Skip to main content
Erschienen in: Journal of Natural Medicines 1/2017

01.01.2017 | Original Paper

5′-AMP-activated protein kinase plays an essential role in geniposide-regulated glucose-stimulated insulin secretion in rat pancreatic INS-1 β cells

verfasst von: Yanan Hao, Chunyan Liu, Fei Yin, Yonglan Zhang, Jianhui Liu

Erschienen in: Journal of Natural Medicines | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Our previous work showed that geniposide affected glucose-stimulated insulin secretion (GSIS) via regulating glucose uptake and metabolism in pancreatic β cells; however, the molecular mechanisms remain largely unknown. Substantial evidence suggests that activation of 5′-AMP-activated protein kinase (AMPK) plays a central role in GSIS. Here, we aim to determine the role of AMPK on geniposide-regulated GSIS in rat pancreatic INS-1 cells. The results demonstrated that 6-[4-(2-piperidin-1-yletoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-α] pyrimidine (Compound C; an AMPK inhibitor) significantly attenuated the effects of geniposide on glucose uptake, energy metabolism, and insulin secretion in INS-1 cells. We also observed that geniposide induced phosphorylation of acetyl-CoA carboxylase (ACC), a marker of AMPK activity, in a time-dependent manner in INS-1 cells; however, in the presence of Compound C, the influence of geniposide on ACC phosphorylation was obviously inhibited. Furthermore, the knockdown of AMPK protein with AMPK siRNA treatment decreased the effects of geniposide on glucose uptake, adenosine triphosphate production, and GSIS. All these data indicate that AMPK plays an essential role in geniposide-regulated GSIS in pancreatic β cells.
Literatur
1.
Zurück zum Zitat Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMed Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMed
2.
Zurück zum Zitat Paneni F, Costantino S (2015) Mechanisms-based therapeutic strategies in type 2 diabetes. Cardiovasc Diagn Ther 5:340–342PubMedPubMedCentral Paneni F, Costantino S (2015) Mechanisms-based therapeutic strategies in type 2 diabetes. Cardiovasc Diagn Ther 5:340–342PubMedPubMedCentral
3.
Zurück zum Zitat Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346CrossRefPubMed Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346CrossRefPubMed
4.
Zurück zum Zitat DeFronzo RA (1997) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med 50:191–197CrossRefPubMed DeFronzo RA (1997) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med 50:191–197CrossRefPubMed
5.
Zurück zum Zitat Woerle HJ, Carneiro L, Derani A, Goke B, Schirra J (2012) The role of endogenous incretin secretion as amplifier of glucose-stimulated insulin secretion in healthy subjects and patients with type 2 diabetes. Diabetes 61:2349–2358CrossRefPubMedPubMedCentral Woerle HJ, Carneiro L, Derani A, Goke B, Schirra J (2012) The role of endogenous incretin secretion as amplifier of glucose-stimulated insulin secretion in healthy subjects and patients with type 2 diabetes. Diabetes 61:2349–2358CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A (2015) Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466:203–218CrossRefPubMed Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A (2015) Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466:203–218CrossRefPubMed
7.
Zurück zum Zitat Gerdes JM, Christou-Savina S, Xiong Y, Moede T, Moruzzi N, Karlsson-Edlund P, Leibiger B, Leibiger IB, Ostenson CG, Beales PL, Berggren PO (2014) Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents. Nat Commun 5:5308CrossRefPubMed Gerdes JM, Christou-Savina S, Xiong Y, Moede T, Moruzzi N, Karlsson-Edlund P, Leibiger B, Leibiger IB, Ostenson CG, Beales PL, Berggren PO (2014) Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents. Nat Commun 5:5308CrossRefPubMed
8.
Zurück zum Zitat Zou CY, Gong Y, Liang J (2016) Metabolic signaling of insulin secretion by pancreatic beta-cell and its derangement in type 2 diabetes. Eur Rev Med Pharmacol Sci 20:391 Zou CY, Gong Y, Liang J (2016) Metabolic signaling of insulin secretion by pancreatic beta-cell and its derangement in type 2 diabetes. Eur Rev Med Pharmacol Sci 20:391
9.
Zurück zum Zitat Ilkova H, Glaser B, Tunckale A, Bagriacik N, Cerasi E (1997) Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care 20:1353–1356CrossRefPubMed Ilkova H, Glaser B, Tunckale A, Bagriacik N, Cerasi E (1997) Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care 20:1353–1356CrossRefPubMed
10.
Zurück zum Zitat Chen JY, Wu H, Li H, Hu SL, Dai MM, Chen J (2015) Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int Immunopharmacol 24:102–109CrossRefPubMed Chen JY, Wu H, Li H, Hu SL, Dai MM, Chen J (2015) Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int Immunopharmacol 24:102–109CrossRefPubMed
