Skip to main content
Erschienen in: Diagnostic Pathology 1/2011

Open Access 01.12.2011 | Letter to the Editor

A comment on 'Theegarten et al.: Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic Pathology 2010, 5:77'

verfasst von: Michael Wensing, Tobias Schripp, Erik Uhde, Tunga Salthammer

Erschienen in: Diagnostic Pathology | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Competing interests

The authors have been working for many years at the Fraunhofer WKI and among other things are also involved in research projects financed by industry. A project concerning particle emissions from laser printers is currently on the point of completion. This project has been commissioned and financed by thirteen laser printing and copying equipment manufacturers organized within BITKOM, the Federal Association for Information Technology, Telecommunications and New Media. We will shortly be publishing the results of this project. However, the results reported in [2] are not part of the BITKOM project.
A comment on 'Theegarten et al.: Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic Pathology 2010, 5:77'
We read with interest the article by Theegarten et al. [1] which reports on the case of a patient in whose peritoneum were found submesothial aggregates of carbon nanoparticles (CNPs) with a diameter of 31-67 nm. From their literature study and results the authors conclude that these CNPs must be particles emitted by a laser printer in an office environment and inhaled by the patient. In addition the abstract for [1] states: "Inhalation of CNP from toner dust has been shown to have impact on the respiratory health of persons exposed". Other possible exposure and uptake paths for CNPs are not discussed in [1].
The paper by Theegarten et al. [1] includes experimental data on the morphology and on the constituents of the toner powder of a laser printer. This toner consists of particles with a diameter of 5-9 μm on whose surface "some small elevations" of metal oxides are found. The CNPs detected in the patient's peritoneum were not, however, identified as toner constituents.
In fact the assumption by Theegarten et al. that the CNPs detected in the patient's peritoneum come from a laser printer is based solely on a reference to a study by Wensing et al. [2]. Theegarten et al. refer to [2] as follows: "Office printers were detected to emit carbon nanoparticles (CNP) in a variable extend". As the authors of [2] we should like to note at this point that this statement is not correct. Our publication [2] does not contain any data which would point to CNPs being possible constituents of ultra-fine particles released from laser printers.
Our chamber experiments were carried out in a clean and particle-free atmosphere. Therefore we can exclude influences from other sources and outdoor air. Indeed our article [2] states that the ultra-fine particles (UFPs) emitted from laser printers are volatile and are not original toner constituents ("toner dust"). The UFPs are rather formed by the nucleation and condensation processes of hydrophobic SVOCs (semi-volatile organic compounds) such as, for example, semi-volatile organic silicon compounds and higher aliphatic hydrocarbons [3, 4]. The volatility of the UFPs - which is also inconsistent with CNP as constituents of the UFPs - was confirmed by VH-TDMA (volatilization and humidification tandem differential mobility analyzer) [4] and thermo denuder [3] measurements. We have never found CNPs in connection with laser printer experiments. Paper [4] is also cited in Theegarten et al. [1].
To sum up, it can be stated that our experimental data published in [2] and also in our later publications [3] and [4] do not in any way support the proposition that the patient in the present case was exposed to CNPs from laser printers.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors have been working for many years at the Fraunhofer WKI and among other things are also involved in research projects financed by industry. A project concerning particle emissions from laser printers is currently on the point of completion. This project has been commissioned and financed by thirteen laser printing and copying equipment manufacturers organized within BITKOM, the Federal Association for Information Technology, Telecommunications and New Media. We will shortly be publishing the results of this project. However, the results reported in [2] are not part of the BITKOM project.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Theegarten D, Boukercha S, Philippou S, Anhenn O: Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic Pathology. 2010, 5: 77-10.1186/1746-1596-5-77.PubMedCentralCrossRefPubMed Theegarten D, Boukercha S, Philippou S, Anhenn O: Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic Pathology. 2010, 5: 77-10.1186/1746-1596-5-77.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Wensing M, Schripp T, Uhde E, Salthammer T: Ultra-fine particles release from hardcopy devices: sources, real room measurements and efficiency of filter accessories. Sci Total Environ. 2008, 407: 418-427. 10.1016/j.scitotenv.2008.08.018.CrossRefPubMed Wensing M, Schripp T, Uhde E, Salthammer T: Ultra-fine particles release from hardcopy devices: sources, real room measurements and efficiency of filter accessories. Sci Total Environ. 2008, 407: 418-427. 10.1016/j.scitotenv.2008.08.018.CrossRefPubMed
3.
Zurück zum Zitat Wensing M, Delius W, Omelan A, Uhde E, Salthammer T, He C, Wang H, Morawska L: Ultra-fine particles (UFP) from laser printers: chemical and physical characterization. Proceedings of the 9th International Conference on Healthy Buildings: 13 - 17 September 2009; Syracuse. Edited by: Santanam S, Bogucz EA, Peters C, Benson T. 2009, Paper ID 171 Wensing M, Delius W, Omelan A, Uhde E, Salthammer T, He C, Wang H, Morawska L: Ultra-fine particles (UFP) from laser printers: chemical and physical characterization. Proceedings of the 9th International Conference on Healthy Buildings: 13 - 17 September 2009; Syracuse. Edited by: Santanam S, Bogucz EA, Peters C, Benson T. 2009, Paper ID 171
4.
Zurück zum Zitat Morawska L, He C, Johnson G, Jayaratne R, Salthammer T, Wang H, Uhde E, Bostrom T, Modini R, Ayoko G, McGarry P, Wensing M: An investigation into the characteristics of particles originating from the operation of laser printers. Environ Sci Technol. 2009, 43: 1015-1022. 10.1021/es802193n.CrossRefPubMed Morawska L, He C, Johnson G, Jayaratne R, Salthammer T, Wang H, Uhde E, Bostrom T, Modini R, Ayoko G, McGarry P, Wensing M: An investigation into the characteristics of particles originating from the operation of laser printers. Environ Sci Technol. 2009, 43: 1015-1022. 10.1021/es802193n.CrossRefPubMed
Metadaten
Titel
A comment on 'Theegarten et al.: Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic Pathology 2010, 5:77'
verfasst von
Michael Wensing
Tobias Schripp
Erik Uhde
Tunga Salthammer
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Diagnostic Pathology / Ausgabe 1/2011
Elektronische ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-6-20

Weitere Artikel der Ausgabe 1/2011

Diagnostic Pathology 1/2011 Zur Ausgabe

Neu im Fachgebiet Pathologie

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …