Skip to main content
Erschienen in: Clinical Pharmacokinetics 8/2014

01.08.2014 | Review Article

A Comprehensive Review on the Pharmacokinetics of Antibiotics in Interstitial Fluid Spaces in Humans: Implications on Dosing and Clinical Pharmacokinetic Monitoring

verfasst von: Tony K. L. Kiang, Urs O. Häfeli, Mary H. H. Ensom

Erschienen in: Clinical Pharmacokinetics | Ausgabe 8/2014

Einloggen, um Zugang zu erhalten

Abstract

The objective of the current review was to provide an updated and comprehensive summary on pharmacokinetic data describing the distribution of antimicrobials into interstitial fluid (ISF) by comparing drug concentration versus time profiles between ISF and blood/plasma in healthy individuals and/or diseased populations. An extensive literature search identified 55 studies detailing 87 individual comparisons. For each antibiotic (antibacterial) (or antibiotic class), we comment on dosing implications based on tissue ISF distribution characteristics and determine the suitability of conducting clinical pharmacokinetic monitoring (CPM) using a previously published scoring algorithm. Using piperacillin as an example, there is evidence supporting different degrees of drug penetration into the ISF of different tissues. A higher dose of piperacillin may be required to achieve an adequate ISF concentration in soft tissue infections. To achieve these higher doses, alternative administration regimens such as intravenous infusions may be utilized. Data also suggest that piperacillin can be categorized as a ‘likely suitable’ agent for CPM in ISF. Regression analyses of data from the published studies, including protein binding, molecular weight, and predicted partition coefficient (using XlogP3) as dependent variables, indicated that protein binding was the only significant predictor for the extent of drug distribution as determined by ratios of the area under the concentration–time curve between muscle ISF/total plasma (R 2 = 0.65, p < 0.001) and adipose ISF/total plasma (R 2 = 0.48, p < 0.004). Although recurrent limitations (i.e., small sample size, lack of statistical comparisons, lack of steady-state conditions, high individual variability) were identified in many studies, these data are still valuable and allowed us to generate general dosing guidelines and assess the suitability of using ISF for CPM.
Literatur
1.
Zurück zum Zitat Liu P, Muller M, Derendorf H. Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations. Int J Antimicrob Agents. 2002;19:285–90.PubMedCrossRef Liu P, Muller M, Derendorf H. Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations. Int J Antimicrob Agents. 2002;19:285–90.PubMedCrossRef
2.
Zurück zum Zitat Pichini S, Altieri L, Zuccaro P, et al. Drug monitoring in nonconventional biological fluids and matrices. Clin Pharmacokinet. 1996;30:211–28.PubMedCrossRef Pichini S, Altieri L, Zuccaro P, et al. Drug monitoring in nonconventional biological fluids and matrices. Clin Pharmacokinet. 1996;30:211–28.PubMedCrossRef
3.
Zurück zum Zitat Muller M, de la Pena A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48:1441–53. Muller M, de la Pena A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48:1441–53.
4.
Zurück zum Zitat Joukhadar C, Derendorf H, Muller M. Microdialysis. A novel tool for clinical studies of anti-infective agents. Eur J Clin Pharmacol. 2001;57:211–9.PubMedCrossRef Joukhadar C, Derendorf H, Muller M. Microdialysis. A novel tool for clinical studies of anti-infective agents. Eur J Clin Pharmacol. 2001;57:211–9.PubMedCrossRef
5.
Zurück zum Zitat Joukhadar C, Muller M. Microdialysis: current applications in clinical pharmacokinetic studies and its potential role in the future. Clin Pharmacokinet. 2005;44:895–913.PubMedCrossRef Joukhadar C, Muller M. Microdialysis: current applications in clinical pharmacokinetic studies and its potential role in the future. Clin Pharmacokinet. 2005;44:895–913.PubMedCrossRef
6.
