to both motivation and engagement. Given that the prevailing marketing of VR/AVGs is that they are ‘fun’ and ‘enjoyable’ [1, 3, 14, 27], it is important to evaluate its measurement in the context of other constructs.
Motivation, engagement and enjoyment in VR/AVGs may be influenced by the additional constructs of immersion and presence. Immersion is defined as “the extent to which the VR system succeeds in delivering an environment which refocuses a user’s sensations from the real world to a virtual world” [13, 28]. Immersion is considered as an objective construct referring to how the computational properties of the technology can deliver an illusion of reality through hardware, software, viewing displays and tracking capabilities [29, 30]. A recent systematic review [13] could not conclusively state effect of immersion on user performance. Immersion is distinct from presence, defined as the “psychological product of technological immersion” [31]. Presence is influenced by many factors, including the characteristics of the user, the VR/AVG task, and the VR/AVG system [28]. While presence is thought to be related to enhanced motivation and performance [32], relationships between this and other constructs of interest require exploration. Table 1 outlines definitions of constructs of interest to this scoping review.
Table 1
Construct definitions
Construct
Definition
Reference
Motivation
Motivation encourages action toward a goal by eliciting and/or sustaining goal-directed behavior.
[16]
Engagement
Engagement is a cognitive and affective quality or experience of a user during an activity.
[16]
Enjoyment
The state or process of taking pleasure in something.
[26]
Immersion
The extent to which the VR system succeeds in delivering an environment which refocuses a user’s sensations from the real world to a virtual world.
[13, 28]
Presence
The psychological product of technological immersion.
[31]
The purpose of this scoping review is to explore the impact of these affective constructs on motor learning after stroke. This greater understanding will enhance the clinical rationale for VR/AVG use and inform directions for subsequent research. Specifically, our objectives were to:
1.
Describe how VR/AVG studies measure or report client enjoyment, motivation, engagement, immersion and presence.
 
2.
Evaluate the extent to which motivation, enjoyment, engagement, immersion, and presence impact motor learning.
 
3.
Propose directional relationships between enjoyment, motivation, engagement, immersion, presence and motor learning.
 

Methods

Scoping reviews synthesize knowledge about an exploratory research question to map a field of literature [33]. They are useful methodologies to address questions beyond effectiveness and to describe how a particular subject has been conceptualized or studied [33]. The study is structured according the original methodological framework for conducting scoping reviews [34] and the updated recommendations proposed by Levac et al. [35]. The updated methodological framework consists of six stages: stage 1) Identifying the research question; Stage 2) Searching for relevant studies; 3) Selecting studies; 4) Charting the data; 5) Collating, summarizing, and reporting the results, and 6) Consulting with stakeholders to inform or validate study findings. The consultation stage is optional and was omitted here. The review follows the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) reporting guidelines [36].

Protocol and registration

The protocol was registered with the Open Science Framework on 8 November 2017 (OSF, http://osf.​io/​3x6y5) after the development of the search strategy and before data extraction and analysis.

Stage 1. Identifying the research questions

Our research questions (RQ) were as follows:
  • RQ1: How have studies of VR/AVGs in stroke rehabilitation measured or described motivation, enjoyment, engagement, immersion or presence?
  • RQ2: What is known as to the extent to which motivation, enjoyment, engagement, immersion and presence impact training outcomes?
  • RQ3: What are the proposed relationships between motivation, enjoyment, engagement, immersion, presence and motor learning?

Stage 2. Identifying relevant studies

Information sources
CINAHL Complete, MEDLINE, and PEDro were searched for articles published from 2007 up to November 2017. This timeline was chosen on the basis of the rapid development in the field following the release of the active video gaming system Nintendo Wii/WiiFit in 2007. The specific search strategy was created by one author (NR) and peer reviewed by another author (DL) with expertise in conducting scoping reviews. A combination of medical sub-headings (MeSH) and key words on “stroke” and “virtual reality”, were adapted as needed for each database and combined using boolean operators.
Search
The MEDLINE search strategy is exemplarily presented in Additional file 1: Table S1 (Date of last search: Friday, October 13, 2017 4:16:49 PM).

Stage 3. Study selection

Eligibility criteria
The Population-Intervention-Comparison-Outcome (PICO) approach was applied to systematically define our eligibility criteria. Inclusion criteria were studies of any design published in the last 10 years in English or German describing rehabilitation interventions using virtual reality (VR) and/or active video games (AVG) including both commercially available systems (i.e. Nintendo Wii console, Sony PlayStation or Xbox Kinect consoles) and custom designed games for stroke rehabilitation (including interfaces such as handheld controllers, gloves, treadmill, etc.) for motor skill improvement in adult patients with stroke. We did not specifically search for studies measuring any of the five constructs. We included studies with any type of control as long as data provided for stroke population were reported separately. Exclusion criteria were robot-based interventions and robot-assisted training (exoskeletons, fixed manipulandum), functional electrical stimulation/ transcranial current stimulation; brain computer interface, electromyography-controlled interventions; outcomes other than motor-based (i.e. energy expenditure, metabolism, cognitive, memory, communication, neglect), and usability/reliability studies, reviews or meta-analyses. Robotic devices, even those that include VR simulations, were excluded due to the additional potential influences on our constructs of interest resulting from the physically assistive nature of these devices.

Selection of sources of evidence

Prior to the formal screening process, a calibration exercise with two reviewers (JZ, NR) on a subset of articles (n = 10) was undertaken to pilot the screening questions and eligibility criteria. Based on that calibration exercise, the first selection was made by title and abstract screening of each study by one reviewer (NR). Studies that did not meet the eligibility criteria on the basis of the content of their abstracts were excluded. If required, the full-text versions were obtained to determine whether the studies met our eligibility criteria. In case of uncertainty, another reviewer (DL) blind to the first reviewers’ comments reviewed the study. Any disagreements concerning the inclusion/exclusion were collaboratively discussed until the authors met consensus. Figure 1 outlines the study selection process [37].

Stage 4. Charting the data

Data charting process
Data from the identified studies were extracted using a charting framework developed a priori by the authors. The charting framework was pilot-tested with a random sample of five articles to check agreement among reviewers. As a result of this process, charting rules were developed to guide a group of five reviewers, including the original two (NR, DL, KP, JZ, MS), who independently charted data from each eligible article. The construct ‘enjoyment’ was added following data extraction from the first 50 papers, as reviewers noted that it was a frequently mentioned construct and should be included in the review; these papers were re-reviewed. The full process required frequent review and discussion within the core research team (NR, EC, and DL) to resolve any uncertainties, and ensure that data extraction was in line with the research questions. All charted data from each reviewer was reviewed by one of the authors (NR). EndNote X8 was used as a reference management software and to avoid multiple reports of the same study. Microsoft Excel was used to manage data within the review team.
Data items
The main data extracted were 1) study characteristics (journal name, year of publication, study design, type of VR/AVG technology, study sample, duration of intervention); 2) text in which the author mentioned or described each of the five constructs (motivation, enjoyment [also described as ‘fun’], engagement, immersion, presence); 3) nature of measurement of any of the five constructs (inferential or qualitative), and 4) text related to the authors’ proposed relationships between the constructs.
Characteristics and critical appraisal of individual sources of evidence
We did not appraise the methodological quality or risk of bias of the included studies, which is consistent with guidance on scoping review conduct [36].

Stage 5. Collating and summarizing the results

Synthesis of results
Numerical analysis (counts, frequencies, proportions) was used to map the studies included in the review in terms of study design, type of VR/AVG system and viewing medium, intervention focus (upper vs lower extremities vs postural control), frequency of mention of constructs, and frequency of measurement of constructs. In a first step, we screened the articles for the constructs of interest (if, and where, the construct was mentioned). In a second step, the studies that mentioned one or more constructs were checked to clarify whether and how the authors measured these constructs (Additional file 2). If measurement was undertaken, the article was included for further analysis (Additional file 3). A numerical summary was used to describe the frequency and type of inferential statistics per construct, and the results of the statistical analyses were summarized. Summative content analysis [38] of the authors’ construct description within the text was undertaken for the subset of studies in which a construct was measured. The goal of summative content analysis is to understand and identify how words are used in context (in this case, we were interested in the specific labels of each of our 5 constructs) [38]. In addition to counting frequencies of use, this approach interprets how words are used and how they relate to each other. Summative content analysis was also used to identify how authors’ described relationships between motivation, engagement, enjoyment, immersion, presence and motor learning in their texts. This analysis resulted in frequency counts of each relationship, which we illustrated in a Fig. 2.

