Skip to main content
Erschienen in: Current Osteoporosis Reports 6/2023

16.11.2023

Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies

verfasst von: Inbar Ben-Zvi, David Karasik, Cheryl L. Ackert-Bicknell

Erschienen in: Current Osteoporosis Reports | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

GWAS, as a largely correlational analysis, requires in vitro or in vivo validation. Zebrafish (Danio rerio) have many advantages for studying the genetics of human diseases. Since gene editing in zebrafish has been highly valuable for studying embryonic skeletal developmental processes that are prenatally or perinatally lethal in mammalian models, we are reviewing pros and cons of this model.

Recent Findings

The true power for the use of zebrafish is the ease by which the genome can be edited, especially using the CRISPR/Cas9 system. Gene editing, followed by phenotyping, for complex traits such as BMD, is beneficial, but the major physiological differences between the fish and mammals must be considered. Like mammals, zebrafish do have main bone cells; thus, both in vivo stem cell analyses and in vivo imaging are doable. Yet, the “long” bones of fish are peculiar, and their bone cavities do not contain bone marrow. Partial duplication of the zebrafish genome should be taken into account.

Summary

Overall, small fish toolkit can provide unmatched opportunities for genetic modifications and morphological investigation as a follow-up to human-first discovery.
Literatur
1.
Zurück zum Zitat Watson JD, Jordan E. The Human Genome Program at the National Institutes of Health. Genomics. 1989;5(3):654–6.PubMedCrossRef Watson JD, Jordan E. The Human Genome Program at the National Institutes of Health. Genomics. 1989;5(3):654–6.PubMedCrossRef
3.
Zurück zum Zitat Wade N. Scientists complete rough draft of human genome. The New York Times. 2000, 26. Wade N. Scientists complete rough draft of human genome. The New York Times. 2000, 26.
4.
Zurück zum Zitat Tsujimoto G. ‘Millennium Project’ of MHLW. Nihon Rinsho. 2001;59(10):1884–8.PubMed Tsujimoto G. ‘Millennium Project’ of MHLW. Nihon Rinsho. 2001;59(10):1884–8.PubMed
5.•
Zurück zum Zitat Sollis E, et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023; 51(D1): D977–D985. This resource is constantly updated as new GWAS are published. As it is not single disease or single phenotype focused, substantial information about cross-phenome associations can quickly be found. The catalog reports based on the information published in manuscripts or provided by the authors, so associations between and gene and a phenotype may not yet be proven. Sollis E, et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023; 51(D1): D977–D985. This resource is constantly updated as new GWAS are published. As it is not single disease or single phenotype focused, substantial information about cross-phenome associations can quickly be found. The catalog reports based on the information published in manuscripts or provided by the authors, so associations between and gene and a phenotype may not yet be proven.
7.
Zurück zum Zitat Richards JB, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12.PubMedPubMedCentralCrossRef Richards JB, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Styrkarsdottir U, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65.PubMedCrossRef Styrkarsdottir U, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65.PubMedCrossRef
9.
10.
Zurück zum Zitat Rivadeneira F, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.PubMedPubMedCentralCrossRef Rivadeneira F, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Cho YS, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.PubMedCrossRef Cho YS, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.PubMedCrossRef
12.
Zurück zum Zitat Ackert-Bicknell CL, et al. Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J Bone Miner Res. 2010;25(8):1808–20.PubMedPubMedCentralCrossRef Ackert-Bicknell CL, et al. Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J Bone Miner Res. 2010;25(8):1808–20.PubMedPubMedCentralCrossRef
13.
14.
Zurück zum Zitat Kheirallah AK, et al. Translating lung function genome-wide association study (GWAS) findings: new insights for lung biology. Adv Genet. 2016;93:57–145.PubMedCrossRef Kheirallah AK, et al. Translating lung function genome-wide association study (GWAS) findings: new insights for lung biology. Adv Genet. 2016;93:57–145.PubMedCrossRef
15.
Zurück zum Zitat von Scheidt M, et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 2017;25(2):248–61.CrossRef von Scheidt M, et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 2017;25(2):248–61.CrossRef
16.