Zurück zum Zitat Häfeli UO, Ensom MH, Kiang TK, et al. Comparison of vancomycin concentrations in blood and interstitial fluid: a possible model for less invasive therapeutic drug monitoring. Clin Chem Lab Med. 2011;21:2123–5. Häfeli UO, Ensom MH, Kiang TK, et al. Comparison of vancomycin concentrations in blood and interstitial fluid: a possible model for less invasive therapeutic drug monitoring. Clin Chem Lab Med. 2011;21:2123–5.
7.
Zurück zum Zitat Kiang TK, Schmitt V, Ensom MH, et al. Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs. J Pharm Sci. 2012;101:4642–52.PubMedCrossRef Kiang TK, Schmitt V, Ensom MH, et al. Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs. J Pharm Sci. 2012;101:4642–52.PubMedCrossRef
8.
Zurück zum Zitat Barbour A, Scaglione F, Derendorf H. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. Int J Antimicrob Agents. 2010;35:431–8.PubMedCrossRef Barbour A, Scaglione F, Derendorf H. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. Int J Antimicrob Agents. 2010;35:431–8.PubMedCrossRef
9.
Zurück zum Zitat Brunner M, Derendorf H, Muller M. Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr Opin Pharmacol. 2005;5:495–9.PubMedCrossRef Brunner M, Derendorf H, Muller M. Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr Opin Pharmacol. 2005;5:495–9.PubMedCrossRef
10.
Zurück zum Zitat Liu P, Derendorf H. Antimicrobial tissue concentrations. Infect Dis Clin N Am. 2003;17:599–613.CrossRef Liu P, Derendorf H. Antimicrobial tissue concentrations. Infect Dis Clin N Am. 2003;17:599–613.CrossRef
11.
Zurück zum Zitat Islinger F, Bouw R, Stahl M, et al. Concentrations of gemifloxacin at the target site in healthy volunteers after a single oral dose. Antimicrob Agents Chemother. 2004;48:4246–9.PubMedCentralPubMedCrossRef Islinger F, Bouw R, Stahl M, et al. Concentrations of gemifloxacin at the target site in healthy volunteers after a single oral dose. Antimicrob Agents Chemother. 2004;48:4246–9.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Cheng T, Zhao Y, Li X, et al. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model. 2007;47:2140–8.PubMedCrossRef Cheng T, Zhao Y, Li X, et al. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model. 2007;47:2140–8.PubMedCrossRef
13.
Zurück zum Zitat Brunner M, Pernerstorfer T, Mayer BX, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med. 2000;28:1754–9.PubMedCrossRef Brunner M, Pernerstorfer T, Mayer BX, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med. 2000;28:1754–9.PubMedCrossRef
14.
Zurück zum Zitat Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29:385–91.PubMedCrossRef Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29:385–91.PubMedCrossRef
15.
Zurück zum Zitat Tomaselli F, Dittrich P, Maier A, et al. Penetration of piperacillin and tazobactam into pneumonic human lung tissue measured by in vivo microdialysis. Br J Clin Pharmacol. 2003;55:620–4.PubMedCentralPubMedCrossRef Tomaselli F, Dittrich P, Maier A, et al. Penetration of piperacillin and tazobactam into pneumonic human lung tissue measured by in vivo microdialysis. Br J Clin Pharmacol. 2003;55:620–4.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Roberts JA, Roberts MS, Robertson TA, et al. Piperacillin penetration into tissue of critically ill patients with sepsis–bolus versus continuous administration? Crit Care Med. 2009;37:926–33.PubMedCrossRef Roberts JA, Roberts MS, Robertson TA, et al. Piperacillin penetration into tissue of critically ill patients with sepsis–bolus versus continuous administration? Crit Care Med. 2009;37:926–33.PubMedCrossRef
17.