Results

Selection of sources of evidence

Figure 1 outlines the study selection process.

Overview of the included studies

The articles included in this review employed a range of methodologies: 45.2% were Randomized Controlled Trials (RCTs, n = 70), 18.7% were pilot-studies (n = 29), 9.7% were pilot-RCTs (n = 15), 10.3% used a pre-post design (n = 16), 5.8% were case reports/series (n = 9), and 10.4% (n = 16) applied other designs such as mixed-methods, interviews, non-randomized controlled or crossover trials, overviews of work, case control or descriptive observational studies. Table 2 illustrates that most studies (47%, n = 73) involved customized, rehabilitation-specific devices in which tracking/interaction took place indirectly via a controller (e.g., the YouGrabber system) or directly via motion capture (e.g., using the Microsoft Kinect sensor) and visual display of the virtual environment was on a 2D flat-screen monitor, while only 5 % of studies (n = 8) investigated any type of stereoscopic glasses or head mounted display. Most (66.45%) of included studies (n = 103) focused on upper extremity impairments after stroke while 29.67% (n = 46) focused on lower extremities/balance and 3.8% focused on both (n = 6). Additional File 2 provides a complete list of the 155 studies included in the review.
Table 2
VR classification
 
Markerless/Motion Capture
Controller/Peripheral
Non-customized
Customized
Non-customized
Customized
Head mounted display
0
3
0
5
Screen/projection
13
35
37
73
Stereoscopic 3D glasses
0
0
0
3

RQ1: How have studies of VR/AVGs in stroke rehabilitation described or measured motivation, engagement, enjoyment, presence or immersion?

One hundred fifty-five studies were included in the review. 89% (n = 138/155) of studies mentioned at least one of the five constructs within their text, but only 32% (N = 50/155) measured a construct using a standardized or non-standardized outcome measure (Table 3).
Table 3
Frequency of construct measurement and mention
 
Mentioned/described
Measured
Motivation
123/155 (79.35%)
28/155 (18.06%)
Enjoyment/Fun
73/155 (47.09%)
42/155 (27.09%)
Engagement
65/155 (41.93%)
8/155 (5.16%)
Immersion
47/155 (30.32%)
4/155 (2.58%)
Presence
17/155 (10.96%)
6/155 (3.87%)
Table 4 lists the outcome measures used per construct. Examples of standardized measurements include the Intrinsic Motivation Inventory (IMI) and the Presence Questionnaire (PQ). Self-designed questionnaires were applied in 15 studies, where authors mostly used Likert scales or dichotomous yes/no answer formats to evaluate motivation, engagement and enjoyment/fun. For example, Chen et al. [52] designed specific questions to assess motivation and enjoyment that were scored on a 5-point Likert-type scale, with 1 signifying “strongly disagree” and 5 being “strongly agree”. Another example can be found in Schuck et al. [53] who asked questions requiring yes/no answers such as “Was the game fun to play? Did the game increase your motivation to perform your exercise?”, Summative content analysis [38] of the authors’ construct description within the text was undertaken for the 50 studies in which a construct was measured. Additional File 3 provides a complete list of the 50 studies included in summative content analysis.
Table 4
Name and frequency of outcome measures used per construct
Construct
Outcome Measurements
Frequency (N)
References
Motivation
IMI
12
[20, 3949]
BDI
2
[50, 51]
Self-designed Questionnairesa
6
[48, 5256]
Flow-Questionnaire
1
[57]
Time system was used
1
[21]
Interviews/Comments/Surveys
10
[21, 42, 50, 5864]
Enjoyment/Fun
Sub-scale of IMI (Interest/enjoyment)
10
[20, 3945, 47, 48]
Self-designed Questionnairesa
12
[49, 5254, 6572]
Flow-Questionnaire
1
[57]
PACES
1
[73]
SFQ
3
[7476]
Interviews/Comments/Surveys
16
[50, 5862, 64, 66, 68, 7782]
Engagement
Self-designed Questionnairesa
2
[56, 68]
Interviews/Comments/Surveys
5
[20, 60, 61, 68, 83]
Diaries (training time and duration)
1
[20]
PQ (involvement items: 5,6,10,23,32)
1
[19]
Training time
1
[19]
Flow-Questionnaire
1
[57]
Immersion
ITQ
1
[78]
SFQ
2
[76, 84]
PQ (involvement items: 5,6,10,23,32)
1
[19]
Presence
ITQ
1
[78]
SFQ
4
[7476, 84]
PQ (involvement items: 5,6,10,23,32)
1
[19]
IMI Intrinsic Motivation Questionnaire, BDI Beck Depression Inventory with four sections: cognitive, emotive, motivational, physiological; a e.g. VAS/Likert format, PACES Physical ACtivity Enjoyment Scale, PQ Presence Questionnaire, ITQ Immersive Tendencies Questionnaire, SFQ Short Feedback Questionnaire
Two themes emerged from the content analysis. In the first theme, represented in 76% of studies (n = 38/50), authors described the construct as a rationale for use of VR/AVGs in rehabilitation. In the second theme, represented in 58% of studies (n = 29/50), authors used the construct to explain why the VR/AVG intervention was successful. The two themes are described below. Table 5 depicts the quantitative breakdown of both themes for each individual construct.
Table 5
Quantitative summary of summative content analysis
 