Zurück zum Zitat Xiao SM, et al. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum Mol Genet. 2012;21(7):1648–57.PubMedCrossRef Xiao SM, et al. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum Mol Genet. 2012;21(7):1648–57.PubMedCrossRef
17.
Zurück zum Zitat •• Morris JA, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019; 51(2): 258–266. The largest published GWAS for bone traits and the first study to replicate loci for fracture. This study did not use X-ray-based techniques such as dual X-ray Absorptiometry (DXA), however. This study used data from the UK Biobank and therefore the BMD data is estimated BMD, which is derived from ultrasound measures. •• Morris JA, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019; 51(2): 258–266. The largest published GWAS for bone traits and the first study to replicate loci for fracture. This study did not use X-ray-based techniques such as dual X-ray Absorptiometry (DXA), however. This study used data from the UK Biobank and therefore the BMD data is estimated BMD, which is derived from ultrasound measures.
18.
Zurück zum Zitat Kague E, Karasik D. Functional validation of osteoporosis genetic findings using small fish models. Genes (Basel). 2022;13(2):279–308.PubMedCrossRef Kague E, Karasik D. Functional validation of osteoporosis genetic findings using small fish models. Genes (Basel). 2022;13(2):279–308.PubMedCrossRef
19.
Zurück zum Zitat • Khrystoforova I, et al. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation. Front Endocrinol (Lausanne). 2022; 13: 985304. In this paper, we showed that in-depth phenotyping in zebrafish can yield information about a gene’s function that could not, or was not, identified using a higher organism. The Lrp5 gene is well studied in bone in humans and in mice. • Khrystoforova I, et al. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation. Front Endocrinol (Lausanne). 2022; 13: 985304. In this paper, we showed that in-depth phenotyping in zebrafish can yield information about a gene’s function that could not, or was not, identified using a higher organism. The Lrp5 gene is well studied in bone in humans and in mice.
22.
Zurück zum Zitat Brommage R, Ohlsson C. High fidelity of mouse models mimicking human genetic skeletal disorders. Front Endocrinol (Lausanne). 2019;10:934.PubMedCrossRef Brommage R, Ohlsson C. High fidelity of mouse models mimicking human genetic skeletal disorders. Front Endocrinol (Lausanne). 2019;10:934.PubMedCrossRef
24.
Zurück zum Zitat Kemmler CL, et al. Conserved enhancer logic controls the notochord expression of vertebrate Brachyury. Nat Commun. 2023;14(1):6594. Kemmler CL, et al. Conserved enhancer logic controls the notochord expression of vertebrate Brachyury. Nat Commun. 2023;14(1):6594.
25.
Zurück zum Zitat Drickamer LC. Seasonal variation in fertility, fecundity and litter sex ratio in laboratory and wild stocks of house mice (Mus domesticus). Lab Anim Sci. 1990;40(3):284–8.PubMed Drickamer LC. Seasonal variation in fertility, fecundity and litter sex ratio in laboratory and wild stocks of house mice (Mus domesticus). Lab Anim Sci. 1990;40(3):284–8.PubMed
26.
Zurück zum Zitat Veldman MB, Lin S. Zebrafish as a developmental model organism for pediatric research. Pediatr Res. 2008;64(5):470–6.PubMedCrossRef Veldman MB, Lin S. Zebrafish as a developmental model organism for pediatric research. Pediatr Res. 2008;64(5):470–6.PubMedCrossRef
28.
Zurück zum Zitat Rauner M, et al. Perspective of the GEMSTONE Consortium on current and future approaches to functional validation for skeletal genetic disease using cellular, molecular and animal-modeling techniques. Front Endocrinol. 2021;12: 731217.CrossRef Rauner M, et al. Perspective of the GEMSTONE Consortium on current and future approaches to functional validation for skeletal genetic disease using cellular, molecular and animal-modeling techniques. Front Endocrinol. 2021;12: 731217.CrossRef
29.
Zurück zum Zitat Furuya M, et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat Commun. 2018;9(1):300.PubMedPubMedCentralCrossRef Furuya M, et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat Commun. 2018;9(1):300.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Fleming A, Sato M, Goldsmith P. High-throughput in vivo screening for bone anabolic compounds with zebrafish. J Biomol Screen. 2005;10(8):823–31.PubMedCrossRef Fleming A, Sato M, Goldsmith P. High-throughput in vivo screening for bone anabolic compounds with zebrafish. J Biomol Screen. 2005;10(8):823–31.PubMedCrossRef
31.
Zurück zum Zitat Richardson L, et al. EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res. 2014;42(Database issue):D835-44.PubMedCrossRef Richardson L, et al. EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res. 2014;42(Database issue):D835-44.PubMedCrossRef