Zurück zum Zitat Legat FJ, Krause R, Zenahlik P, et al. Penetration of piperacillin and tazobactam into inflamed soft tissue of patients with diabetic foot infection. Antimicrob Agents Chemother. 2005;49:4368–71.PubMedCentralPubMedCrossRef Legat FJ, Krause R, Zenahlik P, et al. Penetration of piperacillin and tazobactam into inflamed soft tissue of patients with diabetic foot infection. Antimicrob Agents Chemother. 2005;49:4368–71.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Ensom MH, Davis GA, Cropp CD, et al. Clinical pharmacokinetics in the 21st century. Does the evidence support definitive outcomes? Clin Pharmacokinet. 1998;34:265–79.PubMedCrossRef Ensom MH, Davis GA, Cropp CD, et al. Clinical pharmacokinetics in the 21st century. Does the evidence support definitive outcomes? Clin Pharmacokinet. 1998;34:265–79.PubMedCrossRef
19.
Zurück zum Zitat de la Pena A, Brunner M, Eichler HG, et al. Comparative target site pharmacokinetics of immediate- and modified-release formulations of cefaclor in humans. J Clin Pharmacol. 2002;42:403–11.CrossRef de la Pena A, Brunner M, Eichler HG, et al. Comparative target site pharmacokinetics of immediate- and modified-release formulations of cefaclor in humans. J Clin Pharmacol. 2002;42:403–11.CrossRef
20.
Zurück zum Zitat Liu P, Muller M, Grant M, et al. Tissue penetration of cefpodoxime and cefixime in healthy subjects. J Clin Pharmacol. 2005;45:564–9.PubMedCrossRef Liu P, Muller M, Grant M, et al. Tissue penetration of cefpodoxime and cefixime in healthy subjects. J Clin Pharmacol. 2005;45:564–9.PubMedCrossRef
21.
Zurück zum Zitat Barbour A, Schmidt S, Sabarinath SN, et al. Soft-tissue penetration of ceftobiprole in healthy volunteers determined by in vivo microdialysis. Antimicrob Agents Chemother. 2009;53:2773–6.PubMedCentralPubMedCrossRef Barbour A, Schmidt S, Sabarinath SN, et al. Soft-tissue penetration of ceftobiprole in healthy volunteers determined by in vivo microdialysis. Antimicrob Agents Chemother. 2009;53:2773–6.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Muller M, Haag O, Burgdorff T, et al. Characterization of peripheral-compartment kinetics of antibiotics by in vivo microdialysis in humans. Antimicrob Agents Chemother. 1996;40:2703–9.PubMedCentralPubMed Muller M, Haag O, Burgdorff T, et al. Characterization of peripheral-compartment kinetics of antibiotics by in vivo microdialysis in humans. Antimicrob Agents Chemother. 1996;40:2703–9.PubMedCentralPubMed
23.
Zurück zum Zitat Muller M, Rohde B, Kovar A, et al. Relationship between serum and free interstitial concentrations of cefodizime and cefpirome in muscle and subcutaneous adipose tissue of healthy volunteers measured by microdialysis. J Clin Pharmacol. 1997;37:1108–13.PubMedCrossRef Muller M, Rohde B, Kovar A, et al. Relationship between serum and free interstitial concentrations of cefodizime and cefpirome in muscle and subcutaneous adipose tissue of healthy volunteers measured by microdialysis. J Clin Pharmacol. 1997;37:1108–13.PubMedCrossRef
24.
Zurück zum Zitat Hollenstein U, Brunner M, Mayer BX, et al. Relationship between serum and free interstitial concentrations of cefodizime and cefpirome in muscle and subcutaneous adipose tissue of healthy volunteers measured by microdialysis. Clin Pharmacol Ther. 2000;67:229–36.PubMedCrossRef Hollenstein U, Brunner M, Mayer BX, et al. Relationship between serum and free interstitial concentrations of cefodizime and cefpirome in muscle and subcutaneous adipose tissue of healthy volunteers measured by microdialysis. Clin Pharmacol Ther. 2000;67:229–36.PubMedCrossRef
25.