Measured
Theme 1: Construct mentioned as a rationale for use of VR/AVG
Theme 2: Construct mentioned as an explanation for successful intervention
Motivation
28/155
21/28 (75%)
23/28 (82.1%)
Enjoyment/Fun
42/155
25/42 (59.52)
17/42 (40.47)
Engagement
8/155
5/8 (62.5%)
5/8 (62.5%)
Immersion
4/155
4/4 (100%)
0/4 (0%)
Presence
6/155
4/6 (66.7%)
0/6 (0%)
Theme 1: Construct described as a rationale for use of VR/AVG
Each of the five constructs was described under this theme. Engagement and motivation were described almost identically. Authors described engagement as a rationale for VR/AVG use because of its potential to influence practice dosage and adherence, greater amounts of which were felt to promote functional improvements [19, 20, 56, 57, 68]. Motivation was also described as a rationale for use of VR/AVG interventions for its potential to increase training intensity, influencing motor learning and neuroplasticity [20, 39, 4145, 49, 60]. The ability to motivate clients in this way was identified as unique to this treatment method [40, 42, 45, 48]. Rationales presented for VR/AVG use included the potential to engage and motivate users by involving them in game selection [20] or individualization of game features [46], the ability to elicit multiplayer competition or cooperation [39, 44, 48] the provision of individualized challenge [21, 44, 48, 54, 57], and the delivery of feedback [43, 45, 50, 53, 61, 62, 73] or of a rewarding sense of achievement [45, 55]. For example, Subramanian et al. [49] stated that “Motivation and interactivity of the VE were enhanced by the added visual effects and game score that enabled participants to track success.
The potential for VR/AVG use to increase patient enjoyment was described as a strong rationale for use in rehabilitation. Specifically, authors outlined patient enjoyment related to playing games [60, 62, 64, 66, 7072, 82] which differed from traditional rehabilitation approaches (e.g. [52, 73]. Enjoyment was also seen as essential to the flow experience induced by VR/AVG play [57, 72]. Flow was defined as the “feeling of complete and energized engagement in an activity, with a high level of enjoyment and fulfillment” and described as supportive of adherence to VR/AVG-based rehabilitation [72]. Enjoyment was described as facilitating motivation [20, 3945, 4749, 68, 74], engagement [57, 68, 78], and training intensity [42, 60, 66, 79] in VR/AVG use. Finally, patient enjoyment due to rewards and feedback provided in VR/AVG games was described as a rationale for their use in clinical practice [57, 66, 78].
Immersion was described as a rationale for VR/AVG use because of its influence on user performance and the fact that it differentiates VR/AVG interventions from conventional rehabilitation [76, 84]. Similarly, authors described presence as an essential component separating the advantages of VR/AVG use over other interventions [75, 76, 78, 84]. All authors interpreted immersion as a subjective characteristic, i.e. defining it as “the perception of the setting as real” [76, 84], or “the feeling of being in the virtual world, rather than looking at it” [78]. For example, Crosbie et al. [78] stated: “A person with a positive immersive tendency [as measured by the ITQ instrument] may be more likely to be successful in the performance of virtual tasks.” Authors also described the need to measure side effects associated with immersion to justify the burden of VR/AVG use [19, 78, 84].
Theme 2: Construct described as an explanation for successful intervention
Motivation, enjoyment and engagement were the only constructs described under this theme. Engagement and motivation were described as contributing to intervention success by promoting adherence and contributing to a higher training intensity [20, 41, 43, 47, 48, 52, 55, 58] as well as by distracting participants’from therapeutic intent [50, 60]. For example, Lewis et al. [68] state that “the level of engagement and motivation in performing tasks is posited as factor in determining the success of rehabilitation interventions using VR”. Another example is Sampson et al. [41] who describe that “(…) perhaps the main benefit found in this study was that the VR system successfully motivated participants to practice using their affected arms and engage in and enjoy therapy for sustained periods of time.” Game design features such as individualized challenge levels [21, 42, 47, 48, 5153, 57, 58, 61, 62], meaningful tasks [20, 52, 53, 57, 58], multiplayer platforms [39, 48], and feedback [42, 43, 46, 48, 49, 51, 52, 58, 6163] were described as promoting motivation and influencing successful outcomes. For example, Friedmann et al. [43] suggested that “...sensory-rich visual and auditory feedback motivated high effort levels”.
Enjoyment achieved through VR/AVG play was described as important to intervention outcomes because it is a critical factor for rehabilitation success [53, 68, 72], lowers stress levels [49] and induces flow [57, 60, 72]. Enjoyment was also described as an explanation for the success of the interventions due to its effects on patient motivation and engagement [20, 45, 52, 64, 73], particularly in patients who otherwise lacked interest or motivation to complete normal exercise regimes [39, 58]. Gorsic et al. [48] stated enjoyment led to effort, stating that “participants enjoyed competitive exercises more than exercising alone, and that this also increased self-reported effort put into the exercise.” Schuck et al. [53] referred their intervention success to previous literature “that implicated the importance of fun, motivation, and engagement as critical factors for success in rehabilitation.”

RQ2: What do we know about the extent to which motivation, engagement, presence, enjoyment and level of immersion impact training outcomes?

While 74% of studies (n = 37) in which a construct was measured reported only descriptive statistics or qualitative summaries, 26% (n = 13) used inferential statistical analysis to evaluate hypotheses related to a construct in different arms of the intervention, e.g. to compare differences in motivation or enjoyment between two studied practice conditions [40, 42, 43, 45, 47, 49, 52, 65, 71, 73]. None of the studies used statistical inference to link any of the five constructs to motor learning outcomes.

RQ3: What are the proposed relationships between motivation, engagement, enjoyment, immersion, and presence and motor learning?

Summative content analysis was used to explore authors’ interpretations of construct relationships in their texts. Figure 2 illustrates the frequency and direction of identified relationships.
The most frequently described relationship was motivation leading to motor learning (N = 24). For example, Hale et al. [80] state: “One of the rationales for computer-based rehabilitation is the use of the motivational aspects of the technology to stimulate people to practice repetitive movement to facilitate neuroplasticity and enhance functional movement.” The second most frequently reported relationship was the influence of patient enjoyment on motivation (N = 15). Enjoyment is seen as “a key factor for increasing motivation” [74]. However, authors measured this construct using an instrument designed to assess motivation: the Intrinsic Motivation Inventory (IMI). For instance, Lloréns et al. [47] conclude: “In terms of motivation, the results of the IMI showed that most of the participants found the system enjoyable (...)”.
The combination of two constructs was suggested to influence a third construct. For example, Kottink et al. [45] suggest that the combination of fun and motivation together lead to engagement, stating: “The application of videogames in rehabilitation (rehab games) can be regarded as a specific form of VR training, in which the fun and motivational elements of the exercises are emphasized to engage people during their activity.” Multidimensional relationships, in which constructs are chained, are listed in Table 6.
Table 6
Construct relationships proposed by authors
Source
Destination 1
Destination 2
Destination 3
Frequency
References
Motivation
Motor Learning
  
24
[19, 20, 39, 4245, 4851, 53, 55, 57, 58, 60, 6668, 71, 74, 76, 80, 84]
Motivation
Enjoyment
  
3
[41, 52, 61]
Motivation
Enjoyment
Motor Learning
 
2
[52, 61]
Motivation
Engagement
  
12
[19, 20, 41, 45, 46, 51, 57, 61, 64, 73, 79, 81]
Motivation
Engagement
Motor Learning
 
5
[20, 46, 57, 73, 79]
Motivation
Immersion
Motor Learning
 
1
[50]
Enjoyment
Motor Learning
  
6
[52, 53, 61, 68, 78, 80]
Enjoyment
Motivation
  
15
[20, 3942, 44, 47, 49, 51, 62, 64, 66, 68, 73, 74]
Enjoyment
Motivation
Motor Learning
 
5
[42, 44, 66, 68, 74]
Enjoyment
Motivation
Engagement
 
4
[20, 51, 64, 73]
Enjoyment
Motivation
Engagement
Motor Learning
2
[20, 73]
Enjoyment
Engagement
  
6
[45, 49, 57, 68, 72, 78]
Enjoyment
Engagement
Motor Learning
 
3
[49, 68, 78]
Engagement
Motor Learning
  
13
[19, 20, 40, 46, 49, 50, 53, 57, 68, 73, 78, 79]
Engagement
Motivation
  
2
[57, 71]
Engagement
Motivation
Motor Learning
 
1
[71]
Engagement
Enjoyment
  
1
[60]
Engagement
Immersion
Motor Learning
 
1
[50]
Engagement
Presence
  
1
[40]
Immersion
Motor Learning
  
2
[50, 78]
Immersion
Motivation
  
1
[60]
Immersion
Engagement
  
1
[40]
Immersion
Presence
Engagement
 
2
[19, 50]
Immersion
Presence
Engagement
Motor Learning
1
[19]
Immersion
Presence
Motor Learning
 
1
[45]
Presence
Engagement
Motor Learning
 
1
[46]
For example, Flynn et al. [50] state that engagement and motivation lead to immersion and this impacts therapeutic outcomes: “Moreover, the virtual environment (VE) provides an engaging and motivating framework for feedback allowing the participant to become immersed in the virtual world and to experience the emotional sense of “winning” in a particular game.” Turkbey et al. [64] suggest that enjoyment leads to motivation, which leads to engagement: “It should be remembered that patients’ enjoyment and belief in benefits of a treatment may improve engagement in a therapy and intensity of training as a reflection of increased motivation.” Finally, Hung et al. [73] also describe this relationship: “One of the most important successes of the Wii Fit training may lie in the pleasure component, which motivates subjects to engage more fully in the program.”