11.
Zurück zum Zitat Guo L, Zheng X, Liu J, Yin Z (2016) Geniposide suppresses hepatic glucose production via AMPK in HepG2 cells. Biol Pharm Bull 39:484–491CrossRefPubMed Guo L, Zheng X, Liu J, Yin Z (2016) Geniposide suppresses hepatic glucose production via AMPK in HepG2 cells. Biol Pharm Bull 39:484–491CrossRefPubMed
12.
Zurück zum Zitat Liu HT, He JL, Li WM, Yang Z, Wang YX, Yin J, Du YG, Yu C (2010) Geniposide inhibits interleukin-6 and interleukin-8 production in lipopolysaccharide-induced human umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways. Inflamm Res 59:451–461CrossRefPubMed Liu HT, He JL, Li WM, Yang Z, Wang YX, Yin J, Du YG, Yu C (2010) Geniposide inhibits interleukin-6 and interleukin-8 production in lipopolysaccharide-induced human umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways. Inflamm Res 59:451–461CrossRefPubMed
13.
Zurück zum Zitat Wu SY, Wang GF, Liu ZQ, Rao JJ, Lu L, Xu W, Wu SG, Zhang JJ (2009) Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacol Sin 30:202–208CrossRefPubMedPubMedCentral Wu SY, Wang GF, Liu ZQ, Rao JJ, Lu L, Xu W, Wu SG, Zhang JJ (2009) Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacol Sin 30:202–208CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kojima K, Shimada T, Nagareda Y, Watanabe M, Ishizaki J, Sai Y, Miyamoto K, Aburada M (2011) Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells. Biol Pharm Bull 34:1613–1618CrossRefPubMed Kojima K, Shimada T, Nagareda Y, Watanabe M, Ishizaki J, Sai Y, Miyamoto K, Aburada M (2011) Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells. Biol Pharm Bull 34:1613–1618CrossRefPubMed
15.
Zurück zum Zitat Liu J, Yin F, Zheng X, Jing J, Hu Y (2007) Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochem Int 51:361–369CrossRefPubMed Liu J, Yin F, Zheng X, Jing J, Hu Y (2007) Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochem Int 51:361–369CrossRefPubMed
16.
Zurück zum Zitat Liu J, Zheng X, Yin F, Hu Y, Guo L, Deng X, Chen G, Jiajia J, Zhang H (2006) Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells. Int J Dev Neurosci 24:419–424CrossRefPubMed Liu J, Zheng X, Yin F, Hu Y, Guo L, Deng X, Chen G, Jiajia J, Zhang H (2006) Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells. Int J Dev Neurosci 24:419–424CrossRefPubMed
17.
Zurück zum Zitat Liu JH, Yin F, Guo LX, Deng XH, Hu YH (2009) Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacol Sin 30:159–165CrossRefPubMedPubMedCentral Liu JH, Yin F, Guo LX, Deng XH, Hu YH (2009) Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacol Sin 30:159–165CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zhang Y, Yin F, Liu J, Liu Z, Guo L, Xia Z, Zidichouski J (2015) Geniposide attenuates insulin-deficiency-induced acceleration of beta-amyloidosis in an APP/PS1 transgenic model of Alzheimer’s disease. Neurochem Int 89:7–16CrossRefPubMed Zhang Y, Yin F, Liu J, Liu Z, Guo L, Xia Z, Zidichouski J (2015) Geniposide attenuates insulin-deficiency-induced acceleration of beta-amyloidosis in an APP/PS1 transgenic model of Alzheimer’s disease. Neurochem Int 89:7–16CrossRefPubMed
19.
Zurück zum Zitat Guo LX, Xia ZN, Gao X, Yin F, Liu JH (2012) Glucagon-like peptide 1 receptor plays a critical role in geniposide-regulated insulin secretion in INS-1 cells. Acta Pharmacol Sin 33:237–241CrossRefPubMed Guo LX, Xia ZN, Gao X, Yin F, Liu JH (2012) Glucagon-like peptide 1 receptor plays a critical role in geniposide-regulated insulin secretion in INS-1 cells. Acta Pharmacol Sin 33:237–241CrossRefPubMed
20.
Zurück zum Zitat Liu J, Guo L, Yin F, Zhang Y, Liu Z, Wang Y (2013) Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells. PLoS One 8:e78315CrossRefPubMedPubMedCentral Liu J, Guo L, Yin F, Zhang Y, Liu Z, Wang Y (2013) Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells. PLoS One 8:e78315CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Guo LX, Liu JH, Yin F (2014) Regulation of insulin secretion by geniposide: possible involvement of phosphatidylinositol 3-phosphate kinase. Eur Rev Med Pharmacol Sci 18:1287–1294PubMed Guo LX, Liu JH, Yin F (2014) Regulation of insulin secretion by geniposide: possible involvement of phosphatidylinositol 3-phosphate kinase. Eur Rev Med Pharmacol Sci 18:1287–1294PubMed
22.
Zurück zum Zitat Guo L, Liu CY, Yin F, Liu JH (2016) Possible role of AMPK/SIRT signaling on energy balance in geniposide-treated INS-1 cells. Med Chem 6:33–38CrossRef Guo L, Liu CY, Yin F, Liu JH (2016) Possible role of AMPK/SIRT signaling on energy balance in geniposide-treated INS-1 cells. Med Chem 6:33–38CrossRef