Zurück zum Zitat Steiner M, Langenberger H, Marsik C, et al. Effect of norepinephrine on cefpirome tissue concentrations in healthy subjects. J Antimicrob Chemother. 2004;53:506–11.PubMedCrossRef Steiner M, Langenberger H, Marsik C, et al. Effect of norepinephrine on cefpirome tissue concentrations in healthy subjects. J Antimicrob Chemother. 2004;53:506–11.PubMedCrossRef
26.
Zurück zum Zitat Sauermann R, Delle-Karth G, Marsik C, et al. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob Agents Chemother. 2005;49:650–5.PubMedCentralPubMedCrossRef Sauermann R, Delle-Karth G, Marsik C, et al. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob Agents Chemother. 2005;49:650–5.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Joukhadar C, Klein C, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med. 2002;30:1478–82.PubMedCrossRef Joukhadar C, Klein C, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med. 2002;30:1478–82.PubMedCrossRef
28.
Zurück zum Zitat Barbour A, Schmidt S, Rout WR, et al. Soft tissue penetration of cefuroxime determined by clinical microdialysis in morbidly obese patients undergoing abdominal surgery. Int J Antimicrob Agents. 2009;34:231–5.PubMedCrossRef Barbour A, Schmidt S, Rout WR, et al. Soft tissue penetration of cefuroxime determined by clinical microdialysis in morbidly obese patients undergoing abdominal surgery. Int J Antimicrob Agents. 2009;34:231–5.PubMedCrossRef
29.
Zurück zum Zitat Brunner M, Hollenstein U, Delacher S, et al. Distribution and antimicrobial activity of ciprofloxacin in human soft tissues. Antimicrob Agents Chemother. 1999;43:1307–9.PubMedCentralPubMed Brunner M, Hollenstein U, Delacher S, et al. Distribution and antimicrobial activity of ciprofloxacin in human soft tissues. Antimicrob Agents Chemother. 1999;43:1307–9.PubMedCentralPubMed
30.
Zurück zum Zitat Bielecka-Grzela S, Klimowicz A. Penetration of ciprofloxacin and its desethylenemetabolite into skin in humans after a single oral dose of the parent drug assessed by cutaneous microdialysis. J Clin Pharm Ther. 2005;30:383–90.PubMedCrossRef Bielecka-Grzela S, Klimowicz A. Penetration of ciprofloxacin and its desethylenemetabolite into skin in humans after a single oral dose of the parent drug assessed by cutaneous microdialysis. J Clin Pharm Ther. 2005;30:383–90.PubMedCrossRef
31.
Zurück zum Zitat Hollenstein U, Brunner M, Schmid R, et al. Soft tissue concentrations of ciprofloxacin in obese and lean subjects following weight-adjusted dosing. Int J Obes Relat Metab Disord. 2001;25:354–8.PubMedCrossRef Hollenstein U, Brunner M, Schmid R, et al. Soft tissue concentrations of ciprofloxacin in obese and lean subjects following weight-adjusted dosing. Int J Obes Relat Metab Disord. 2001;25:354–8.PubMedCrossRef
32.
Zurück zum Zitat Joukhadar C, Dehghanyar P, Traunmuller F, et al. Increase of microcirculatory blood flow enhances penetration of ciprofloxacin into soft tissue. Antimicrob Agents Chemother. 2005;49:4149–53.PubMedCentralPubMedCrossRef Joukhadar C, Dehghanyar P, Traunmuller F, et al. Increase of microcirculatory blood flow enhances penetration of ciprofloxacin into soft tissue. Antimicrob Agents Chemother. 2005;49:4149–53.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Brunner M, Stabeta H, Moller JG, et al. Target site concentrations of ciprofloxacin after single intravenous and oral doses. Antimicrob Agents Chemother. 2002;46:3724–30.PubMedCentralPubMedCrossRef Brunner M, Stabeta H, Moller JG, et al. Target site concentrations of ciprofloxacin after single intravenous and oral doses. Antimicrob Agents Chemother. 2002;46:3724–30.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother. 1999;43:2345–9.PubMedCentralPubMed Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother. 1999;43:2345–9.PubMedCentralPubMed
35.