Discussion

This scoping review explored how motivation, enjoyment, engagement, immersion and presence were described or measured in VR/AVG studies in stroke rehabilitation. We also sought to identify potential links between these constructs and motor learning outcomes. Although the majority of studies mentioned at least one of the five constructs within their text, construct measurement took place in only 1/3 of studies. Multiple relational links between two or more constructs or between any construct and motor learning were described, though statistical analyses were not used to examine these links.
The emphasis by authors on enjoyment was a surprising finding of this review. Enjoyment was described as important because it underlies both engagement and motivation, and because it is central to essential game design principles of VR/AVG games. However, although it was the most frequently measured construct, it is important to note that measurement of this construct was undertaken with the use of instruments designed for other purposes. This included using instruments measuring flow or intrinsic motivation [85, 86] or self-designed subjective questionnaires lacking psychometric properties [72]. Hung et al. [73] were the only ones to use an enjoyment-specific scale (PACES), although its psychometric properties have not yet been validated in the stroke population or for exercise modalities other than sports [87]. Given that authors appear to consider this construct foundational both to the affective impact of VR/AVGs and to the mechanics of game design, it will be important to achieve consensus on optimal measurement.
A second important finding of the review was the inconsistency with which constructs were mentioned, described, defined and measured in these studies, and the fact that despite lack of tests of statistical inference or even measurement, authors stated assumptions or conclusions about constructs as fact. For example, Shin et al. [57] conclude that their device “encouraged the patient’s skill development, improved immersion, and motivated further rehabilitation by providing meaningful play, optimal challenge, and a flow experience” while acknowledging that they did not measure motivation. In addition, definitions did not consistently align with our a-priori understanding of the terms, and were often vague and interchangeable. Indeed, these terms are differentially operationalized and defined in various fields (e.g. psychology, sports medicine, rehabilitation). This issue of ill-defined terminology was identified by some authors [20]. For example, immersion was often described as a synonym for presence, as follows: “This allows users to experience a high degree of immersion; they feel as if they are in the virtual world, rather than looking at it.” [78] Presence was also described as an indicator of subjective immersion, for example in [19]: “(...) presence is a subjective measure used in VR studies to quantify how immersed a user is in a VE.” Also problematic is the fact that authors use a single instrument to measure several different constructs. For example, immersion was measured using the Presence Questionnaire, the same instrument as that used to measure presence, which was also used to measure what authors’ labelled as engagement [19]. Overall, the inconsistent and varying use of terms, as well as the use of single instruments to quantify different constructs presents a challenge for readers and should be addressed through the development of consistent terminology and a consensus on optimal outcome measures [20].
Among the studies in which a construct was measured, 44% of studies (N = 22) used validated instruments (e.g. IMI, IM-TEQ, PQ, ITQ, TSFQ, PACES and SFQ), however, most measures were not verified yet for the targeted purpose (e.g., the PACES), or population (e.g. PQ). Most used either indirect tools (e.g. taking training time or practice duration as a measure of motivation and engagement, N = 3), study-specific subjective questionnaires with untested psychometric properties (N = 15), or exclusively qualitative assessments (e.g. interviews or comments, N = 12) with varying rigour in data analysis (Table 4). Tatla et al. [22, 23] also found a lack of valid instruments used to measure motivation in pediatric interventions for children with cerebral palsy and acquired brain injury. As such, consensus is clearly required on instruments in order to align the field and facilitate interpretation and the advancement of knowledge. Existing instruments could be adapted and validated for use in VR/AVG interventions and with specific target populations. For example, Gil-Gómez et al. [88] have proposed the SEQ (Suitability Evaluation Questionnaire) that is based on the SFQ (Short Feedback Questionnaire) but has been updated to cover specific VR-related items.The use of direct or indirect objective measures of motivation, enjoyment, engagement is an option to overcome challenges of subjective self-report. Indirect measures include recording time spent interacting with the VR/AVG game (as undertaken by [1921], counting the frequency of repetitions, or measuring the intensity of physical activity (for example, using EMG measurement, as in Zimmerli et al. who considered physical activity intensity as an indicator of engagement in VR/AVG interventions) [89]. Clearly, this indirect approach is not without limitations, as there will always be a multitude of influences besides affective state on adherence, dosage and intensity (for example, the expectation of external rewards, or the pressure to maintain a strict treatment schedule). As such, more direct objective measures are also warranted [20]. Examples include electroencephalography, including use of event related potentials to evaluate attentional demand [25], spectra analysis for indicators of engagement, or other measures such as galvanic skin response, heart rate variability or functional near-infrared spectroscopy [90]. The use of such objective measures may elucidate the neurophysiological processes by which affective state influences motor learning [25].
Perez-Marcos [91] suggests that authors should distinguish between VR hardware and software to evaluate user experiences. Specifically, authors should be more specific about describing the components of their VR/AVG interventions to differentiate between systems, the games themselves, and the resulting user experience [91]. Results of our review indicate that game mechanics such as rewards, feedback, challenge, choice/interactivity, clear goals, and socialization [14] were frequently lauded for their influence on motivation, engagement and enjoyment. These game design features are different from the features of the VR system that is delivering the intervention, and can likely be delivered across different platforms. Interestingly, authors did not link these game design features to immersion or presence, indicating that these constructs are more aligned with the game context than with the viewing medium or interaction modality. Further unpacking the ‘active ingredients’ of VR/AVG interventions, and how they may be attached to game characteristics as opposed to hardware components, is a key area for future research [92, 93].
Results of the review illustrate the discrepancy between the frequency of construct description or actual measurement. One potential explanation is that these constructs are universally accepted as inherent to VR/AVG interventions, and as such, researchers are not compelled to measure them. No conclusions can be made about the potential impact of motivation, enjoyment, engagement, degree of immersion and level of presence on the motor improvements achieved in a VE. We recommend including these analyses in future work, where power analyses permit. Such calculations should be facilitated as the field continues to grow and study designs move beyond the feasibility and pilot study stage in which authors’ focus on demonstrating an effect or differentiating the intervention from traditional care.

Limitations

This scoping review had several limitations. We identified studies in which the apparent goal of VR/AVG interventions was motor skill improvement; however, the assumption of motor learning as an intervention goal was our own. We used summative content analysis to analyze article text, but did not record nor assign speculative or other intent to authors’ words. As such, and particularly since no inferential statistics were performed in the original articles to support identified relationships, we can assign no weight to relational links identified in this review. While our literature search included the three main rehabilitation-specific databases, literature may have been missed from other databases. In particular, we did not search the IEEE Xplore database, which may have led to more studies on immersion and presence, though perhaps not in a rehabilitation context. In keeping with scoping review conduct recommendations, we did not undertake a quality appraisal of the included studies.
The construct of ‘Flow’ was mentioned in relation to motivation, enjoyment, engagement, and immersion, e.g. by stating that “flow experience results from a combination of intrinsic motivation and complete immersion in the intervention” [57] and flow was often described as an indicator of engagement [72, 94]. As such, the omission of flow as a construct relevant to affective state in VR/AVG interventions is a scoping review limitation. Finally, we did not differentiate our analyses between non-customized and customized rehabilitation-specific VR/AVG systems. Non-customized systems are less expensive and accessible, may be easier to use and are most frequently used in clinical practice [5]. Differentiating between these types of VR/AVGs may have helped to elicit any potential differences in the constructs that may be due to potentially more impactful game design principles (such as more abundant audiovisual feedback, or more explicit competition) of commercially-available games as compared to rehabilitation-specific games.

Next steps for research

Results of this scoping review indicate the need for greater consensus on definitions and terminology. Given the lack of psychometrically-valid outcome measures, integrating greater use of objective measures is essential. Researchers should include hypotheses as to how these constructs influence motor learning. High quality mixed methods research designs may be useful when appropriately conducted using a rigorous framework for design and interpretation [95], as a qualitative component can help to further elucidate what specifically participants found motivating or engaging, and can be used as a complement to explore the validity of self-report quantitative measures or objective measures. Finally, measuring sustainability and changes in these constructs over time can inform decision-making protocols for clinicians to better adjust VR/AVG intervention parameters to sustain motivation and engagement [23].
Greater understanding of the impact of affective state on learning will inform the design of VR interventions that can better exploit attributes found to promote motivation and engagement. Researchers can conduct experiments in VR to inform directions for development of VR-based therapeutic tasks, but they could also provide knowledge to inform conventional rehabilitation by providing greater awareness of the potential importance of affective state for learning. In addition, because VR experimental paradigms can better isolate or manipulate a single task presentation factor over others as compared to experiments in physical environments, this can support understanding of which specific factors enhance motivation and engagement for different types (e.g. ages, interests, cognitive abilities) of users. This can also provide more evidence for why therapists could consider using VR over traditional interventions as well as provide information for how to design conventional interventions that take advantage of these same attributes.