23.
Zurück zum Zitat Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253PubMedPubMedCentral Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253PubMedPubMedCentral
24.
Zurück zum Zitat Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F (2009) Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci (Landmark Ed) 14:3380–3400CrossRef Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F (2009) Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci (Landmark Ed) 14:3380–3400CrossRef
25.
Zurück zum Zitat Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416CrossRefPubMed Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416CrossRefPubMed
26.
Zurück zum Zitat Peterson JM, Aja S, Wei Z, Wong GW (2012) CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition. J Biol Chem 287:1576–1587CrossRefPubMed Peterson JM, Aja S, Wei Z, Wong GW (2012) CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition. J Biol Chem 287:1576–1587CrossRefPubMed
27.
Zurück zum Zitat Fu A, Eberhard CE, Screaton RA (2013) Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 366:127–134CrossRefPubMed Fu A, Eberhard CE, Screaton RA (2013) Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 366:127–134CrossRefPubMed
28.
Zurück zum Zitat Salt IP, Johnson G, Ashcroft SJ, Hardie DG (1998) AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J 335(Pt 3):533–539CrossRefPubMedPubMedCentral Salt IP, Johnson G, Ashcroft SJ, Hardie DG (1998) AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J 335(Pt 3):533–539CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA (2003) Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371:761–774CrossRef da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA (2003) Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371:761–774CrossRef
30.
Zurück zum Zitat Leclerc I, Rutter GA (2004) AMP-activated protein kinase: a new beta-cell glucose sensor?: regulation by amino acids and calcium ions. Diabetes 53(Suppl 3):S67–S74CrossRefPubMed Leclerc I, Rutter GA (2004) AMP-activated protein kinase: a new beta-cell glucose sensor?: regulation by amino acids and calcium ions. Diabetes 53(Suppl 3):S67–S74CrossRefPubMed
31.
Zurück zum Zitat Mantovani J, Roy R (2011) Re-evaluating the general(ized) roles of AMPK in cellular metabolism. FEBS Lett 585:967–972CrossRefPubMed Mantovani J, Roy R (2011) Re-evaluating the general(ized) roles of AMPK in cellular metabolism. FEBS Lett 585:967–972CrossRefPubMed
32.
Zurück zum Zitat Gleason CE, Lu D, Witters LA, Newgard CB, Birnbaum MJ (2007) The role of AMPK and mTOR in nutrient sensing in pancreatic beta-cells. J Biol Chem 282:10341–10351CrossRefPubMed Gleason CE, Lu D, Witters LA, Newgard CB, Birnbaum MJ (2007) The role of AMPK and mTOR in nutrient sensing in pancreatic beta-cells. J Biol Chem 282:10341–10351CrossRefPubMed
33.
Zurück zum Zitat Dufer M, Noack K, Krippeit-Drews P, Drews G (2010) Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse beta-cells. Islets 2:156–163CrossRefPubMed Dufer M, Noack K, Krippeit-Drews P, Drews G (2010) Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse beta-cells. Islets 2:156–163CrossRefPubMed
34.
Zurück zum Zitat Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10PubMed Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10PubMed
35.
Zurück zum Zitat Alves CR, Ferreira JC, de Siqueira-Filho MA, Carvalho CR, Lancha AH Jr, Gualano B (2012) Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-alpha? Amino Acids 43:1803–1807CrossRefPubMed Alves CR, Ferreira JC, de Siqueira-Filho MA, Carvalho CR, Lancha AH Jr, Gualano B (2012) Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-alpha? Amino Acids 43:1803–1807CrossRefPubMed
36.
Zurück zum Zitat Hutchinson DS, Summers RJ, Bengtsson T (2008) Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: potential utility in treatment of diabetes and heart disease. Pharmacol Ther 119:291–310CrossRefPubMed Hutchinson DS, Summers RJ, Bengtsson T (2008) Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: potential utility in treatment of diabetes and heart disease. Pharmacol Ther 119:291–310CrossRefPubMed
Metadaten
Titel
5′-AMP-activated protein kinase plays an essential role in geniposide-regulated glucose-stimulated insulin secretion in rat pancreatic INS-1 β cells
verfasst von
Yanan Hao
Chunyan Liu
Fei Yin
Yonglan Zhang
Jianhui Liu
Publikationsdatum
01.01.2017
Verlag
Springer Japan
Erschienen in
Journal of Natural Medicines / Ausgabe 1/2017
Print ISSN: 1340-3443
Elektronische ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-016-1038-5

Weitere Artikel der Ausgabe 1/2017

Journal of Natural Medicines 1/2017 Zur Ausgabe