Zurück zum Zitat Zeitlinger M, Traunmuller F, Abrahim A, et al. A pilot study testing whether concentrations of levofloxacin in interstitial space fluid of soft tissues may serve as a surrogate for predicting its pharmacokinetics in lung. Int J Antimicrob Agents. 2007;29:44–50.PubMedCrossRef Zeitlinger M, Traunmuller F, Abrahim A, et al. A pilot study testing whether concentrations of levofloxacin in interstitial space fluid of soft tissues may serve as a surrogate for predicting its pharmacokinetics in lung. Int J Antimicrob Agents. 2007;29:44–50.PubMedCrossRef
36.
Zurück zum Zitat Bielecka-Grzela S, Klimowicz A. Evaluation of ofloxacin penetration into the skin after a single oral dose assessed by cutaneous microdialysis. Pol J Pharmacol. 2003;55:613–8.PubMed Bielecka-Grzela S, Klimowicz A. Evaluation of ofloxacin penetration into the skin after a single oral dose assessed by cutaneous microdialysis. Pol J Pharmacol. 2003;55:613–8.PubMed
37.
Zurück zum Zitat Muller M, Brunner M, Hollenstein U, et al. Penetration of ciprofloxacin into the interstitial space of inflamed foot lesions in non-insulin-dependent diabetes mellitus patients. Antimicrob Agents Chemother. 1999;43:2056–8.PubMedCentralPubMed Muller M, Brunner M, Hollenstein U, et al. Penetration of ciprofloxacin into the interstitial space of inflamed foot lesions in non-insulin-dependent diabetes mellitus patients. Antimicrob Agents Chemother. 1999;43:2056–8.PubMedCentralPubMed
38.
Zurück zum Zitat Joukhadar C, Klein N, Frossard M, et al. Angioplasty increases target site concentrations of ciprofloxacin in patients with peripheral arterial occlusive disease. Clin Pharmacol Ther. 2001;70:532–9.PubMedCrossRef Joukhadar C, Klein N, Frossard M, et al. Angioplasty increases target site concentrations of ciprofloxacin in patients with peripheral arterial occlusive disease. Clin Pharmacol Ther. 2001;70:532–9.PubMedCrossRef
39.
Zurück zum Zitat Zeitlinger M, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother. 2003;47:3548–53.PubMedCentralPubMedCrossRef Zeitlinger M, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother. 2003;47:3548–53.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Bellmann R, Kuchling G, Dehghanyar P, et al. Tissue pharmacokinetics of levofloxacin in human soft tissue infections. Br J Clin Pharmacol. 2004;57:563–8.PubMedCentralPubMedCrossRef Bellmann R, Kuchling G, Dehghanyar P, et al. Tissue pharmacokinetics of levofloxacin in human soft tissue infections. Br J Clin Pharmacol. 2004;57:563–8.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Joukhadar C, Stass H, Muller-Zellenberg U, et al. Penetration of moxifloxacin into healthy and inflamed subcutaneous adipose tissues in humans. Antimicrob Agents Chemother. 2003;47:3099–103.PubMedCentralPubMedCrossRef Joukhadar C, Stass H, Muller-Zellenberg U, et al. Penetration of moxifloxacin into healthy and inflamed subcutaneous adipose tissues in humans. Antimicrob Agents Chemother. 2003;47:3099–103.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Burian B, Zeitlinger M, Donath O, et al. Penetration of doripenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers. Antimicrob Agents Chemother. 2012;56:532–5.PubMedCentralPubMedCrossRef Burian B, Zeitlinger M, Donath O, et al. Penetration of doripenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers. Antimicrob Agents Chemother. 2012;56:532–5.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Burkhardt O, Brunner M, Schmidt S, et al. Penetration of ertapenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers measured by in vivo microdialysis. J Antimicrob Chemother. 2006;58:632–6.PubMedCrossRef Burkhardt O, Brunner M, Schmidt S, et al. Penetration of ertapenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers measured by in vivo microdialysis. J Antimicrob Chemother. 2006;58:632–6.PubMedCrossRef
44.