Conclusions

To accompany the increasing evidence of VR/AVG effectiveness in stroke rehabilitation, it is important to better understand factors that may differentiate certain systems or modulate effectiveness in clients with differing characteristics. The growing emphasis on the role of affective factors in motor learning combined with our findings that many researchers use these constructs as a rationale for VR/AVG use highlight the need to better understand and measure whether affective state differentiates VR/AVG use from traditional interventions and whether it contributes to intervention outcomes. This body of literature currently demonstrates a discrepancy between description and measurement, one that might be explained by the early stage of the literature and the current feasibility-oriented research methodologies. Results of the review provide suggestions for researchers interested in measuring these constructs and emphasize the need for consensus on terminology and outcome measures. Finally, the results point to the need to better understand, through improved measurement and inferential analyses, the potential impact of affective constructs and technical level of immersion on outcomes achieved through practice in VR environments.

Acknowledgements

The authors thank Kayla Pinzur, Jasmine Zhang, and Marta Samokishyn for their assistance in charting the data.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:CD008349.PubMed Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:CD008349.PubMed
2.
Zurück zum Zitat Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HM. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3):e93318.PubMedPubMedCentralCrossRef Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HM. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3):e93318.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–27.PubMedPubMedCentralCrossRef Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–27.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Levac D, Glegg S, Colquhoun H, Miller P, Noubary F. Virtual reality and active videogame-based practice, learning needs, and preferences: a cross-Canada survey of physical therapists and occupational therapists. Games Health J. 2017;6:2161–783X.CrossRef Levac D, Glegg S, Colquhoun H, Miller P, Noubary F. Virtual reality and active videogame-based practice, learning needs, and preferences: a cross-Canada survey of physical therapists and occupational therapists. Games Health J. 2017;6:2161–783X.CrossRef
7.
Zurück zum Zitat Deutsch JE, McCoy SW. Virtual reality and serious games in neurorehabilitation of children and adults: prevention, plasticity, and participation. Pediatr Phys Ther. 2017;29:S23–36.PubMedPubMedCentralCrossRef Deutsch JE, McCoy SW. Virtual reality and serious games in neurorehabilitation of children and adults: prevention, plasticity, and participation. Pediatr Phys Ther. 2017;29:S23–36.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Winstein C, Varghese R. Been there, done that, so what’s next for arm and hand rehabilitation in stroke? NeuroRehabilitation. 2018;43(1):3–18.PubMedCrossRef Winstein C, Varghese R. Been there, done that, so what’s next for arm and hand rehabilitation in stroke? NeuroRehabilitation. 2018;43(1):3–18.PubMedCrossRef
13.
Zurück zum Zitat Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation-review. Appl Ergon. 2018;69:153–61.PubMedCrossRef Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation-review. Appl Ergon. 2018;69:153–61.PubMedCrossRef
14.
Zurück zum Zitat Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HM. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013;37(4):166–75.PubMedCrossRef Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HM. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013;37(4):166–75.PubMedCrossRef
15.
Zurück zum Zitat Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23(5):1382–414.PubMedCrossRef Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23(5):1382–414.PubMedCrossRef
16.
Zurück zum Zitat Lohse KR, Boyd LA, Hodges NJ. Engaging environments enhance motor skill learning in a computer gaming task. J Mot Behav. 2016;48(2):172–82.PubMedCrossRef Lohse KR, Boyd LA, Hodges NJ. Engaging environments enhance motor skill learning in a computer gaming task. J Mot Behav. 2016;48(2):172–82.PubMedCrossRef
17.
Zurück zum Zitat Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55(1):68–78.PubMedCrossRef Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55(1):68–78.PubMedCrossRef
18.
Zurück zum Zitat Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, McDonough SM. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009;25(12):1085–99.CrossRef Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, McDonough SM. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009;25(12):1085–99.CrossRef
19.
Zurück zum Zitat Deutsch JE, Myslinski MJ, Kafri M, Ranky R, Sivak M, Mavroidis C, et al. Feasibility of virtual reality augmented cycling for health promotion of people poststroke. J Neurol Phys Ther. 2013;37(3):118–24.PubMedCrossRef Deutsch JE, Myslinski MJ, Kafri M, Ranky R, Sivak M, Mavroidis C, et al. Feasibility of virtual reality augmented cycling for health promotion of people poststroke. J Neurol Phys Ther. 2013;37(3):118–24.PubMedCrossRef
20.
Zurück zum Zitat King M, Hijmans JM, Sampson M, Satherley J, Hale L. Home-based stroke rehabilitation using computer gaming. N Z J Physiother. 2012;40(3):128–34. King M, Hijmans JM, Sampson M, Satherley J, Hale L. Home-based stroke rehabilitation using computer gaming. N Z J Physiother. 2012;40(3):128–34.
21.
Zurück zum Zitat Wittmann F, Held JP, Lambercy O, Starkey ML, Curt A, Hover R, et al. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J Neuroeng Rehabil. 2016;13(1):75.PubMedPubMedCentralCrossRef Wittmann F, Held JP, Lambercy O, Starkey ML, Curt A, Hover R, et al. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J Neuroeng Rehabil. 2016;13(1):75.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Tatla SK, Sauve K, Virji-Babul N, Holsti L, Butler C, Van Der Loos HF. Evidence for outcomes of motivational rehabilitation interventions for children and adolescents with cerebral palsy: an American Academy for cerebral palsy and developmental medicine systematic review. Dev Med Child Neurol. 2013;55(7):593–601.PubMedCrossRef Tatla SK, Sauve K, Virji-Babul N, Holsti L, Butler C, Van Der Loos HF. Evidence for outcomes of motivational rehabilitation interventions for children and adolescents with cerebral palsy: an American Academy for cerebral palsy and developmental medicine systematic review. Dev Med Child Neurol. 2013;55(7):593–601.PubMedCrossRef
23.
Zurück zum Zitat Tatla SK, Sauve K, Jarus T, Virji-Babul N, Holsti L. The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: a systematic review. Brain Inj. 2014;28(8):1022–35.PubMedCrossRef Tatla SK, Sauve K, Jarus T, Virji-Babul N, Holsti L. The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: a systematic review. Brain Inj. 2014;28(8):1022–35.PubMedCrossRef
24.
Zurück zum Zitat Bryanton C, Bosse J, Brien M, McLean J, McCormick A, Sveistrup H. Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. CyberPsychol Behav. 2006;9(2):123–8.PubMedCrossRef Bryanton C, Bosse J, Brien M, McLean J, McCormick A, Sveistrup H. Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. CyberPsychol Behav. 2006;9(2):123–8.PubMedCrossRef
25.
Zurück zum Zitat Leiker AM, Miller M, Brewer L, Nelson M, Siow M, Lohse K. The relationship between engagement and neurophysiological measures of attention in motion-controlled video games: a randomized controlled trial. JMIR Serious Games. 2016;4(1):e4.PubMedPubMedCentralCrossRef Leiker AM, Miller M, Brewer L, Nelson M, Siow M, Lohse K. The relationship between engagement and neurophysiological measures of attention in motion-controlled video games: a randomized controlled trial. JMIR Serious Games. 2016;4(1):e4.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Lewis GN, Rosie JA. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil Rehabil. 2012;34(22):1880–6.PubMedCrossRef Lewis GN, Rosie JA. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil Rehabil. 2012;34(22):1880–6.PubMedCrossRef