32.
Zurück zum Zitat Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611–28.PubMedPubMedCentralCrossRef Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611–28.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol. 2020;457(2):191–205.PubMedCrossRef Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol. 2020;457(2):191–205.PubMedCrossRef
34.
Zurück zum Zitat Apschner A, Schulte-Merker S, Witten PE. Not all bones are created equal - using zebrafish and other teleost species in osteogenesis research. Methods Cell Biol. 2011;105:239–55.PubMedCrossRef Apschner A, Schulte-Merker S, Witten PE. Not all bones are created equal - using zebrafish and other teleost species in osteogenesis research. Methods Cell Biol. 2011;105:239–55.PubMedCrossRef
35.
Zurück zum Zitat Harris MP, et al. Fish is fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. J Appl Ichthyol. 2014;30(4):616–29.PubMedPubMedCentralCrossRef Harris MP, et al. Fish is fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. J Appl Ichthyol. 2014;30(4):616–29.PubMedPubMedCentralCrossRef
36.
37.
Zurück zum Zitat Diamond KM, et al. Examining craniofacial variation among crispant and mutant zebrafish models of human skeletal diseases. J Anat. 2023;243(1):66–77.PubMedCrossRef Diamond KM, et al. Examining craniofacial variation among crispant and mutant zebrafish models of human skeletal diseases. J Anat. 2023;243(1):66–77.PubMedCrossRef
38.
Zurück zum Zitat Diamond KM, et al. Computational anatomy and geometric shape analysis enables analysis of complex craniofacial phenotypes in zebrafish. Biol Open. 2022;11(2):bio058948.PubMedPubMedCentralCrossRef Diamond KM, et al. Computational anatomy and geometric shape analysis enables analysis of complex craniofacial phenotypes in zebrafish. Biol Open. 2022;11(2):bio058948.PubMedPubMedCentralCrossRef
39.
40.
41.
Zurück zum Zitat Neuhauss SC, et al. Mutations affecting craniofacial development in zebrafish. Development. 1996;123:357–67.PubMedCrossRef Neuhauss SC, et al. Mutations affecting craniofacial development in zebrafish. Development. 1996;123:357–67.PubMedCrossRef
42.
Zurück zum Zitat Reeck JC, Oxford JT. The shape of the jaw-zebrafish Col11a1a regulates Meckel’s cartilage morphogenesis and mineralization. J Dev Biol. 2022;10(4):40.PubMedPubMedCentralCrossRef Reeck JC, Oxford JT. The shape of the jaw-zebrafish Col11a1a regulates Meckel’s cartilage morphogenesis and mineralization. J Dev Biol. 2022;10(4):40.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis. 2021;59(1–2): e23407.PubMedPubMedCentralCrossRef Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis. 2021;59(1–2): e23407.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat de Bruijn E, Cuppen E, Feitsma H. Highly efficient ENU mutagenesis in zebrafish. Methods Mol Biol. 2009;546:3–12.PubMedCrossRef de Bruijn E, Cuppen E, Feitsma H. Highly efficient ENU mutagenesis in zebrafish. Methods Mol Biol. 2009;546:3–12.PubMedCrossRef
45.
Zurück zum Zitat Bergen DJM, Kague E, Hammond CL. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front Endocrinol (Lausanne). 2019;10:6.PubMedCrossRef Bergen DJM, Kague E, Hammond CL. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front Endocrinol (Lausanne). 2019;10:6.PubMedCrossRef
47.
49.
Zurück zum Zitat Irion U, Krauss J, Nusslein-Volhard C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 2014;141(24):4827–30.PubMedPubMedCentralCrossRef Irion U, Krauss J, Nusslein-Volhard C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 2014;141(24):4827–30.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Kamachi Y, Kawahara A. CRISPR-Cas9-mediated genome modifications in zebrafish. Methods Mol Biol. 2023;2637:313–24.PubMedCrossRef Kamachi Y, Kawahara A. CRISPR-Cas9-mediated genome modifications in zebrafish. Methods Mol Biol. 2023;2637:313–24.PubMedCrossRef
53.
Zurück zum Zitat • Watson CJ, et al. Phenomics-based quantification of CRISPR-induced mosaicism in zebrafish. Cell Syst. 2020;10(3): 275–286. In this paper, the concept of CRISPants is introduced for rapid generation of mosaic mutant fish for the bone-related phenotyping. • Watson CJ, et al. Phenomics-based quantification of CRISPR-induced mosaicism in zebrafish. Cell Syst. 2020;10(3): 275–286. In this paper, the concept of CRISPants is introduced for rapid generation of mosaic mutant fish for the bone-related phenotyping.
54.
Zurück zum Zitat Bek JW, et al. Lrp5 mutant and crispant zebrafish faithfully model human osteoporosis, establishing the zebrafish as a platform for CRISPR-based functional screening of osteoporosis candidate genes. J Bone Miner Res. 2021;36(9):1749–64.PubMedCrossRef Bek JW, et al. Lrp5 mutant and crispant zebrafish faithfully model human osteoporosis, establishing the zebrafish as a platform for CRISPR-based functional screening of osteoporosis candidate genes. J Bone Miner Res. 2021;36(9):1749–64.PubMedCrossRef