Zurück zum Zitat Tegeder I, Schmidtko A, Brautigam L, et al. Tissue distribution of imipenem in critically ill patients. Clin Pharmacol Ther. 2002;71:325–33.PubMedCrossRef Tegeder I, Schmidtko A, Brautigam L, et al. Tissue distribution of imipenem in critically ill patients. Clin Pharmacol Ther. 2002;71:325–33.PubMedCrossRef
45.
Zurück zum Zitat Dahyot C, Marchand S, Bodin M, et al. Application of basic pharmacokinetic concepts to analysis of microdialysis data: illustration with imipenem muscle distribution. Clin Pharmacokinet. 2008;47:181–9.PubMedCrossRef Dahyot C, Marchand S, Bodin M, et al. Application of basic pharmacokinetic concepts to analysis of microdialysis data: illustration with imipenem muscle distribution. Clin Pharmacokinet. 2008;47:181–9.PubMedCrossRef
46.
Zurück zum Zitat Roberts JA, Kirkpatrick CM, Roberts MS, et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009;64:142–50.PubMedCrossRef Roberts JA, Kirkpatrick CM, Roberts MS, et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009;64:142–50.PubMedCrossRef
47.
Zurück zum Zitat Sahre M, Sabarinath SN, Grant M, et al. Skin and soft tissue concentrations of tedizolid (formerly torezolid), a novel oxazolidinone, following a single oral dose in healthy volunteers. Int J Antimicrob Agents. 2012;40:51–4.PubMedCentralPubMedCrossRef Sahre M, Sabarinath SN, Grant M, et al. Skin and soft tissue concentrations of tedizolid (formerly torezolid), a novel oxazolidinone, following a single oral dose in healthy volunteers. Int J Antimicrob Agents. 2012;40:51–4.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Dehghanyar P, Burger C, Zeitlinger M, et al. Penetration of linezolid into soft tissues of healthy volunteers after single and multiple doses. Antimicrob Agents Chemother. 2005;49:2367–71.PubMedCentralPubMedCrossRef Dehghanyar P, Burger C, Zeitlinger M, et al. Penetration of linezolid into soft tissues of healthy volunteers after single and multiple doses. Antimicrob Agents Chemother. 2005;49:2367–71.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Islinger F, Dehghanyar P, Sauermann R, et al. The effect of food on plasma and tissue concentrations of linezolid after multiple doses. Int J Antimicrob Agents. 2006;27:108–12.PubMedCrossRef Islinger F, Dehghanyar P, Sauermann R, et al. The effect of food on plasma and tissue concentrations of linezolid after multiple doses. Int J Antimicrob Agents. 2006;27:108–12.PubMedCrossRef
50.
Zurück zum Zitat Thallinger C, Buerger C, Plock N, et al. Effect of severity of sepsis on tissue concentrations of linezolid. J Antimicrob Chemother. 2008;61:173–6.PubMedCrossRef Thallinger C, Buerger C, Plock N, et al. Effect of severity of sepsis on tissue concentrations of linezolid. J Antimicrob Chemother. 2008;61:173–6.PubMedCrossRef
51.
Zurück zum Zitat Traunmuller F, Schintler MV, Spendel S, et al. Linezolid concentrations in infected soft tissue and bone following repetitive doses in diabetic patients with bacterial foot infections. Int J Antimicrob Agents. 2010;36:84–6.PubMedCrossRef Traunmuller F, Schintler MV, Spendel S, et al. Linezolid concentrations in infected soft tissue and bone following repetitive doses in diabetic patients with bacterial foot infections. Int J Antimicrob Agents. 2010;36:84–6.PubMedCrossRef
52.