28.
Zurück zum Zitat Weiss PL, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. Textbook of neural repair and rehabilitation 2006;51(8):182–197.CrossRef Weiss PL, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. Textbook of neural repair and rehabilitation 2006;51(8):182–197.CrossRef
29.
Zurück zum Zitat Slater M. A note on presence terminology. Presence connect. 2003;3(3):1–5. Slater M. A note on presence terminology. Presence connect. 2003;3(3):1–5.
30.
Zurück zum Zitat Slater M. Measuring presence: a response to the Witmer and singer presence questionnaire. Presence-Teleop Virt. 1999;8(5):560–5.CrossRef Slater M. Measuring presence: a response to the Witmer and singer presence questionnaire. Presence-Teleop Virt. 1999;8(5):560–5.CrossRef
31.
Zurück zum Zitat Bohil CJ, Alicea B, Biocca FA. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci. 2011;12(12):752–62.PubMedCrossRef Bohil CJ, Alicea B, Biocca FA. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci. 2011;12(12):752–62.PubMedCrossRef
32.
Zurück zum Zitat Schuemie MJ, van der Straaten P, Krijn M, van der Mast CA. Research on presence in virtual reality: a survey. CyberPsychol Behav. 2001;4(2):183–201.PubMedCrossRef Schuemie MJ, van der Straaten P, Krijn M, van der Mast CA. Research on presence in virtual reality: a survey. CyberPsychol Behav. 2001;4(2):183–201.PubMedCrossRef
33.
Zurück zum Zitat Colquhoun HL, Levac D, O'Brien KK, Straus S, Tricco AC, Perrier L, et al. Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol. 2014;67(12):1291–4.PubMedCrossRef Colquhoun HL, Levac D, O'Brien KK, Straus S, Tricco AC, Perrier L, et al. Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol. 2014;67(12):1291–4.PubMedCrossRef
34.
Zurück zum Zitat Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.CrossRef Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.CrossRef
36.
Zurück zum Zitat Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.PubMedCrossRef Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.PubMedCrossRef
37.
Zurück zum Zitat Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–88.PubMedCrossRef Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–88.PubMedCrossRef
39.
Zurück zum Zitat Ballester BR, Badia SBI, Verschure PFMJ. Including social interaction in stroke VR-based motor rehabilitation enhances performance: a pilot study. Presence-Teleop Virt. 2012;21(4):490–501.CrossRef Ballester BR, Badia SBI, Verschure PFMJ. Including social interaction in stroke VR-based motor rehabilitation enhances performance: a pilot study. Presence-Teleop Virt. 2012;21(4):490–501.CrossRef
40.
Zurück zum Zitat Reinthal A, Szirony K, Clark C, Swiers J, Kellicker M, Linder S. ENGAGE: guided activity-based gaming in neurorehabilitation after stroke: a pilot study. Stroke Res Treat. 2012;2012:784232.PubMedPubMedCentral Reinthal A, Szirony K, Clark C, Swiers J, Kellicker M, Linder S. ENGAGE: guided activity-based gaming in neurorehabilitation after stroke: a pilot study. Stroke Res Treat. 2012;2012:784232.PubMedPubMedCentral
41.
Zurück zum Zitat Sampson M, Shau YW, King MJ. Bilateral upper limb trainer with virtual reality for post-stroke rehabilitation: case series report. Disabil Rehabil Assist Technol. 2012;7(1):55–62.PubMedCrossRef Sampson M, Shau YW, King MJ. Bilateral upper limb trainer with virtual reality for post-stroke rehabilitation: case series report. Disabil Rehabil Assist Technol. 2012;7(1):55–62.PubMedCrossRef
42.
Zurück zum Zitat Fan SC, Su FC, Chen SS, Hou WH, Sun JS, Chen KH, et al. Improved intrinsic motivation and muscle activation patterns in reaching task using virtual reality training for stroke rehabilitation: a pilot randomized control trial. J Med Biol Eng. 2014;34(4):399–407.CrossRef Fan SC, Su FC, Chen SS, Hou WH, Sun JS, Chen KH, et al. Improved intrinsic motivation and muscle activation patterns in reaching task using virtual reality training for stroke rehabilitation: a pilot randomized control trial. J Med Biol Eng. 2014;34(4):399–407.CrossRef
43.
Zurück zum Zitat Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76.PubMedPubMedCentralCrossRef Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Jordan K, Sampson M, King M. Gravity-supported exercise with computer gaming improves arm function in chronic stroke. Arch Phys Med Rehabil. 2014;95(8):1484–9.PubMedCrossRef Jordan K, Sampson M, King M. Gravity-supported exercise with computer gaming improves arm function in chronic stroke. Arch Phys Med Rehabil. 2014;95(8):1484–9.PubMedCrossRef
45.
Zurück zum Zitat Kottink AI, Prange GB, Krabben T, Rietman JS, Buurke JH. Gaming and conventional exercises for improvement of arm function after stroke: a randomized controlled pilot study. Games Health J. 2014;3(3):184–91.PubMedCrossRef Kottink AI, Prange GB, Krabben T, Rietman JS, Buurke JH. Gaming and conventional exercises for improvement of arm function after stroke: a randomized controlled pilot study. Games Health J. 2014;3(3):184–91.PubMedCrossRef
46.
Zurück zum Zitat Subramaniam S, Wan-Ying Hui-Chan C, Bhatt T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors. J Neurol Phys Ther. 2014;38(4):216–25.PubMedCrossRef Subramaniam S, Wan-Ying Hui-Chan C, Bhatt T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors. J Neurol Phys Ther. 2014;38(4):216–25.PubMedCrossRef
47.
Zurück zum Zitat Llorens R, Noe E, Colomer C, Alcaniz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25 e2.PubMedCrossRef Llorens R, Noe E, Colomer C, Alcaniz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25 e2.PubMedCrossRef
48.
Zurück zum Zitat Gorsic M, Novak D. Design and pilot evaluation of competitive and cooperative exercise games for arm rehabilitation at home. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:4690–4.PubMedCentral Gorsic M, Novak D. Design and pilot evaluation of competitive and cooperative exercise games for arm rehabilitation at home. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:4690–4.PubMedCentral
49.
Zurück zum Zitat Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23.PubMedCrossRef Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23.PubMedCrossRef
50.
Zurück zum Zitat Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther. 2007;31(4):180–9.PubMedCrossRef Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther. 2007;31(4):180–9.PubMedCrossRef
51.
Zurück zum Zitat Song GB, Park EC. Effect of virtual reality games on stroke patients’ balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015;27(7):2057–60.PubMedPubMedCentralCrossRef Song GB, Park EC. Effect of virtual reality games on stroke patients’ balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015;27(7):2057–60.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Chen MH, Huang LL, Lee CF, Hsieh CL, Lin YC, Liu H, et al. A controlled pilot trial of two commercial video games for rehabilitation of arm function after stroke. Clin Rehabil. 2015;29(7):674–82.PubMedCrossRef Chen MH, Huang LL, Lee CF, Hsieh CL, Lin YC, Liu H, et al. A controlled pilot trial of two commercial video games for rehabilitation of arm function after stroke. Clin Rehabil. 2015;29(7):674–82.PubMedCrossRef
53.
Zurück zum Zitat Schuck SO, Whetstone A, Hill V, Levine P, Page SJ. Game-based, portable, upper extremity rehabilitation in chronic stroke. Top Stroke Rehabil. 2011;18(6):720–7.PubMedCrossRef Schuck SO, Whetstone A, Hill V, Levine P, Page SJ. Game-based, portable, upper extremity rehabilitation in chronic stroke. Top Stroke Rehabil. 2011;18(6):720–7.PubMedCrossRef
54.