55.
Zurück zum Zitat Muñoz-Fuentes V, et al. The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conserv Genet. 2018;19(4):995–1005.PubMedPubMedCentralCrossRef Muñoz-Fuentes V, et al. The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conserv Genet. 2018;19(4):995–1005.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Gistelinck C, et al. Loss of type I collagen telopeptide lysyl hydroxylation causes musculoskeletal abnormalities in a zebrafish model of Bruck syndrome. J Bone Miner Res. 2016;31(11):1930–42.PubMedCrossRef Gistelinck C, et al. Loss of type I collagen telopeptide lysyl hydroxylation causes musculoskeletal abnormalities in a zebrafish model of Bruck syndrome. J Bone Miner Res. 2016;31(11):1930–42.PubMedCrossRef
57.
Zurück zum Zitat Braasch I, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48(4):427–37.PubMedPubMedCentralCrossRef Braasch I, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48(4):427–37.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Phan QT, et al. Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model. Proc Natl Acad Sci U S A. 2020;117(32):19276–86.PubMedPubMedCentralCrossRef Phan QT, et al. Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model. Proc Natl Acad Sci U S A. 2020;117(32):19276–86.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Butylina M, et al. Nothobranchius furzeri, the turquoise killifish: a model of age-related osteoporosis? Gerontology. 2022;68(12):1415–27.PubMedCrossRef Butylina M, et al. Nothobranchius furzeri, the turquoise killifish: a model of age-related osteoporosis? Gerontology. 2022;68(12):1415–27.PubMedCrossRef
61.
62.
Zurück zum Zitat Dubale NM, Kapron CM, West SL. Commentary: zebrafish as a model for osteoporosis-an approach to accelerating progress in drug and exercise-based treatment. Int J Environ Res Public Health. 2022;19(23):15866.PubMedPubMedCentralCrossRef Dubale NM, Kapron CM, West SL. Commentary: zebrafish as a model for osteoporosis-an approach to accelerating progress in drug and exercise-based treatment. Int J Environ Res Public Health. 2022;19(23):15866.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Rajpurohit SK, et al. Development of Tg(UAS:SEC-Hsa.ANXA5-YFP, myl7:RFP); casper(roy(-/-), nacre(-/-)) transparent transgenic in vivo zebrafish model to study the cardiomyocyte function. Cells. 2021;10(8):1963.PubMedPubMedCentralCrossRef Rajpurohit SK, et al. Development of Tg(UAS:SEC-Hsa.ANXA5-YFP, myl7:RFP); casper(roy(-/-), nacre(-/-)) transparent transgenic in vivo zebrafish model to study the cardiomyocyte function. Cells. 2021;10(8):1963.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Charles JF, et al. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone. 2017;101:162–71.PubMedPubMedCentralCrossRef Charles JF, et al. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone. 2017;101:162–71.PubMedPubMedCentralCrossRef
68.
70.
Zurück zum Zitat Bachrach LK, et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84(12):4702–12.PubMed Bachrach LK, et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84(12):4702–12.PubMed
72.
Zurück zum Zitat Beamer WG, et al. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18(5):397–403.PubMedCrossRef Beamer WG, et al. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18(5):397–403.PubMedCrossRef
73.
74.
Zurück zum Zitat Liao W-N, et al. Micro-CT analysis reveals the changes in bone mineral density in zebrafish craniofacial skeleton with age. J Anat. 2023;242(3):544–51.PubMedCrossRef Liao W-N, et al. Micro-CT analysis reveals the changes in bone mineral density in zebrafish craniofacial skeleton with age. J Anat. 2023;242(3):544–51.PubMedCrossRef
75.
Zurück zum Zitat Kague E, et al. 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease. Bone Res. 2021;9(1):39.PubMedPubMedCentralCrossRef Kague E, et al. 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease. Bone Res. 2021;9(1):39.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Buniello A, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12.PubMedCrossRef Buniello A, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12.PubMedCrossRef
78.
Zurück zum Zitat Watson CJ, et al. wnt16 regulates spine and muscle morphogenesis through parallel signals from notochord and dermomyotome. PLoS Genet. 2022;18(11): e1010496.PubMedPubMedCentralCrossRef Watson CJ, et al. wnt16 regulates spine and muscle morphogenesis through parallel signals from notochord and dermomyotome. PLoS Genet. 2022;18(11): e1010496.PubMedPubMedCentralCrossRef
79.
80.