Zurück zum Zitat Matzneller P, Krasniqi S, Kinzig M, et al. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemotherapy. 2013;57:1736–42.CrossRef Matzneller P, Krasniqi S, Kinzig M, et al. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemotherapy. 2013;57:1736–42.CrossRef
53.
Zurück zum Zitat Traunmuller F, Zeitlinger M, Zeleny P, et al. Pharmacokinetics of single- and multiple-dose oral clarithromycin in soft tissues determined by microdialysis. Antimicrob Agents Chemother. 2007;51:3185–9.PubMedCentralPubMedCrossRef Traunmuller F, Zeitlinger M, Zeleny P, et al. Pharmacokinetics of single- and multiple-dose oral clarithromycin in soft tissues determined by microdialysis. Antimicrob Agents Chemother. 2007;51:3185–9.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Krasniqi S, Matzneller P, Kinzig M, et al. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy. Antimicrob Agents Chemotherapy. 2012;56:1059–64.CrossRef Krasniqi S, Matzneller P, Kinzig M, et al. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy. Antimicrob Agents Chemotherapy. 2012;56:1059–64.CrossRef
55.
Zurück zum Zitat Gattringer R, Urbauer E, Traunmuller F, et al. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother. 2004;48:4650–3.PubMedCentralPubMedCrossRef Gattringer R, Urbauer E, Traunmuller F, et al. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother. 2004;48:4650–3.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Traunmuller F, Fille M, Thallinger C, et al. Multiple-dose pharmacokinetics of telithromycin in peripheral soft tissues. Int J Antimicrob Agents. 2009;34:72–5.PubMedCrossRef Traunmuller F, Fille M, Thallinger C, et al. Multiple-dose pharmacokinetics of telithromycin in peripheral soft tissues. Int J Antimicrob Agents. 2009;34:72–5.PubMedCrossRef
57.
Zurück zum Zitat Kim A, Suecof LA, Sutherland CA, et al. In vivo microdialysis study of the penetration of daptomycin into soft tissues in diabetic versus healthy volunteers. Antimicrob Agents Chemother. 2008;52:3941–6.PubMedCentralPubMedCrossRef Kim A, Suecof LA, Sutherland CA, et al. In vivo microdialysis study of the penetration of daptomycin into soft tissues in diabetic versus healthy volunteers. Antimicrob Agents Chemother. 2008;52:3941–6.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Traunmuller F, Schintler MV, Metzler J, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010;65:1252–7.PubMedCrossRef Traunmuller F, Schintler MV, Metzler J, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010;65:1252–7.PubMedCrossRef
59.
Zurück zum Zitat Bulik CC, Wiskirchen DE, Shepard A, et al. Tissue penetration and pharmacokinetics of tigecycline in diabetic patients with chronic wound infections described by using in vivo microdialysis. Antimicrob Agents Chemother. 2010;54:5209–13.PubMedCentralPubMedCrossRef Bulik CC, Wiskirchen DE, Shepard A, et al. Tissue penetration and pharmacokinetics of tigecycline in diabetic patients with chronic wound infections described by using in vivo microdialysis. Antimicrob Agents Chemother. 2010;54:5209–13.PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Skhirtladze K, Hutschala D, Fleck T, et al. Impaired target site penetration of vancomycin in diabetic patients following cardiac surgery. Antimicrob Agents Chemother. 2006;50:1372–5.PubMedCentralPubMedCrossRef Skhirtladze K, Hutschala D, Fleck T, et al. Impaired target site penetration of vancomycin in diabetic patients following cardiac surgery. Antimicrob Agents Chemother. 2006;50:1372–5.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Frossard M, Joukhadar C, Erovic BM, et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob Agents Chemother. 2000;44:2728–32.PubMedCentralPubMedCrossRef Frossard M, Joukhadar C, Erovic BM, et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob Agents Chemother. 2000;44:2728–32.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Legat FJ, Maier A, Dittrich P, et al. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob Agents Chemother. 2003;47:371–4.PubMedCentralPubMedCrossRef Legat FJ, Maier A, Dittrich P, et al. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob Agents Chemother. 2003;47:371–4.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Joukhadar C, Klein C, Dittrich P, et al. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. J Antimicrob Chemother. 2003;51:1247–52.PubMedCrossRef Joukhadar C, Klein C, Dittrich P, et al. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. J Antimicrob Chemother. 2003;51:1247–52.PubMedCrossRef
64.