Zurück zum Zitat Szturm T, Peters JF, Otto C, Kapadia N, Desai A. Task-specific rehabilitation of finger-hand function using interactive computer gaming. Arch Phys Med Rehabil. 2008;89(11):2213–7.PubMedCrossRef Szturm T, Peters JF, Otto C, Kapadia N, Desai A. Task-specific rehabilitation of finger-hand function using interactive computer gaming. Arch Phys Med Rehabil. 2008;89(11):2213–7.PubMedCrossRef
55.
Zurück zum Zitat Brokaw EB, Eckel E, Brewer BR. Usability evaluation of a kinematics focused Kinect therapy program for individuals with stroke. Technol Health Care. 2015;23(2):143–51.PubMed Brokaw EB, Eckel E, Brewer BR. Usability evaluation of a kinematics focused Kinect therapy program for individuals with stroke. Technol Health Care. 2015;23(2):143–51.PubMed
56.
Zurück zum Zitat Hoermann S, Ferreira Dos Santos L, Morkisch N, Jettkowski K, Sillis M, Devan H, et al. Computerised mirror therapy with augmented reflection technology for early stroke rehabilitation: clinical feasibility and integration as an adjunct therapy. Disabil Rehabil. 2017;39(15):1503–14.PubMedCrossRef Hoermann S, Ferreira Dos Santos L, Morkisch N, Jettkowski K, Sillis M, Devan H, et al. Computerised mirror therapy with augmented reflection technology for early stroke rehabilitation: clinical feasibility and integration as an adjunct therapy. Disabil Rehabil. 2017;39(15):1503–14.PubMedCrossRef
57.
Zurück zum Zitat Shin JH, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil. 2014;11:32.PubMedPubMedCentralCrossRef Shin JH, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil. 2014;11:32.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Levin MF, Snir O, Liebermann DG, Weingarden H, Weiss PL. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther. 2012;1(1):3.PubMedPubMedCentralCrossRef Levin MF, Snir O, Liebermann DG, Weingarden H, Weiss PL. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther. 2012;1(1):3.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Wingham J, Adie K, Turner D, Schofield C, Pritchard C. Participant and caregiver experience of the Nintendo Wii sports after stroke: qualitative study of the trial of Wii in stroke (TWIST). Clin Rehabil. 2015;29(3):295–305.PubMedCrossRef Wingham J, Adie K, Turner D, Schofield C, Pritchard C. Participant and caregiver experience of the Nintendo Wii sports after stroke: qualitative study of the trial of Wii in stroke (TWIST). Clin Rehabil. 2015;29(3):295–305.PubMedCrossRef
60.
Zurück zum Zitat Paquin K, Crawley J, Harris JE, Horton S. Survivors of chronic stroke - participant evaluations of commercial gaming for rehabilitation. Disabil Rehabil. 2016;38(21):2144–52.PubMedCrossRef Paquin K, Crawley J, Harris JE, Horton S. Survivors of chronic stroke - participant evaluations of commercial gaming for rehabilitation. Disabil Rehabil. 2016;38(21):2144–52.PubMedCrossRef
61.
Zurück zum Zitat Tsekleves E, Paraskevopoulos IT, Warland A, Kilbride C. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Disabil Rehabil Assist Technol. 2016;11(5):413–22.PubMed Tsekleves E, Paraskevopoulos IT, Warland A, Kilbride C. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Disabil Rehabil Assist Technol. 2016;11(5):413–22.PubMed
63.
Zurück zum Zitat Stockley RC, O’Connor DA, Smith P, Moss S, Allsop L, Edge W. A mixed methods small pilot study to describe the effects of upper limb training using a virtual reality gaming system in people with chronic stroke. Rehabil Res Pract. 2017;2017:9569178.PubMedPubMedCentral Stockley RC, O’Connor DA, Smith P, Moss S, Allsop L, Edge W. A mixed methods small pilot study to describe the effects of upper limb training using a virtual reality gaming system in people with chronic stroke. Rehabil Res Pract. 2017;2017:9569178.PubMedPubMedCentral
64.
Zurück zum Zitat Turkbey TA, Kutlay S, Gok H. Clinical feasibility of Xbox KinectTM training for stroke rehabilitation: a single-blind randomized controlled pilot study. J Rehabil Med. 2017;49(1):22–9.PubMedCrossRef Turkbey TA, Kutlay S, Gok H. Clinical feasibility of Xbox KinectTM training for stroke rehabilitation: a single-blind randomized controlled pilot study. J Rehabil Med. 2017;49(1):22–9.PubMedCrossRef
65.
Zurück zum Zitat Bower KJ, Clark RA, McGinley JL, Martin CL, Miller KJ. Clinical feasibility of the Nintendo Wii for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clin Rehabil. 2014;28(9):912–23.PubMedCrossRef Bower KJ, Clark RA, McGinley JL, Martin CL, Miller KJ. Clinical feasibility of the Nintendo Wii for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clin Rehabil. 2014;28(9):912–23.PubMedCrossRef
66.
Zurück zum Zitat Yong Joo L, Soon Yin T, Xu D, Thia E, Pei Fen C, Kuah CW, et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med. 2010;42(5):437–41.PubMedCrossRef Yong Joo L, Soon Yin T, Xu D, Thia E, Pei Fen C, Kuah CW, et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med. 2010;42(5):437–41.PubMedCrossRef
67.
Zurück zum Zitat da Silva Cameirao M, Bermudez IBS, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98.PubMed da Silva Cameirao M, Bermudez IBS, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98.PubMed
68.
Zurück zum Zitat Lewis GN, Woods C, Rosie JA, McPherson KM. Virtual reality games for rehabilitation of people with stroke: perspectives from the users. Disabil Rehabil Assist Technol. 2011;6(5):453–63.PubMedCrossRef Lewis GN, Woods C, Rosie JA, McPherson KM. Virtual reality games for rehabilitation of people with stroke: perspectives from the users. Disabil Rehabil Assist Technol. 2011;6(5):453–63.PubMedCrossRef
69.
Zurück zum Zitat Crosbie JH, Lennon S, McGoldrick MC, McNeill MD, McDonough SM. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil. 2012;26(9):798–806.PubMedCrossRef Crosbie JH, Lennon S, McGoldrick MC, McNeill MD, McDonough SM. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil. 2012;26(9):798–806.PubMedCrossRef
70.
Zurück zum Zitat Yin CW, Sien NY, Ying LA, Chung SF, Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(11):1107–14.PubMedCrossRef Yin CW, Sien NY, Ying LA, Chung SF, Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(11):1107–14.PubMedCrossRef
71.
Zurück zum Zitat Bower KJ, Louie J, Landesrocha Y, Seedy P, Gorelik A, Bernhardt J. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil. 2015;12:63.PubMedPubMedCentralCrossRef Bower KJ, Louie J, Landesrocha Y, Seedy P, Gorelik A, Bernhardt J. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil. 2015;12:63.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Lee M, Pyun SB, Chung J, Kim J, Eun SD, Yoon B. A further step to develop patient-friendly implementation strategies for virtual reality-based rehabilitation in patients with acute stroke. Phys Ther. 2016;96(10):1554–64.PubMedCrossRef Lee M, Pyun SB, Chung J, Kim J, Eun SD, Yoon B. A further step to develop patient-friendly implementation strategies for virtual reality-based rehabilitation in patients with acute stroke. Phys Ther. 2016;96(10):1554–64.PubMedCrossRef
73.
Zurück zum Zitat Hung JW, Chou CX, Hsieh YW, Wu WC, Yu MY, Chen PC, et al. Randomized comparison trial of balance training by using exergaming and conventional weight-shift therapy in patients with chronic stroke. Arch Phys Med Rehabil. 2014;95(9):1629–37.PubMedCrossRef Hung JW, Chou CX, Hsieh YW, Wu WC, Yu MY, Chen PC, et al. Randomized comparison trial of balance training by using exergaming and conventional weight-shift therapy in patients with chronic stroke. Arch Phys Med Rehabil. 2014;95(9):1629–37.PubMedCrossRef
74.
Zurück zum Zitat Brown R, Burstin A, Sugarman H. Use of the Wii fit system for the treatment of balance problems in the elderly: a feasibility study. J Isr Phys Ther Soc (JIPTS). 2011;13(1):32. Brown R, Burstin A, Sugarman H. Use of the Wii fit system for the treatment of balance problems in the elderly: a feasibility study. J Isr Phys Ther Soc (JIPTS). 2011;13(1):32.
75.