Zurück zum Zitat Lasconi C, et al. Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits. Sleep. 2022;45(8):zsac109.PubMedPubMedCentralCrossRef Lasconi C, et al. Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits. Sleep. 2022;45(8):zsac109.PubMedPubMedCentralCrossRef
81.
82.
Zurück zum Zitat Chesi A, et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun. 2019;10(1):1260.PubMedPubMedCentralCrossRef Chesi A, et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun. 2019;10(1):1260.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Zhong W, et al. Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Front Cell Dev Biol. 2022;10: 957292.PubMedPubMedCentralCrossRef Zhong W, et al. Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Front Cell Dev Biol. 2022;10: 957292.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Kikuta H, et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 2007;17(5):545–55.PubMedPubMedCentralCrossRef Kikuta H, et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 2007;17(5):545–55.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Roscito JG, et al. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun. 2018;9(1):4737.PubMedPubMedCentralCrossRef Roscito JG, et al. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun. 2018;9(1):4737.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Xue Z, et al. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. eBioMedicine. 2022;82:104161.PubMedPubMedCentralCrossRef Xue Z, et al. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. eBioMedicine. 2022;82:104161.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Madelaine R, et al. A screen for deeply conserved non-coding GWAS SNPs uncovers a MIR-9-2 functional mutation associated to retinal vasculature defects in human. Nucleic Acids Res. 2018;46(7):3517–31.PubMedPubMedCentralCrossRef Madelaine R, et al. A screen for deeply conserved non-coding GWAS SNPs uncovers a MIR-9-2 functional mutation associated to retinal vasculature defects in human. Nucleic Acids Res. 2018;46(7):3517–31.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Kichaev G, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75.PubMedCrossRef Kichaev G, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75.PubMedCrossRef
90.
Zurück zum Zitat Styrkarsdottir U, et al. Two rare mutations in the COL1A2 gene associate with low bone mineral density and fractures in Iceland. J Bone Miner Res. 2016;31(1):173–9.PubMedCrossRef Styrkarsdottir U, et al. Two rare mutations in the COL1A2 gene associate with low bone mineral density and fractures in Iceland. J Bone Miner Res. 2016;31(1):173–9.PubMedCrossRef
91.
Zurück zum Zitat Henke K, et al. Genetic screen for postembryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form. Genetics. 2017;207(2):609–23.PubMedPubMedCentralCrossRef Henke K, et al. Genetic screen for postembryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form. Genetics. 2017;207(2):609–23.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Medina-Gomez C, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88–102.PubMedPubMedCentralCrossRef Medina-Gomez C, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88–102.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Zheng HF, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7): e1002745.PubMedPubMedCentralCrossRef Zheng HF, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7): e1002745.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Laue K, et al. Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development. 2008;135(22):3775–87.PubMedCrossRef Laue K, et al. Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development. 2008;135(22):3775–87.PubMedCrossRef
95.
Zurück zum Zitat Trajanoska K, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and Mendelian randomisation study. BMJ. 2018;362: k3225.PubMedPubMedCentralCrossRef Trajanoska K, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and Mendelian randomisation study. BMJ. 2018;362: k3225.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife. 2018;7:e37001.PubMedPubMedCentralCrossRef Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife. 2018;7:e37001.PubMedPubMedCentralCrossRef
97.
98.
Zurück zum Zitat Kemp JP, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6): e1004423.PubMedPubMedCentralCrossRef Kemp JP, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6): e1004423.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Stevenson NL, et al. Giantin-knockout models reveal a feedback loop between Golgi function and glycosyltransferase expression. J Cell Sci. 2017;130(24):4132–43.PubMedPubMedCentral Stevenson NL, et al. Giantin-knockout models reveal a feedback loop between Golgi function and glycosyltransferase expression. J Cell Sci. 2017;130(24):4132–43.PubMedPubMedCentral