Zurück zum Zitat Lorentzen H, Kallehave F, Kolmos HJ, et al. Gentamicin concentrations in human subcutaneous tissue. Antimicrob Agents Chemother. 1996;40:1785–9.PubMedCentralPubMed Lorentzen H, Kallehave F, Kolmos HJ, et al. Gentamicin concentrations in human subcutaneous tissue. Antimicrob Agents Chemother. 1996;40:1785–9.PubMedCentralPubMed
65.
Zurück zum Zitat Lorentzen H, Kallehave F, Kolmos HJ, et al. Gentamicin concentrations in human subcutaneous tissue. Antimicrob Agents Chemother. 1996;40:1785–9.PubMedCentralPubMed Lorentzen H, Kallehave F, Kolmos HJ, et al. Gentamicin concentrations in human subcutaneous tissue. Antimicrob Agents Chemother. 1996;40:1785–9.PubMedCentralPubMed
66.
Zurück zum Zitat Bielecka-Grzela S, Klimowicz A. Application of cutaneous microdialysis to evaluate metronidazole and its main metabolite concentrations in the skin after a single oral dose. J Clin Pharm Ther. 2003;28:465–9.PubMedCrossRef Bielecka-Grzela S, Klimowicz A. Application of cutaneous microdialysis to evaluate metronidazole and its main metabolite concentrations in the skin after a single oral dose. J Clin Pharm Ther. 2003;28:465–9.PubMedCrossRef
67.
Zurück zum Zitat Karjagin J, Pahkla R, Starkopf J. Perioperative penetration of metronidazole into muscle tissue: a microdialysis study. Eur J Clin Pharmacol. 2004;59:809–13.PubMedCrossRef Karjagin J, Pahkla R, Starkopf J. Perioperative penetration of metronidazole into muscle tissue: a microdialysis study. Eur J Clin Pharmacol. 2004;59:809–13.PubMedCrossRef
68.
Zurück zum Zitat Karjagin J, Pahkla R, Karki T, et al. Distribution of metronidazole in muscle tissue of patients with septic shock and its efficacy against Bacteroides fragilis in vitro. J Antimicrob Chemother. 2005;55:341–6.PubMedCrossRef Karjagin J, Pahkla R, Karki T, et al. Distribution of metronidazole in muscle tissue of patients with septic shock and its efficacy against Bacteroides fragilis in vitro. J Antimicrob Chemother. 2005;55:341–6.PubMedCrossRef
69.
Zurück zum Zitat Chua B, Desai S, Tierney M, et al. Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sens Actuators A. 2013;203:373–81.CrossRef Chua B, Desai S, Tierney M, et al. Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sens Actuators A. 2013;203:373–81.CrossRef
Metadaten
Titel
A Comprehensive Review on the Pharmacokinetics of Antibiotics in Interstitial Fluid Spaces in Humans: Implications on Dosing and Clinical Pharmacokinetic Monitoring
verfasst von
Tony K. L. Kiang
Urs O. Häfeli
Mary H. H. Ensom
Publikationsdatum
01.08.2014
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 8/2014
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-014-0152-3

Weitere Artikel der Ausgabe 8/2014

Clinical Pharmacokinetics 8/2014 Zur Ausgabe