Zurück zum Zitat Neil A, Ens S, Pelletier R, Jarus T, Rand D. Sony PlayStation EyeToy elicits higher levels of movement than the Nintendo Wii: implications for stroke rehabilitation. Eur J Phys Rehabil Med. 2013;49(1):13–21.PubMed Neil A, Ens S, Pelletier R, Jarus T, Rand D. Sony PlayStation EyeToy elicits higher levels of movement than the Nintendo Wii: implications for stroke rehabilitation. Eur J Phys Rehabil Med. 2013;49(1):13–21.PubMed
76.
Zurück zum Zitat Llorens R, Gil-Gomez JA, Alcaniz M, Colomer C, Noe E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke [with consumer summary]. Clin Rehabil. 2015;29(3):261–8.PubMedCrossRef Llorens R, Gil-Gomez JA, Alcaniz M, Colomer C, Noe E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke [with consumer summary]. Clin Rehabil. 2015;29(3):261–8.PubMedCrossRef
77.
Zurück zum Zitat Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, et al. Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput. 2007;45(9):901–7.PubMedCrossRef Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, et al. Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput. 2007;45(9):901–7.PubMedCrossRef
78.
Zurück zum Zitat Crosbie JH, McNeill MDJ, Burke J, McDonough S. Utilising technology for rehabilitation of the upper limb following stroke: the Ulster experience. Phys Ther Rev. 2013;14(5):336–47.CrossRef Crosbie JH, McNeill MDJ, Burke J, McDonough S. Utilising technology for rehabilitation of the upper limb following stroke: the Ulster experience. Phys Ther Rev. 2013;14(5):336–47.CrossRef
79.
Zurück zum Zitat Proffitt RM, Alankus G, Kelleher CL, Engsberg JR. Use of computer games as an intervention for stroke. Top Stroke Rehabil. 2011;18(4):417–27.PubMedCrossRef Proffitt RM, Alankus G, Kelleher CL, Engsberg JR. Use of computer games as an intervention for stroke. Top Stroke Rehabil. 2011;18(4):417–27.PubMedCrossRef
80.
Zurück zum Zitat Hale LA, Satherley JA, McMillan NJ, Milosavljevic S, Hijmans JM, King MJ. Participant perceptions of use of CyWee Z as adjunct to rehabilitation of upper-limb function following stroke. J Rehabil Res Dev. 2012;49(4):623–34.PubMedCrossRef Hale LA, Satherley JA, McMillan NJ, Milosavljevic S, Hijmans JM, King MJ. Participant perceptions of use of CyWee Z as adjunct to rehabilitation of upper-limb function following stroke. J Rehabil Res Dev. 2012;49(4):623–34.PubMedCrossRef
81.
Zurück zum Zitat Shiri S, Feintuch U, Lorber-Haddad A, Moreh E, Twito D, Tuchner-Arieli M, et al. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility. Top Stroke Rehabil. 2012;19(4):277–86.PubMedCrossRef Shiri S, Feintuch U, Lorber-Haddad A, Moreh E, Twito D, Tuchner-Arieli M, et al. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility. Top Stroke Rehabil. 2012;19(4):277–86.PubMedCrossRef
82.
Zurück zum Zitat Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity Centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis. 2008;26(3):289–96.PubMedCrossRef Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity Centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis. 2008;26(3):289–96.PubMedCrossRef
83.
Zurück zum Zitat Samuel GS, Choo M, Chan WY, Kok S, Ng YS. The use of virtual reality-based therapy to augment poststroke upper limb recovery. Singap Med J. 2015;56(7):e127–30.CrossRef Samuel GS, Choo M, Chan WY, Kok S, Ng YS. The use of virtual reality-based therapy to augment poststroke upper limb recovery. Singap Med J. 2015;56(7):e127–30.CrossRef
84.
Zurück zum Zitat Llorens R, Colomer-Font C, Alcaniz M, Noe-Sebastian E. BioTrak virtual reality system: effectiveness and satisfaction analysis for balance rehabilitation in patients with brain injury. Neurologia. 2013;28(5):268–75.PubMedCrossRef Llorens R, Colomer-Font C, Alcaniz M, Noe-Sebastian E. BioTrak virtual reality system: effectiveness and satisfaction analysis for balance rehabilitation in patients with brain injury. Neurologia. 2013;28(5):268–75.PubMedCrossRef
85.
Zurück zum Zitat Plant RW, Ryan RM. Intrinsic motivation and the effects of self-consciousness, self-awareness, and egoinvolvement: an investigation of internally controlling styles. J Pers. 1985;53(3):435–49.CrossRef Plant RW, Ryan RM. Intrinsic motivation and the effects of self-consciousness, self-awareness, and egoinvolvement: an investigation of internally controlling styles. J Pers. 1985;53(3):435–49.CrossRef
86.
Zurück zum Zitat Jungho P, David P, Hokyoung R. To flow and not to freeze: applying flow experience to Mobile learning IEEE transactions on Learning Technologies. 2010;3(1):56–67. Jungho P, David P, Hokyoung R. To flow and not to freeze: applying flow experience to Mobile learning IEEE transactions on Learning Technologies. 2010;3(1):56–67.
87.
Zurück zum Zitat Mullen SP, Olson EA, Phillips SM, Szabo AN, Wojcicki TR, Mailey EL, et al. Measuring enjoyment of physical activity in older adults: invariance of the physical activity enjoyment scale (paces) across groups and time. Int J Behav Nutr Phys Act. 2011;8:103.PubMedPubMedCentralCrossRef Mullen SP, Olson EA, Phillips SM, Szabo AN, Wojcicki TR, Mailey EL, et al. Measuring enjoyment of physical activity in older adults: invariance of the physical activity enjoyment scale (paces) across groups and time. Int J Behav Nutr Phys Act. 2011;8:103.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Zimmerli L, Jacky M, Lunenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil. 2013;94(9):1737–46.PubMedCrossRef Zimmerli L, Jacky M, Lunenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil. 2013;94(9):1737–46.PubMedCrossRef
90.
Zurück zum Zitat Han CH, Hwang HJ, Lim JH, Im CH. Assessment of user voluntary engagement during neurorehabilitation using functional near-infrared spectroscopy: a preliminary study. J Neuroeng Rehabil. 2018;15(1):27.PubMedPubMedCentralCrossRef Han CH, Hwang HJ, Lim JH, Im CH. Assessment of user voluntary engagement during neurorehabilitation using functional near-infrared spectroscopy: a preliminary study. J Neuroeng Rehabil. 2018;15(1):27.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J Neuroeng Rehabil. 2018;15(1):113.PubMedPubMedCentralCrossRef Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J Neuroeng Rehabil. 2018;15(1):113.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J Neuroeng Rehabil. 2015;12(1):46.PubMedPubMedCentralCrossRef Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J Neuroeng Rehabil. 2015;12(1):46.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PF. Effect of specific over nonspecific VR-based rehabilitation on Poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair. 2019;33(2):112–29.PubMedPubMedCentralCrossRef Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PF. Effect of specific over nonspecific VR-based rehabilitation on Poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair. 2019;33(2):112–29.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Shin J-H, Bog Park S, Ho Jang S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: a randomized, controlled study. Comput Biol Med. 2015;63:92–8.PubMedCrossRef Shin J-H, Bog Park S, Ho Jang S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: a randomized, controlled study. Comput Biol Med. 2015;63:92–8.PubMedCrossRef
95.
Zurück zum Zitat Ostlund U, Kidd L, Wengstrom Y, Rowa-Dewar N. Combining qualitative and quantitative research within mixed method research designs: a methodological review. Int J Nurs Stud. 2011;48(3):369–83.PubMedCrossRefPubMedCentral Ostlund U, Kidd L, Wengstrom Y, Rowa-Dewar N. Combining qualitative and quantitative research within mixed method research designs: a methodological review. Int J Nurs Stud. 2011;48(3):369–83.PubMedCrossRefPubMedCentral
Metadaten
Titel
What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review
verfasst von
Nina Rohrbach
Emily Chicklis
Danielle Elaine Levac
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of NeuroEngineering and Rehabilitation / Ausgabe 1/2019
Elektronische ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0546-4

Weitere Artikel der Ausgabe 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.