100.
Zurück zum Zitat Yao Y, et al. Evaluate the effects of serum urate level on bone mineral density: a genome-wide gene-environment interaction analysis in UK Biobank cohort. Endocrine. 2021;73(3):702–11.PubMedCrossRef Yao Y, et al. Evaluate the effects of serum urate level on bone mineral density: a genome-wide gene-environment interaction analysis in UK Biobank cohort. Endocrine. 2021;73(3):702–11.PubMedCrossRef
101.
Zurück zum Zitat Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.PubMedPubMedCentralCrossRef Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Han Y, et al. Zebrafish mafbb mutants display osteoclast over-activation and bone deformity resembling osteolysis in MCTO patients. Biomolecules. 2021;11(3):480.PubMedPubMedCentralCrossRef Han Y, et al. Zebrafish mafbb mutants display osteoclast over-activation and bone deformity resembling osteolysis in MCTO patients. Biomolecules. 2021;11(3):480.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Zheng HF, et al. Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm. J Med Genet. 2013;50(7):473–8.PubMedCrossRef Zheng HF, et al. Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm. J Med Genet. 2013;50(7):473–8.PubMedCrossRef
104.
Zurück zum Zitat DeLaurier A, et al. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol. 2014;385(2):189–99.PubMedCrossRef DeLaurier A, et al. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol. 2014;385(2):189–99.PubMedCrossRef
105.
Zurück zum Zitat Nichols JT, et al. Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development. 2016;143(23):4430–40.PubMedPubMedCentral Nichols JT, et al. Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development. 2016;143(23):4430–40.PubMedPubMedCentral
106.
Zurück zum Zitat Dauer MVP, Currie PD, Berger J. Skeletal malformations of Meox1-deficient zebrafish resemble human Klippel-Feil syndrome. J Anat. 2018;233(6):687–95.PubMedPubMedCentralCrossRef Dauer MVP, Currie PD, Berger J. Skeletal malformations of Meox1-deficient zebrafish resemble human Klippel-Feil syndrome. J Anat. 2018;233(6):687–95.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Kemp JP, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49(10):1468–75.PubMedPubMedCentralCrossRef Kemp JP, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49(10):1468–75.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat de Vos I, et al. Functional analysis of a hypomorphic allele shows that MMP14 catalytic activity is the prime determinant of the Winchester syndrome phenotype. Hum Mol Genet. 2018;27(16):2775–88.PubMedPubMedCentralCrossRef de Vos I, et al. Functional analysis of a hypomorphic allele shows that MMP14 catalytic activity is the prime determinant of the Winchester syndrome phenotype. Hum Mol Genet. 2018;27(16):2775–88.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Medina-Gomez C, et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun. 2017;8(1):121.PubMedPubMedCentralCrossRef Medina-Gomez C, et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun. 2017;8(1):121.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Shochat C, et al. Deletion of SREBF1, a functional bone-muscle pleiotropic gene, alters bone density and lipid signaling in zebrafish. Endocrinology. 2020;162(1):bqaa189.PubMedCentralCrossRef Shochat C, et al. Deletion of SREBF1, a functional bone-muscle pleiotropic gene, alters bone density and lipid signaling in zebrafish. Endocrinology. 2020;162(1):bqaa189.PubMedCentralCrossRef
112.
Zurück zum Zitat Qu X, et al. Loss of Wnt16 leads to skeletal deformities and downregulation of bone developmental pathway in zebrafish. Int J Mol Sci. 2021;22(13):6673.PubMedPubMedCentralCrossRef Qu X, et al. Loss of Wnt16 leads to skeletal deformities and downregulation of bone developmental pathway in zebrafish. Int J Mol Sci. 2021;22(13):6673.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Medina-Gomez C, et al. Bone mineral density loci specific to the skull portray potential pleiotropic effects on craniosynostosis. Commun Biol. 2023;6(1):691.PubMedPubMedCentralCrossRef Medina-Gomez C, et al. Bone mineral density loci specific to the skull portray potential pleiotropic effects on craniosynostosis. Commun Biol. 2023;6(1):691.PubMedPubMedCentralCrossRef
Metadaten
Titel
Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies
verfasst von
Inbar Ben-Zvi
David Karasik
Cheryl L. Ackert-Bicknell
Publikationsdatum
16.11.2023
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 6/2023
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-023-00831-5

Weitere Artikel der Ausgabe 6/2023

Current Osteoporosis Reports 6/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.